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Quantum interference in two-photon frequency-comb spectroscopy
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Quantum interference arising from spontaneous emission, or cross-damping, is an important yet frequently
overlooked systematic in precision spectroscopy experiments which aim to determine a transition frequency
with an uncertainty smaller than the natural linewidth. Here, we calculate the effects of such interference in
two-photon frequency-comb spectroscopy using a perturbative approach and by integration of the density matrix
equations. We then apply these techniques to the two-photon spectroscopy of the hydrogen 1S-3S transition
currently being performed in our group. Depending on the detection geometry, we find distortions of the line
shapes which can lead to systematic errors of ∼1 kHz if such interference effects are ignored in the data analysis.
This result is independent of whether a cw laser or frequency comb is used for the excitation. Finally, we propose a
time-dependent detection scheme which, when used in conjunction with frequency-comb excitation, can mitigate
the line distortions arising from such interference.
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I. INTRODUCTION

High-precision spectroscopy of simple atomic systems
offers the determination of fundamental constants and tests
of quantum electrodynamics (QED) through comparison with
accurate theoretical calculations. While such measurements
have historically been very fruitful endeavors, they require
the painstaking process of dutifully reducing or quantifying
systematics to a level below the measurement uncertainty.
Interestingly, several authors have recently identified that when
two or more levels in an atomic system are closely spaced
in energy, quantum interference manifested in spontaneous
emission, commonly referred to as cross-damping, produces
systematic line shifts which have often been overlooked [1–3].
Here, we analyze the effects of such interference in two-
photon, frequency-comb spectroscopy. While this may appear
to be a very specialized case on which to base our analysis,
we anticipate that this form of spectroscopy will become
increasingly important in the precision measurement of simple
atomic and ionic systems as it offers broad spectral coverage
and efficient harmonic conversion to short wavelengths [4–8].
Further, laser excitation with a continuous-wave (cw) source
can easily be treated as a special case within our formalism.

In this article, we first present a review of the effects of
quantum interference on the lifetimes of excited states, which
is necessary to understand our later analysis. Then, in Sec. III,
we derive an equation analogous to the Kramers-Heisenberg
equation (see, for instance, [9,10]) using perturbation theory.
A similar method has been used recently to calculate line
distortions in 6,7Li D2 lines [3]. Our formulation differs from
the traditional Kramers-Heisenberg formula in that it includes
two-photon excitation by a frequency comb and velocity
effects such as transit-time broadening. In Sec. IV, we analyze
the line distortions that can be present in the measurements
of the hydrogen 1S-3S transition, currently underway in our
group and in the group of François Biraben in Paris [11–13],
and check our results by a direct integration of the density
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matrix equations [1,14]. Finally, in Sec. V we propose a
detection scheme where a time-dependent detection window
is applied to the fluorescence signal. This method can only be
utilized in combination with frequency-comb excitation and
mitigates the line-pulling effects that result from the quantum
interference.

Our analysis is timely given the recent discrepancy between
the determination of the proton charge radius through spec-
troscopy of muonic hydrogen versus regular hydrogen [15].
While the hydrogen 1S-2S transition has been determined
with a very low fractional frequency uncertainty of 4.2 ×
10−15 [16], it must be considered along with other less
precisely determined transitions in hydrogen to extract the
Rydberg constant and proton charge radius. To be relevant,
these transitions must be measured to a small fraction of
their natural linewidths and are therefore susceptible to the
cross-damping systematic [17].

Our perturbative analysis is the focus of this article even
though a direct integration of the density matrix equations is
obviously more general. For instance, with direct integration,
intensity-dependent effects, such as saturation and optical
pumping, can also be taken into account. However, when
dealing with a large number of relevant levels, the number
of equations present in the density matrix treatment grows
as the number of levels squared and is cumbersome to solve
analytically. Obviously, such a system of equations can be
numerically integrated, but physical insight may be lost. In
contrast, the perturbative method retains the important features
of the solution, is generally faster to implement, is less prone to
computational errors, and can help guide our physical intuition.
With this in mind, we make no attempt to avoid approximations
to keep our perturbative results generally valid. Instead, we
arrive at physically meaningful, simple expressions which,
admittedly, should not be applied without caution to other
precision spectroscopy experiments.

