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Spontaneous decay of an atom excited in a dense and disordered atomic ensemble:
Quantum microscopic approach
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On the basis of general theoretical results developed previously [I. M. Sokolov et al., J. Exp. Theor. Phys. 112,
246 (2011)], we analyze spontaneous decay of a single atom inside cold atomic clouds under conditions when
the averaged interatomic separation is less than or comparable with the wavelength of quasiresonant radiation.
Beyond the decay dynamics we analyze shifts of resonance as well as distortion of the spectral shape of the
atomic transition.
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I. INTRODUCTION

Influence of the environment on atomic spontaneous de-
cay has attracted considerable interest both because of its
fundamental importance and because of its significance in
different applications such as quantum metrology, quantum
information science, and lasing in disordered media [1–8].
These influences are of special interest for realization of highly
stable and accurate optical atomic clocks [9–14], particularly
neutral-atom-based optical frequency standards [15–18].

In a great number of works the environmental influence
on the atomic decay constant is studied both theoretically and
experimentally [19–37]. In the vast majority of this research,
the case of a transparent and continuous surrounding medium
is considered. For theoretical description of such systems, both
macroscopic and microscopic approaches are used. Depending
on the different assumptions about the local environment of
the embedded atom several models have been proposed and
studied. Among the most important, we note such approaches
as a virtual cavity, a real cavity, and so-called fully microscopic
models.

The main goal of the present work is to study theoretically
the case of disordered atomic ensembles with averaged
interatomic distances greater than or comparable with the
wavelength of the atomic transition as it is held in the optical
atomic clock based on cold atoms [15–18]. In such a case
the discrete structure of atomic clouds should be taken into
account. Besides that the atomic radiation is quasiresonant,
and a model assuming quasitransparent nonabsorbing media
is not valid.

In this work we make numerical Monte Carlo simulations
based on a quantum microscopic approach [38]. Numerical
simulation allows us to analyze the process of single-atom
excitation decay, taking into account resonant multiple inco-
herent scattering of the light inside atomic cloud, without
introduction of any adjustable parameters, as opposed to
approaches used earlier for similar problems in Refs. [35–37].
In addition, we do not use a continuous media approximation.
It allows us to take into account correctly the discrete structure
of atomic clouds and consequently the interatomic correlations
which play, in our case, an important role.
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One further unique feature of the present work is that we
calculate not only the decay constant, but also dynamics of de-
cay and the spectrum of the atomic transition, particularly the
shifts of atomic lines caused by the dipole-dipole interaction.
The question of density-dependent spectral line shifts for cold
atomic gases recently gave rise to a wide discussion [39–48],
and this question is especially important for optical frequency
standards [17,49].

In the following section, we first lay out our basic
assumptions and approach. This is followed by a presentation
of our main results and a discussion.

II. BASIC ASSUMPTIONS AND APPROACH

The calculation of spontaneous decay dynamics in this
paper will be made on the basis of a microscopic quantum
approach developed in Ref. [38]. A similar approach was
previously used for analogous problems in Refs. [30,31]. The
authors of these papers searched for analytical solutions in
order to have an opportunity to analyze the validity of real
and virtual cavity approximations. They succeeded in finding
an approximate expression for the decay constant up to the
second order of the parameter nα, where n is the atomic density
and α is the polarizability of a free atom. Besides that, final
expressions in these papers were obtained for transparent and
continuous medium.

In the present work we search for numerical solutions to
this problem. It allows us to obtain results in all orders of nα

and for arbitrary parameters of the excited atom. The approach
used is depicted in detail in Ref. [38], and we will not discuss
it here. We will mention only the main approximations used
hereafter and will show the principal analytical expressions
utilized for numerical calculations.

Note also that a similar microscopic approach combined
with numerical calculation has been used in Ref. [50] for
determination of averaged decay rate and for discussion of the
influence of local density of collective states on spontaneous
decay of impurity atoms. However, the authors did not analyze
the explicit time dependence of the atomic population and did
not consider the spectrum of the atomic transition.

We consider an ensemble consisting of N atoms. All atoms
have a ground state with J = 0 and an excited level with
J = 1. In the present paper we analyze two different cases.
In the first, all atoms including the initially exited one are
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identical. The physical properties of clouds considered in
this part of the paper correspond to the situation realized
in atomic clocks [15–18]. Namely, interatomic separations
are relatively big, and the discrete structure of the clouds is
important. The identity of the atoms means that radiation
emitted by one of them is quasiresonant for the other. The
main goal of this part of the paper is to study the single-atom
decay under such conditions. Up to now single-atom spectral
response has not been studied in experiments. In typical
experiments external radiation interacts with whole (or an
essential part of) atomic clouds. However, in our opinion
such a problem statement is interesting from a theoretical
point of view. In addition it is not completely abstract. Local
excitation of atoms inside optically depth and dense clouds
can be performed by means of methods suggested earlier by
Havey [51].