II. QUANTUM INTERFERENCE AND THE LIFETIMES
OF EXCITED STATES

One predicted effect of quantum interference arising from
spontaneous emission is a strong alteration of the lifetimes
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FIG. 1. We consider two-photon excitation (2 × ω) from initial
states |i〉 through intermediate states |p〉 (far-off resonance) to excited
levels |e〉. Excitation is detected through radiative decay at frequency
ωs to the final states |f 〉. In principle, the manifold |f 〉 may also
decay back to the initial states, which is important to consider if
optical pumping or saturation of the transition occurs.

of excited states [18]. These effects can, in principle, be
so strong that they produce pseudometastable states if the
proper excited-state coherences can be produced. However,
this is often an artifact of restricting the analysis to a scalar
atom without Zeeman structure. In a real atom, the dominant
effect of the interference is the suppression of radiation in
certain directions while enhancing it in others such that the
overall excited-state lifetimes are maintained. The difficulty in
achieving large alterations of excited-state lifetimes through
the vacuum coupling in a real physical system has been
discussed before [19–22]. However, we include a discussion
here for clarity.

We first consider the master equation for the interaction of
a multilevel atomic system with an electromagnetic field using
the density matrix formalism [23,24].

∂ρ

∂t
= 1

i�
[HI ,ρ] − Lρ. (1)

We have grouped the decay terms in Eq. (1) into the Lindblad
operator L. We consider the general level structure shown in
Fig. 1 which depicts two-photon excitation from a manifold of
initial states |i〉 to a manifold of excited states |e〉 through the
intermediate manifold |p〉. This is followed by spontaneous
decay to a manifold of final states |f 〉 through emission at
frequency ωs . Note that the manifolds could be partially or
fully identical, for example, if the atom decays directly back
to the initial states.

The decay terms from a particular excited state |e′〉 are given
by (Lρ)e′e′ , where we assume that state |e′〉 is part of the |e〉
manifold of states. Following from quantum electrodynamics
and the Wigner-Weisskopf approximation, it can be shown
that [21,22]

(Lρ)e′e′ = 1

2

∑
ef η

D
η

f e′D
η

f eω
3
ef

3πε0�c3
(ρee′ + ρe′e). (2)

Here, we use the convention that ωab = (Ea − Eb)/�, and
the dipole moments are given by D

η

f e = q〈f |�εη · �r|e〉, where
q is the elementary charge and �εη are the spherical unit
vectors, expressed in Cartesian coordinates as �ε0 = (0,0,1)
and �ε±1 = −(±1,i,0)/

√
2 [25, Eq. (4.111)]. The spherical

components η = −1,0,+1 correspond respectively to σ−, π ,
and σ+ dipole radiation modes where the far-field electric
field in the direction �R is proportional to ( �R × �εη) × �R. From
Eq. (2), we see that the decay of population from level |e′〉
depends not only on the population in |e′〉 (normal damping)
but also on the coherence relative to other excited states |e〉
(cross-damping). For reference, please note that the full matrix
Lρ is given later in the text [Eq. (23)].

We now show that when summing over all spherical
components of dipole emission, the impact of cross-damping
on the lifetimes is greatly reduced. Using the Wigner-Eckart
theorem and the orthogonality relations of the Clebsch-Gordan
coefficients, one finds that∑

f η

D
η

f e′D
η

f e = 0, (3)

unless states e and e′ have the same angular momentum
quantum numbers, differing only in principal quantum num-
bers. Typically, there will be no excited states near state |e′〉
which meet this condition, and therefore, Eq. (3) will hold
unless e = e′. Due to the presence of the frequency ωef ,
we cannot directly apply the relationship given in Eq. (3) to
Eq. (2). However, typically the level splitting between different
angular momentum states in the manifold of states |f 〉 is
small compared to the absolute value of the frequencies ωef .
Therefore, we find that

(Lρ)e′e′ ≈
∑
f η

(
D

η

f e′
)2

ω3
e′f

3πε0�c3
ρe′e′ = 	e′ ρe′e′ , (4)

where 	e′ is the decay rate of level |e′〉.
From Eq. (4), we find, with the caveats mentioned, that

atomic levels will usually have well-defined total decay rates
even in the presence of cross-damping. However, we do not
claim that the cancellation given by Eq. (3) is perfect, only
that the dominant effect of the quantum interference is to
enhance a certain decay path while suppressing others such
that the total decay rate is nearly constant. An examination
of all approximations used in arriving at Eq. (4) is currently
underway as small adjustments to the decay rates may
be present which should be taken into account in more
refined models [26]. One physical implication of well-defined
lifetimes is that excitation dynamics should remain unaffected
by cross-damping. Therefore, if one measures the excited-state
population directly and optical pumping effects are negligible,
cross-damping introduces no systematic effects.

There are special cases where the cross-damping would
be expected to more significantly alter total decay rates.
Artificial three-level systems could be created by the addition
of coupling fields [18]. Also, by placing the atom in a cavity
environment where certain decay channels are suppressed, it is
expected that one can observe suppression of spontaneous de-
cay from cross-damping effects [20]. Finally, Cardimona and
Stroud [22] mention two systems where states differing only in
principal quantum numbers can be close in frequency: Rydberg
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atoms and multielectron atoms or molecules with overlapping
electronic configurations. For such systems, Eq. (3) would
no longer be applicable. With these precautions in mind, we
assume well-defined lifetimes in our perturbative calculations
in the next section.

III. PERTURBATIVE METHOD

A. Two-photon excitation and spontaneous emission

In this section, we analyze the excitation scheme shown
in Fig. 1 using perturbation theory. For the case of Doppler-
free two-photon spectroscopy, the atomic sample is probed
with counterpropagating radiation and the first-order matrix
elements from |i〉 to |p〉 are given by

c
(1)
i→p(t) = ci(0)

i�

∫ t

0

[
Dν

piE+(t ′) + D
μ

piE−(t ′)
]
eiωpi t

′
dt ′. (5)

Here, ci(0) is the initial amplitude of state |i〉. We use E±(t)
to represent the amplitudes of the fields traveling in opposite
directions and the labels ν and μ to denote their polarizations.
We assume that all intermediate states labeled by |p〉 are far
from laser resonance.

We now calculate the excited-state populations in the
second order. In contrast to the first-order matrix elements,
we anticipate that the levels |e〉 are close to resonance with
the second harmonic of the field. Therefore, there will be
significant population in the excited states, and we have to
take into account the decay rates given by 	e. The use of
well-defined decay rates was justified in the last section. How-
ever, such an inclusion appears here phenomenologically and
depends upon the Wigner-Weisskopf theory of spontaneous
emission. Therefore, such a treatment is, strictly speaking,
beyond second-order perturbation theory.

c
(2)
i→e(t) = ci(0)

(i�)2

∑
p

e− 	e
2 t

×
∫ t

0

∫ t ′

0
[K(t ′,t ′′) + S(t ′,t ′′)]

× ei(ωpi t
′′+ωept ′)+ 	e

2 t ′dt ′′dt ′. (6)

K(t ′,t ′′) and S(t ′,t ′′) are given by

K(t ′,t ′′) = Dν
epD

μ

piE+(t ′)E−(t ′′) + Dμ
epDν

piE+(t ′′)E−(t ′),

S(t ′,t ′′) = Dν
epDν

piE+(t ′)E+(t ′′) + Dμ
epD

μ

piE−(t ′′)E−(t ′).

(7)

For details on the proper inclusion of 	e in Eq. (6) see [9,
Eqs. (2.181)–(2.186)]. The contribution from K(t ′,t ′′) will
produce the Doppler-free signal, whereas S(t ′,t ′′) produces
Doppler-broadened background. We ignore the S(t ′,t ′′) term
as it is relatively inconsequential for our results and discus-
sion. However, it should be pointed out that under certain
experimental conditions, the Doppler-broadened background
can contribute significant shot noise and/or technical noise, and
its suppression within a pulsed excitation scheme has been the
subject of two recent articles [27,28].

Next, we take the two-dimensional Fourier transform of
K(t ′,t ′′) and evaluate the time integrals in Eq. (6). This

results in

c
(2)
i→e(t) = ci(0)

Q
μν

ei

2π�

∫ ∞

−∞

G̃(ω)ei(ωei−2ω)t

ωei − 2ω − i 	e

2

dω. (8)

The function G̃(ω) is the Fourier transform of the product of
the forward- and backward-propagating fields given by

G̃(ω) = 2
∫ ∞

−∞
E+(t) E−(t) ei2ωtdt. (9)

We also introduce a second-order dipole matrix element given
by

Q
μν

ei =
∑

p

Dν
epD

μ

pi + D
μ
epDν

pi

�(ωpi − ωc)
. (10)

Here, ωc is the center frequency of the laser. Since we assume
the denominator is far from resonance, the exact value of ωc

is not critical. For hydrogen, the second-order dipole matrix
elements have been tabulated in [29].