For such excitation one has to illuminate the cloud with two
narrow and of-resonant orthogonally propagated light beams.
Each beam does not cause single-photon excitation, but their
simultaneous interaction with atoms in the crossing region can
cause two-photon excitation from the ground S to excited D

state if conditions of two-photon resonance are satisfied. The
subsequent spontaneous transition from D to P state leads
to population of the studied P state. The thereby described
method allows obtaining small cluster of excited atoms in the
middle of the cloud. For simplicity thereafter in the paper
we will consider the case of only one atom excitation. Note
that possibilities of two-photon excitation 5s S − 2(1/2) →
5p P − 2(j ) → 5d D − 2(j )′ of rubidium atoms have been
already studied in Ref. [52].

The second case we will consider in the paper corresponds
to spontaneous decay of an impurity atom embedded in a
homogeneous ensemble. In this case the transition frequency
of the embedded atom ωemb and the natural line width of its
excited state γemb differ from the corresponding values ω0 and
γ0 of surrounding atoms.

In our calculation we will assume that all atoms are
motionless. To take into account residual atomic motion and
the random spatial inhomogeneity of the atomic ensemble,
we will consider the statistical ensemble of clouds with a
random distribution of atoms. The results presented below are
obtained by averaging over this ensemble using the Monte
Carlo method.

The microscopic approach enables us to consider the
clouds of arbitrary form with an arbitrary nonuniform spatial
distribution of atoms. The initially excited atom can also be
located at an arbitrary position. Further, we will assume that
atoms surrounding the emitting atom are randomly distributed
in a cubic volume. The random distribution is uniform. The
initially excited atom itself is in the center of the cube. For
the chosen geometry the system is isotopic on average, so we
can consider the spontaneous decay of any Zeeman sublevel.
For determinacy we will assume that at initial time t = 0 only
one substate m = −1 of the central atom is populated. All the
other atoms of the ensemble are in their ground state having
J = 0, m = 0.

All approximations described above allow us to avail
ourselves of the results of the general theory developed in
Ref. [38]. This theory was then mainly used for description
of the interaction between light and dense atomic clouds

in steady-state conditions [46,53–55]. Here we analyze the
dynamics of the dense atomic ensemble.

According to Ref. [38], the time-dependent amplitudes of
the collective atomic states with one excited atom bem

a
(t) can

be found as follows:
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Here the index em
a contains information about the number a

of atom excited in any considered state. It also indicates the
specific Zeeman sublevel m which is populated.

The vector b0
em′
b

is determined by the initial excitation of the

entire ensemble. In the considered case this vector contains
only one nonzero element corresponding to the Zeeman
sublevel m′ = −1 of the central atom.

The matrix Rem
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possible excitation of the atoms by the reradiated light. As
was shown in Ref. [56], Rem
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(ω) is a resolvent operator of
the considered system projected on the states consisting of
single-atom excitation, distributed over the ensemble, and the
vacuum state for all the field modes:
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Here ωa is equal to ωemb for the embedded atom and ω0 for
surrounding atoms.

If a �= b, the matrix �em
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(2.3)

Here rμ is the projection of the vector r = ra − rb on
the axis μ of the chosen coordinate frame and r = |r| is the
interatomic distance. Note that the expression (2.3) is written
in the so-called pole approximation. This approximation is
based on the fact that (2.3) depends very slowly on ωa , so in
calculating (2.3) we can consider that for all a ωa = ω0.

If a and b are the same atom, then �em
a em′

b
differs from

zero only for m = m′. In this case �em
a em

a
determines the Lamb

shift and the decay constant of the corresponding excited state.
Including Lamb shifts in the transition frequency ωa we get

�em
a em′

a
= −iδmm′γa/2. (2.4)

In the next section, we use relations (2.1)–(2.4) to calculate
both the time dependence of the excited state population and
the spectrum of the atomic transition.
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FIG. 1. (Color online) Spontaneous decay dynamics (a); time
dependence of the effective spontaneous decay rate (b); n = 0.05,
γemb = γ0, 	 = 0.