Next, we must consider the radiative decay to the final state
manifold |f 〉. For this, we first calculate the amplitude that the
atom decays by emitting a photon with frequency ωs and in a
dipole radiation pattern η. This is given by

c
(3)
i→f,ηωs

(t) = 1

i�

∑
e

D
η

f e

∫ t

0
hηωs

ei(ωs−ωef )t ′c
(2)
i→e(t ′)dt ′.

(11)

The quantity hηωs
= √

�ωs/(2ε0V ) can be thought of as the
amplitude of the electric field per mode of the vacuum field in
a given volume V , where we implicitly take the limit V → ∞
later.

We can calculate the final population through |c(3)
i→f,ηωs

(t)|2,
which is directly related to the photons scattered. In a
typical experiment, there is not a precise measurement of
the frequency of the emitted photon. Therefore, we include
a density of states dN/dωs (proportional to V ), integrate over
ωs , and sum over the initial and final states to find the emission
intensity. This is given by

I ημν =
∑
if

∫ ∞

0

dN

dω′
s

∣∣c(3)
i→f,ηω′

s
(t)

∣∣2
dω′

s . (12)

We now insert the result from Eq. (11) into Eq. (12) and take
the limit t → ∞, which corresponds physically to the total
probability that the atom scattered a photon. For this limit to
be physical, we must assume that the atom is excited only
for some finite time, for example, an atom traveling through a
laser beam. Evaluating the time integral in Eq. (11) gives

I ημν = 1

4�4

∑
i f

|ci(0)|2

×
∫ ∞

0
H(ω′

s)

∣∣∣∣∣
∑

e

D
η

f eQ
μν

ei G̃
[ω′

s−ωif

2

]
ωef − ω′

s − i 	e

2

∣∣∣∣∣
2

dω′
s . (13)

In this equation, we introduce H(ωs) = dN
dωs

|hηωs
|2, which will

be proportional to ω3
s in free space and is independent of

the volume V . In evaluating the time integral, we ignore the
small contribution of the principal part as it is directly related
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to the traditional Lamb shift, which can be better treated in
more sophisticated models. Equation (13) is a function of
the polarization of the excitation fields, ν and μ, and of the
dipole radiation mode, η. We do not sum over η because
an experimental measurement of fluorescence will often be
preferentially sensitive to certain dipole radiation patterns.

As an aside, it may seem strange that Eq. (13) does not
appear to display a two-photon resonance structure of the
excited states |e〉. This is resolved if we consider a reasonable
form for G̃(ω). For example, if we are exciting with a
near-continuous-wave source, we would expect G̃(ω) to be
strongly peaked around the carrier frequency ωc. This will
result in

I ημν ∝
∑
i f

∣∣∣∣∣
∑

e

D
η

f eQ
μν

ei H(ωef )

ωei − 2ωc − i 	e

2

∣∣∣∣∣
2

. (14)

This equation is the Kramers-Heisenberg formula except the
usual single-photon matrix element has been replaced by a
two-photon matrix element.

Returning to Eq. (13), we set H(ωs) = H(ωef ) and extend
the integral to negative infinity, which is, in essence, the
Wigner-Weisskopf approximation. We then use the method
of partial fractions to rearrange Eq. (13) and arrive at

I ημν = 1

2�4

∑
if ee′

|ci(0)|2H(ωef )

×
∫ ∞

−∞
Re

[
X ημν

f e′ei

∣∣G̃[ω′
s−ωif

2

]∣∣2(
ωe′e − i

	e+	e′
2

)(
ωef − ω′

s + i 	e

2

)
]

dω′
s ,

(15)

where

X ημν

f e′ei = D
η

f eQ
μν

ei D
η

f e′Q
μν

e′i . (16)

The latter expression represents a rather straightforward sum
of products of 3j and 6j symbols [25, Eqs. (4.120), (4.175)]
with the appropriate resonance denominator of Eq. (10). The
quantum interference, represented in Eq. (15) by the terms in
the sum where e �= e′, can be understood as the interference
between two quantum paths starting at state |i〉 and ending at
state |f 〉 through different excited states |e〉 and |e′〉.

B. Frequency-comb excitation of a moving atom

In this section, we consider the excitation of a moving atom
by identical, counterpropagating frequency combs. We also
assume the laser radiation has a Gaussian transverse-intensity
profile and flat wave fronts and propagates along the x axis
(see Fig. 2). This produces fields in the frame of the moving
atom given by

E±(t) =
∞∑

n=−∞
E0e

− y(t)2

2w2
y

− z(t)2

2w2
z e−[t∓x(t)/c−ntr ]2/2τ 2

e−i ωc(t∓x(t)/c).

(17)

Here, the position of the atom is given by �r(t) =
[x(t),y(t),z(t)], tr is the repetition period of the frequency
comb, τ is the width of the pulses, and ωc is the carrier
frequency. We assume the pulses to be transform limited,

v(t) z 

y 

wz 

wy 
x 

τc 

FIG. 2. Atomic trajectory passing through a Gaussian laser beam.
We assume a linear trajectory which gives an atomic position of the
form �r(t) = [(x0 + vxt),(y0 + vyt),(z0 + vzt)]. We also assume the
laser beam has a Rayleigh range much larger than the beam waist so
that its x dependence is negligible. A Doppler-free signal is obtained
only from the pulse collision volume which is defined by the size of
the beam waists in the transverse dimensions (wy and wz) and the
length of the transform-limited, colliding pulses along the x axis (τc).

although the effects of spectral chirp can easily be in-
cluded [27,28,30,31].

The dependence of the two-photon excitation on the applied
laser fields is contained within the function G̃(ω) as defined
by Eq. (9). By inserting Eq. (17) into Eq. (9) we arrive at

G̃(ω) = E2
0

∞∑
n=−∞

∫ ∞

−∞
e
− x(t)2

τ2c2 − y(t)2

w2
y

− z(t)2

w2
z

× e−(t−ntr )2/τ 2
e−2iωct ei2ωtdt. (18)

The first factor describes the rising and falling intensity
that the atom experiences as it travels across the pulse-
collision volume, whereas the second factor describes the time
dependence of the pulse trains themselves.

We now assume a linear trajectory, �r(t) = [(x0 +
vxt),(y0 + vyt),(z0 + vzt)], and evaluate the Fourier transform
represented in Eq. (18). This gives

G̃(ω) ∝
∞∑

q=−∞
e− (q−2qc )2ω2

r τ2

4 e− (2ω−2ω0−qωr )2 t2
δ

4 eiφq (ω). (19)

Here, ωr = 2π/tr and ω0 = ωc − qcωr are the repetition and
offset frequencies of the fundamental frequency combs [32],
qc is the mode number nearest the center of the spectrum,
and tδ = (v2

x/c
2τ 2 + v2

y/w
2
y + v2

z /w
2
z )−

1
2 is the time it takes

the atom to traverse the pulse collision volume. The phase
φq(ω) = [2ω − 2ωc − (q − 2qc)ωr ]t0 usually drops out of the
calculation, as we show later.

For the total scattering amplitude as given in Eq. (15), we
must calculate |G(ω)|2, which is given by

|G̃(ω)|2 ∝
∞∑

q,p=−∞
ei[φq (ω)−φp(ω)]e− (q−2qc )2ω2

r τ2

4 − (p−2qc )2ω2
r τ2

4

× e− (2ω−2ω0−qωr )2 t2
δ

4 − (2ω−2ω0−qωr )2 t2
δ

4 . (20)

We can usually ignore terms where p �= q. The validity of
this depends on the frequency-comb modes being relatively
well separated. For instance, if tδ ∼ 200 ns and ωr ∼ 1 GHz,
then terms with p �= q will be approximately e−1002

times the
terms with p = q. By setting terms where p �= q to zero, the
dependence on the spectral phases φq(ω) and φp(ω) cancels,
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and Eq. (20) simplifies to

|G̃(ω)|2 ∝
∞∑

q=−∞
e− (q−2qc )2ω2

r τ2

2 e− (2ω−2ω0−qωr )2 t2
δ

2 . (21)

We insert this result into Eq. (15) and define a new variable of integration, ξ = ω′
s − ωif − 2ω0 − qωr .

I ημν ∝
∞∑

q=−∞
|ci(0)|2e− (q−2 qc )2ω2

r τ2

2

∑
if ee′

X ημν

f e′eiH(ωef )

×
∫ ∞

−∞
Re

⎡
⎣ e− ξ2 t2

δ
2(

ωe′e − i
	e+	e′

2

)(
ωei − 2ω0 − ωrq − ξ + i 	e

2

)
⎤
⎦ dξ. (22)

Equation (22) is our final result, which we use to analyze the
measurement of the hydrogen 1S-3S transition.