III. RESULTS AND DISCUSSION

A. Spontaneous decay dynamics

Relations (2.1)–(2.4) allow calculating the time-dependent
population of any Zeeman sublevel of any atom in an ensemble.
Here we will analyze the decay of an initially populated
sublevel J = 1, m = −1 of central atom. For brevity we
denote the amplitude of this state as b0(t). The corresponding
population P0(t) can be found as follows:

P0(t) = 〈|b0(t)|2〉. (3.1)

Here angle brackets denote averaging over a uniform
random atomic distribution of surrounding atoms. As was
mentioned previously, this averaging is performed by a Monte
Carlo method.

Besides P0(t) we will calculate the time-dependent decay
rate γ (t):

γ (t) = − 1

P0(t)

dP0(t)

dt
. (3.2)

Figure 1 shows the spontaneous decay dynamics of an
excited atom in the case when the initially excited atom
coincides with all other atoms in the cloud, i.e., in the case

when γemb = γ0 and 	 = ωemb − ω0 = 0. The calculations
were made for an atomic density n = 0.05 and for three
different N : N = 300, N = 1000, and N = 2000. Hereafter
in this paper we use the inverse wave number of the resonance
probe radiation in vacuum k−1

0 = c/ω0 as a unit of length.
Figure 1(a) demonstrates that the process of sponta-

neous decay in a dense atomic ensemble is described by a
multiexponential law. Initial state with only one excited atom
can be expanded as a series over a set of nonorthogonal
eigenvectors of Green’s matrix for each random spatial con-
figuration of the system. Among different collective quantum
states in the considered ensemble there are both super- and
subradiant ones. The former influences the spontaneous decay
dynamics predominantly in the early stages; an atom inside
the ensemble decays faster than a free atom. Even in the
case of relatively small densities like n = 0.05 the increase
in the decay rate is important. With time the role of subradiant
states increases, resulting in a decrease in the decay rate. For
t > 1/γemb this rate becomes less than that for free atoms [see
Fig. 1(b)].

The specific type of decay dynamics for a given density
depends on the size of the atomic ensemble, i.e., on the
number of atoms N in it. It is a typical situation when sub-
and superradiant states manifest themselves in collective decay
(for more details see Refs. [57–59]). We have analyzed how the
function P0(t) changes with N and found that for small clouds
when the mean-free path of photon less or comparable with
linear size of atomic ensemble these changes are very essential.
As N and linear size increase the changes in P0(t) become
more and more weak. This dependence has an evident tendency
to saturation. Our calculation shows that for studied geometry
for n = 0.05 the curve P0(t) does not practically changes as
N becomes more than 300. So results obtained for N > 300
can be used for description of single-atom spontaneous decay
inside any macroscopic ensemble with reasonable accuracy.

This is illustrated by Fig. 1(a) where we show time
dependence of P0(t) for three different N . For times less or
comparable with 3/γ0 all three curves coincide with accuracy
of calculations. Such behavior connects with the specific initial
condition considered in this paper (contrary to the cases studied
in Refs. [57–59]). Modification of the decay rate of an initially
excited central atom is caused by radiation of this atom, which
is scattered back by atoms of environment. Results displayed
in Fig. 1(a) show that atoms of the cloud located far from the
central atom influence decay faintly at this time interval. A
slight discrepancy at bigger times when population P0(t) is
already small connects with the fact that the lifetimes of the
most long-lived collective states are very sensitive to specific
spatial configuration of the cloud, and for accurate averaging of
corresponding dates volume of calculation has to be increased
immensely.

Increasing the density of surrounding atoms causes en-
hancement of collective effects and consequently more con-
siderable modification of spontaneous decay. This effect is
illustrated by Fig. 2, which shows the dynamics of single atom
excitation decay inside an ensemble with atomic density n = 1.

At short times the decay constant is several times greater
than for free atoms. On the other hand, for t > 1/γemb the
decay process shown in Fig. 2 goes noticeably more slowly
than in the case of n = 0.05.
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FIG. 2. (Color online) Spontaneous decay dynamics (a); time
dependence of the effective spontaneous decay rate (b); n = 1,
γemb = γ0, 	 = 0, N = 2000.

As density increases the size of mesoscopic cloud for which
we can neglect dependence P0(t) on N also increases. For
n = 1 we observed saturation for N ≈ 2000.

Figures 1 and 2 describe one-atom excitation decay in
completely homogeneous clouds. In this case, the frequency of
emitted photon lies in the absorption band of the surrounding
atoms. Consider now the case of spontaneous emission of a
foreign atom embedded in a dense ensemble when this atom
and atoms of the medium have essentially different transition
frequencies.