One of the main strengths of Eq. (22) is that it is easily
interpreted. Terms in the sum with e′ �= e describe the quantum
interference and will be suppressed by roughly ωe′e/	e when
compared with terms with e′ = e, provided the level splitting
in the |e〉 manifold is larger than the natural linewidths. The
leading exponent describes the spectral shape of the second
harmonic of the frequency comb and shows that a transition
will be excited more efficiently if it is well centered within
this spectrum. The integral over ξ is necessary to include
line-broadening mechanisms. However, if these effects are
small compared to the natural linewidth, then ξ can be set
to zero in the denominator, and the integral can easily be
evaluated. H(ωef ) will be proportional to ω3

ef in free space,
and it can usually be ignored provided that splittings between
levels within the |e〉 and |f 〉 manifolds are small.

As mentioned above, Eq. (22) reveals that the effects of
cross-damping are generally proportional to 1/ωe′e as long
as the level splittings are much larger than the natural width.
This deserves special mention because, intuitively, one might
expect that since two widely separated levels can easily be
put into a coherent superposition when excited by a fre-
quency comb, the relevant proportionality constant would be
1/(ωe′e mod ωr ), which is evidently not the case. Practically,
this shows that we are not introducing larger cross-damping
effects by using frequency-comb spectroscopy instead of cw
laser spectroscopy. The case of cw excitation can be treated as
a special case of Eq. (22) by considering only the term q = 0
in the sum.

IV. APPLICATION TO HYDROGEN 1S-3S
SPECTROSCOPY AND COMPARISON WITH NUMERICAL
INTEGRATION OF THE DENSITY MATRIX EQUATIONS

In this section we apply Eq. (22) to spectroscopy of the
hydrogen 1S-3S transition. Figure 3 shows the relevant levels.
The 3S and 3D levels have natural linewidths of 1.0 and
10.3 MHz, respectively. We consider both the 3D and 3S

levels as part of the |e〉 manifold. Figure 4 shows the detected
signal we expect as we scan ω0. The counterpropagating
beams have polarization ν = μ = 0 (linear polarization along

the z axis) and a repetition rate of 348.16 MHz. Figure 4
also shows the residual errors if we leave out the terms in
Eq. (22) where e �= e′, which is equivalent to ignoring the
quantum interference. These errors are dependent on which
dipole emission components (σ± or π ) are detected. In a typical
experimental setup, it is usually some combination of emission
patterns which is measured, which depends on the placement
and polarization sensitivity of the detector. Figure 5 shows the
line shifts which result from fitting the distorted lines with
Lorentzians as a function of detector placement. Figure 5 also
shows a comparison with the case of cw excitation. As is
evident in Fig. 5 and discussed in Sec. III, the combination of
frequency-comb excitation and the quantum interference does
not introduce additional systematic effects, so that the curves
are nearly identical.

Figure 6 shows the detected signal and residuals if the
line is broadened through a 10 times smaller tδ . In this case,

FIG. 3. Relevant hydrogen levels with all hyperfine levels shown.
The mF levels of the same F are shown as horizontally displaced.
We model the excitation of the allowed two-photon 1S-3S transitions
(F = 0 to F = 0 and F = 1 to F = 1) using counterpropagating
beams of π polarization. To compare with Fig. 1, all 3S and 3D levels
comprise the |e〉 manifold, the 2P levels comprise the |f 〉 manifold,
and the 1S levels comprise the |i〉 manifold. The |p〉 manifold (not
shown) is all levels that are dipole allowed from the 1S level.
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FIG. 4. (a) Calculated fluorescence signal from the 3S levels
using Eq. (22) as the offset frequency ω0 is scanned with tδ= 2 μs
and a repetition rate of ωr = 2π× 348.16 MHz. The repetition rate is
chosen so that only the 3S levels are resonantly excited within the scan
range shown. Since we show frequency-comb excitation, the F = 0
and F = 1 transitions appear closely spaced but are actually excited
by separate comb modes. (b) Difference in the line shape between
the full model and when only terms where e = e′ are considered
in Eq. (22) [note that the units in (b) are arbitrary, but the same as
the units in (a)]. The errors depend on the detected dipole spherical
components and average to zero if they are all detected with equal
sensitivity. The σ+ and σ− components are identical and are shown
as the dashed line.
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FIG. 5. The line-center shift of the 1S F = 1 to 3S F = 1
transition which results from fitting the line profiles distorted by
quantum interference with Lorentzian functions. We assume a small-
area detector which detects a combination of the π and σ± dipole
spherical components with a laser polarization of μ = ν = 0 (both
beams linearly polarized along the z axis). In this case, there is
cylindrical symmetry, so we plot the result only as a function of
the azimuthal angle θ (with respect to the z axis). The solid and
dashed lines represent the frequency-comb and cw excitation cases,
respectively. Note that the shifts shown correspond to a ∼10−13