We will choose parameters of the cloud’s atoms in such
a way that the dielectric constant would be real with a
good accuracy. It gives us the possibility to compare our
results obtained in the framework of our quantum microscopic
approach with the different models suggested earlier.

We can neglect the imaginary part of the dielectric constant
if Im[ε(ω)] 	 Re[ε(ω)] − 1 for all frequencies emitted by
the impurity atoms. It is known that for large detuning from
resonance Re[ε(ω)] − 1 is inversely proportional to 	 whereas
Im[ε(ω)] is inversely proportional to 	2. So to have the
possibility to satisfy the corresponding inequality we have to
choose ωemb − ω0 several times greater than γ0. The width of

FIG. 3. (Color online) Time dependence of the effective sponta-
neous decay rate: (a) n = 0.05, γemb = 0.1γ0, 	 = 4γ0; (b) n = 1,
γemb = 2γ0, 	 = 70γ0.

emitted radiation should be relatively small so that necessary
inequality would be satisfied not only at ωemb but also at all
the spectral area of the radiation.

The detailed analysis performed on the basis of known
dielectric permittivity of cold atomic ensembles [46,55]
shows that the requirements formulated above are satisfied
particularly for 	 = 4γ0 and γemb = 0.1γ0 for the atomic
density n = 0.05 and for 	 = 70γ0 and γemb = 2γ0 for the
atomic density n = 1.

Figure 3 shows the spontaneous decay dynamics of an
atom embedded in an ensemble of atomic density n = 0.05
and 1 obtained in the framework of the quantum microscopic
approach. For comparison we included results predicted for the
same parameters by a real cavity model {γrc = √

ε[3ε/(2ε +
1)]2γemb}, a virtual cavity {γvc = √

ε[(ε + 2)/3]2γemb}, and a
so-called fully microscopic model {γf m = [(ε + 2)/3]γemb}.

It is clear for both considered cases that spontaneous decay
of the foreign atom is described by a multiexponential law.
The current value of the decay constant depends on time.
There is an essential difference between predictions of our
quantum approach and the different models suggested earlier.
In our opinion the main reason for such a discrepancy lies in
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using a continuous medium approach. This approach does not
allow one to take into account interatomic correlations quite
correctly.

B. Atomic transition spectrum

Interaction of a radiating atom with its surroundings causes
not only modification of the decay constant but also a shift
of the atomic transition. Moreover, this interaction can be
the reason of fundamental distortion of the spectral line. At
present a number of theoretical works are devoted to analysis
of spectral properties of cold atomic clouds. Theory predicts
that different observables have different spectral dependence
for dense clouds and these dependencies transform differently
as density increases. Thus, the spectrum of the dielectric
permittivity of cold and dense atomic clouds has a blue
shift [46,60]. The maximal probability to excite the dense
ensemble is observed for a negative detuning of exciting
radiation [53]. The calculation of the total scattering cross
section shows that the corresponding spectrum has several
resonances [38]. Two of them are red shifted, and the third is in
the blue region. Spectral dependence of fluorescence also has
complicated behavior. It depends both on direction of fluores-
cence and on its polarization [38]. By now density dependence
of spectral properties of cold clouds has been studied in several
experiments [17,61,62] in which laser-induced fluorescence of
atomic ensemble was studied. Experiments showed red shift
and some distortion of the excitation spectrum.

In experiments external laser radiation excites the whole
atomic ensemble. Different atoms in the cloud excite with
different probabilities. Observed fluorescence is result of
averaging of secondary radiation of all atoms, and it depends
essentially on a specific type of excitation. For typical spatially
inhomogeneous clouds the main contribution comes from
relatively dilute external regions. In such a case observed
collective effects are weak, and spatial inhomogeneity makes
interpretation of experimental result more difficult.

In this paper we analyze decay of local excitation inside
a dense atomic ensemble. The transition spectrum can be
described by inverse Fourier transformation of b0(t) (2.1). It is
completely determined by Fourier components of the resolvent
matrix (3.2).

Figure 4 shows the spectrum of an atomic transition in the
case when the excited atom is identical to the surrounding
ones. It demonstrates that the absorption curve [Fig. 4(a)] as
well as the dispersion one [Fig. 4(b)] are significantly modified
in comparison with the classical Lorenz and dispersion curves
typical for a free atom. The contours have relatively narrow
peaks and wide wings. The maximum of the spectral line is
shifted in lower frequency as compared with a free atom. The
value of the shift and average width of the contour increases
with density.

In our opinion the one-atom spectral response analyzed
above can be the foundation of a new practical method of
studying of collective effects in dense media. Few-atom
excitations can be realized in experiment as is described in
Sec. II. It gives us an opportunity to create local excitation in
a deep part of dense ensemble and study directly single-atom
polarizability modified by resonant dipole-dipole interaction.
It will give additional information for further analysis of the

FIG. 4. (Color online) Atomic transition spectrum for different
densities of atomic ensemble: absorbtion curve (a); dispersion
curve (b).

complicated influence of collective effects on the spectral
properties of cold clouds. The relatively strong modification
of the spectrum allows us to hope that this method will be
sensitive.

In Fig. 5 we show the transition line shapes of a foreign atom
embedded in a homogeneous atomic ensemble. Distortion of
the line shape here is noticeably weaker than in the case shown
in Fig. 4. Such an effect is directly connected with weakening
of the dipole-dipole interaction between the embedded atom
and atoms of the surrounding ensemble as the difference in
resonance frequencies of these atoms increases.

The influence of the dipole-dipole interaction is determined
not only by the difference in absolute value of their resonance
frequencies but also by the sign of the difference. For
comparison in Fig. 5 we show two pairs of curves. The first
one corresponds to the case when the resonance frequency
of the embedded atom is greater than that of the surrounding
atoms 	 = 4γ0. The second group of curves is calculated for
the same absolute value but a negative detuning of 	 = −4γ0.
As the sign of the detuning changes, the sign of the line shift
changes as well.
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FIG. 5. (Color online) Atomic transition spectrum: absorb-
tion curve (a); dispersion curve (b); γemb = 0.1γ0; 1–n =
0.05, 	 = +4γ0; 2–n = 0.2, 	 = +4γ0; 3–n = 0.05, 	 = −4γ0;
4–n = 0.2, 	 = −4γ0.

Such behavior of the level shift of an embedded atom can
be illustrated by the example of diatomic system where the
eigenstate problem is solved analytically [19]. For a system
consisting of two different atoms the function b0(ω) can be
written as follows:

b0(ω) = 1

f 2(r12)/(ω + 	 + iγ0/2) − (ω + iγemb/2)
. (3.3)

In this formula f (r12) is a function depending on the
interatomic separation r12:

f (r12) = 3

4
√

γ0γemb
1 − ik0r12 − (k0r12)2

(k0r12)3
exp(ik0r12). (3.4)

The solution (3.3)–(3.4) is written in a coordinate frame
with the z axis oriented along the interatomic axis and under the
assumption that initially only one Zeeman sublevel m = −1
of the embedded atom is excited.

It can be seen from Eqs. (3.3)–(3.4) that for typical
parameters of the considered systems the level shift decreases

inversely with 	 for |	| >> γ0/2 and its sign changes as the
sign of 	 does.

IV. CONCLUSION

In this paper we analyze the influence of the dipole-dipole
interatomic interaction on the process of spontaneous decay
of atoms inside the cold atomic clouds under conditions when
the averaged interatomic separation is less than, or comparable
with, the wavelength of quasiresonance radiation. Besides
decay dynamics, we analyze shifts of resonance as well as
distortion of spectral shape of atomic transition. Two main
cases are considered. First, we study decay of an atom identical
to the surrounding ones. In addition we consider the case of
an impurity atom, one with different properties than atoms in
its surroundings.

The calculations were made on the basis of a quantum
approach taking into account the vector nature of the electro-
magnetic field and Zeeman structure of atomic sublevels. A
continuous medium approximation was not used. It allowed us
to take into consideration random inhomogeneity of the atomic
system and consequently the existing interatomic correlations.

It was shown that under the considered conditions, decay
dynamics can be described by a multiexponential law. The
instantaneous decay rate depends on time. At the beginning of
the decay it is greater than the decay constant of a free atom
γ . In due course the rate decreases and becomes less than γ .
We also found a noticeable distortion of the spectral shape of
transition in comparison with the Lorentz profile typical for
motionless free atoms.

Our calculation confirmed expected results consisting of
increasing the environmental influence as parameters of the
emitting atom approach those of the surrounding atoms. Most
significantly this influence manifests itself when the initially
excited atom is identical to the other ones. In particular, in this
case the distortion of the transition is most prominent, and the
shift of resonance is maximal. The latter becomes comparable
with the half-width of atomic transition even for relatively
small density n = 0.05.

In our opinion results obtained in this paper are very impor-
tant for future improvement in quantum frequency standards
based on optical transitions in cold atomic ensembles. In
such standards all atoms are identical to each other, and for
optimization of these devices the density dependence of the
main characteristics has to be taken into account.
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