relative frequency error for the spectroscopic measurement.
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FIG. 6. Similar to Fig. 4 with only the 1S-3S transitions res-
onantly excited within the scan range shown. The transit time
broadening is no longer negligible (tδ = 200 ns), and therefore, the
residual errors in (b) broaden and are proportionally larger than in
Fig. 4.

the residuals are proportionally larger and also broadened.
From this result, it is clear that the combination of transit-time
broadening and cross-damping cannot be treated as unrelated
systematic effects and must be considered together.

We can compare our results obtained with our perturbative
formulation with a direct numerical integration of the density
matrix equations in Eq. (1). For this, we require the full
Lindblad operator L, approximated by [23,24]

Lρ = 1

2

∑
ij

γij {S+
i S−

j ρ − 2S−
j ρS+

i + ρS+
i S−

j }. (23)

Here, the indices i and j label transitions and not levels, and
ωi is the corresponding frequency for that transition. The
cross-damping coefficients are given by γij = √

γiγj �εi · �εj ,
where γi are the decay constants for transition i and �εi are
the spherical unit vectors along the corresponding dipole
moments. The operator S+

i is given by |e〉〈f |, where states
e and f are levels which correspond to transition i. Likewise,
S−

i is given by |f 〉〈e|. As can be seen in Fig. 3, there are 39
levels which should be accounted for in our analysis. For the
case of linearly polarized excitation beams the 3D magnetic
sublevels with mF = ±3,±2 cannot be excited because of
two-photon selection rules, which leaves 32 quantum states.
The total number of equations represented by Eq. (1) is
therefore 322 = 1024.

To obtain the fluorescence signal from the 3S/3D-2P decay
in the simulation, we determine the transfer of population
from the manifolds |e〉 to |f 〉, along with the required radiated
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FIG. 7. Difference between the calculated line shapes when
integrating the complete set of density matrix equations and when
we set γij = 0 if i �= j (equivalent to ignoring the cross-damping).
The dashed curves are reproduced from the perturbative calculations
shown in Figs. 4 and 6 so that the two methods can be compared. In
(a) tδ = 2 μs, and in (b) tδ = 200 ns.

spherical component (σ± or π ) for the transition. To simulate
the evolution of a hydrogen atom flying through the laser field,
we must integrate 1024 equations.

Figure 7 shows a comparison of the residuals calculated
through the perturbative method and through an integration of
the density matrix equations. As is evident from Fig. 7, the two
techniques produce nearly identical line distortions. While our
perturbative approach is simpler to implement and intuitive,
the density matrix approach is able to model saturation effects,
which depend on the intensity of the counterpropagating
laser beams. However, we found that when using beams with
1 kW of average power, optical pumping effects contributed
less than 1% to the residuals shown in Fig. 7. In the
experiment, the average power we use for excitation is less than
100 mW [13].

One can observe from Fig. 7 that if all radiated polarizations
are detected with equal probability, the line-pulling effects of
quantum interference vanish because the distortions observed
when detecting the σ± radiated polarizations are one-half
the magnitude and opposite in sign to the distortions when
detecting the π polarization. This property is intuitive since
the detection of all fluorescence regardless of polarization or
dipole-emission pattern results in a pure measurement of the
population in the excited states and, as discussed in Sec. II,
such a measurement is unaffected by cross-damping given a
few caveats.

V. TIME-DEPENDENT DETECTION

In this section, we analyze the temporal dynamics of
the quantum interference when our system is excited with
counterpropagating, coherent pulse trains (i.e., frequency
combs). We find that the line distortions can often be mitigated
if we detect only the fluorescence that is emitted between
pulses in the train. To illustrate this effect, we first consider
only two time-dependent radiating dipoles dS(t) and dD(t)
between two separate excited states in the |e〉 manifold but
sharing the same final state in the |f 〉 manifold.

In keeping with our previous discussion, we assume an
atom which has nonzero velocity and travels across a pulsed
laser beam with a Gaussian transverse intensity profile. It will
therefore experience a train of pulses with a rising and falling
intensity. The effects of cross-damping on the fluorescence rate
will be proportional to the cross term 2 Re{dS(t)d∗

D(t)}. The
physical behavior of this term can be understood intuitively.
When the atom is being driven by the laser field (i.e., when the
a pulse is at the position of the atom), both dipole moments
oscillate with the same frequency (ωc − ωf i). Between the
pulses, these dipole moments oscillate with their distinct
eigenfrequencies such that the resulting quantum beats average
quickly to zero. This behavior is illustrated in Fig. 8 and is
reminiscent of two classical oscillators which respond at the
drive frequency when driven and at their respective resonant
frequencies otherwise. The influence of the cross-damping on
the signal will be proportional to 2

∫
Re{dS(t)d∗

D(t)}dt , and as

2 Re dSdD

2 Re dSdD dt

2 w t Re dSdD dt

w t

pulse train

time

FIG. 8. Illustration of the interference between the time-
dependent dipoles [2 Re{dS(t)d∗

D(t)}]. The rising and falling intensity
of the pulses is because the atom has nonzero velocity and travels
across a Gaussian laser beam. The additional signal which arises
from this interference is proportional to the time integral of this
interference [2

∫
Re{dS(t)d∗

D(t)}dt]. This integral only accumulates
when the pulse is at the position of the atom, and therefore, when
applying an appropriate window function, w(t), to the detected signal,
the integral [2

∫
w(t)Re{dS(t)d∗

D(t)}dt] is greatly reduced, mitigating
the distortion.
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FIG. 9. Line center shift when the 1S F = 1 to 3S F = 1
transition is excited and detection of fluorescence is made through
radiative decay to the 2P states after excitation by a 348.16-MHz
repetition rate frequency comb with 1-ps pulses. A Gaussian window
function is used to gate the detection between the pulses. (a) Line
centers obtained from fitting a Lorentzian as a function of the timing
of a Gaussian window function with a width of 500 ps. (b) Same as
(a), but as a function of the width of the Gaussian window function.

can be seen in Fig. 8, the integral only accumulates when the
atom is being driven by the laser field as one would expect. In
between pulses, 2Re{dS(t)d∗

D(t)} predictably oscillates with
zero mean. Therefore, if one detects the fluorescence only
during times between pulses, the line distortion can be greatly
mitigated.

A Gaussian window function w(t) may be used to
smoothly select the signal between the pulses. Of course,
the window width cannot be larger than the repetition period
but should contain at least several oscillations of the quantity
2Re{dS(t)d∗

D(t)}, so that the average will approach zero.

This introduces the constraint that there must be at least
several comb modes between the measured level and the
perturbing level for the technique to be advantageous. The
exact level of suppression of interference effects will depend
on the position, width, and shape of the window function. For
instance, it is necessary that w(t) is turned on and off slowly
when compared with the oscillation of 2Re{dS(t)d∗

D(t)} to
prevent residual errors.

As a concrete example, we have used the density matrix
approach to calculate the effects of the time-dependent
detection scheme on the hydrogen 1S-3S transition with
cross-damping effects from the 3D levels. In Fig. 9, we show
the fitted line centers when using a Gaussian-shaped window
function for photodetection. From Fig. 9, it is evident that there
is a significant mitigation of the line-center shift when the
window function position and width are chosen correctly. We
also calculate the result as a function of the width and position
of the Gaussian window and find that the sensitivity to these
parameters is small when one considers the timing precision
that can be obtained from typical laboratory electronics.

VI. CONCLUSION

The first part of the paper analyzed the effects of quantum
interference on two-photon frequency-comb spectroscopy of
the hydrogen 1S-3S transition through two distinct methods:
a perturbative calculation and the integration of the density
matrix equations. The agreement between our two different
approaches gives us confidence that we are producing accurate
line-shape models and that our assumption of well-defined
excited state lifetimes is well founded. We find that, if such
interference effects are ignored in the data analysis, the
extracted frequencies can be shifted by ∼1 kHz depending
on the detection geometry. We can, of course, take these
effects into account in the data analysis, which substantially
reduces such systematic errors. Additionally, we have pro-
posed an experimental method which can greatly mitigate the
line distortions by applying a time-window function to the
fluorescence. Such a scheme may be useful because we would
not rely on theoretical corrections of our measured result.
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