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Measurement of the scalar third-order electric polarizability of the Cs ground state
using coherent-population-trapping spectroscopy in Ramsey geometry
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The ac-Stark shift induced by blackbody radiation is a major source of systematic uncertainty in present-day
cesium microwave frequency standards. The shift is parametrized in terms of a third-order electric polarizability
α

(3)
0 that can be inferred from the static electric-field displacement of the clock transition resonance. In

this paper, we report on an all-optical coherent-population-trapping pump-probe experiment measuring the
differential polarizability �α

(3)
0 = α

(3)
0 (F = 4) − α

(3)
0 (F = 3) on a thermal Cs atomic beam, from which we

infer α
(3)
0 (F = 4) = 2.023(6)stat(9)syst Hz/(kV/cm)2, which corresponds to a scalar Stark shift parameter ks =

−2.312(7)stat(10)syst Hz/(kV/cm)2. The result agrees within two standard deviations with a recent measurement
in an atomic fountain, and rules out another recent result obtained in a Cs vapor cell.

DOI: 10.1103/PhysRevA.90.012505 PACS number(s): 32.10.Dk, 32.60.+i, 31.15.ap

I. INTRODUCTION

Blackbody radiation (BBR) displaces, via the ac-Stark
shift, the Cs microwave clock transition frequency. This
effect is a dominant limitation in the accuracy of present
microwave atomic frequency standards at the 10−16 level [1,2].
Corrections of the clock frequency’s BBR shift rely either on a
precise and accurate knowledge of the electric polarizabilities
describing the shift (a contemporary, although not exhaustive,
review of atomic polarizabilities is given by Mitroy et al. [3])
or on a direct frequency comparison between primary fre-
quency standards working at different temperatures. The most
accurate measurement of the relevant parameter, expressed
as a difference of polarizabilities �α

(3)
0 (defined below),

has been extracted from a Stark shift measurement in dc
electric field [4]. We also mention a recent accurate direct
measurement of the Stark frequency shift between three Cs
primary frequency standards that has reached an uncertainty
below 1% [5]. The motivation for the work herein arose from
the 6σ disaccord between the two most recent measurements of
�α

(3)
0 : 4.564(8) Hz/(kV/cm)2 [4] and 4.10(8) Hz/(kV/cm)2

[6]. The work of [4], which built on the work of [7], measured
the shift using a static electric field applied to atoms in an
atomic fountain clock, whereas the work of [6] used a static
field applied (externally) to an atomic Cs vapor confined in
a glass cell. We note that the result [4] is in agreement with
recent theoretical values [8–10].

In this work, we present an alternative experimental
approach for measuring �α

(3)
0 . An atomic beam technique

was adapted to an all-optical pump-probe experiment using
coherent population trapping (CPT), both to create a �mF = 0
hyperfine coherence in the Cs ground state and to subsequently
probe the coherence following its evolution in applied static
electric and magnetic fields. The resulting Ramsey resonance
data were analyzed in two complementary ways: first by
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a Fourier decomposition method applied to scans of the
fringe pattern [11,12], and second by tracking the central
fringe’s zero crossing, with both measured as a function of
the applied electric field’s magnitude. In the following, we
present the conventional parametrization of the effect, develop
the signal model and its analysis by Fourier decomposition,
introduce pertinent details of the apparatus, and give the
analysis and results, including a discussion on limiting
systematics.

II. THEORY

A. The Stark shift

The interaction of an atom with an applied electric field �E is
described by the Stark Hamiltonian HSt = −�d · �E . The energy
shift �EF,mF

of a magnetic hyperfine sublevel |n2S1/2,F,mF 〉
of an alkali atom ground state is parametrized as �EF,mF

=
− 1

2α| �E |2, where the polarizability α is calculated by pertur-
bation theory using the Hamiltonian H = HSt + Hhf , with
Hhf being the hyperfine interaction Hamiltonian. Transition
energies between internal atomic levels will consequently
change in proportion to the difference of the involved states’
polarizabilities. The polarizability α is traditionally broken
down via series expansion in both the perturbation order
n at which the component contributes and the multipole
order k of its interaction, which, following the notation and
methods established in Refs. [13–16], we will denote as
α

(n)
k .

The sublevel energies of the Cs 6S1/2 ground state of
interest here are affected only by the polarizabilities α

(2)
0 ,

α
(3)
0 , and α

(3)
2 , where the (by far dominating) scalar second-

order polarizability α
(2)
0 is independent of F and mF , and

therefore does not contribute to a differential energy shift
of the states coupled by the clock transition. The third-order
scalar polarizability α

(3)
0 depends only on F , while the third-

order tensor polarizability α
(3)
2 depends both on F and mF ,

so that both values affect the clock transition’s dc Stark
shift. The relevant α’s of the F = 3 state are expressible as
constants times the polarizabilities of the F = 4 state, so that
the electric-field-induced frequency shift of the �mF = 0
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transitions |6S1/2,F = 3,mF 〉 → |6S1/2,F = 4,mF 〉 can be
expressed as

�νStark(mF ) = −1

2

[
16

7
α

(3)
0 + 3m2

F − 16

28
f (θ )α(3)

2

]
| �E |2 (1a)

≡ −1

2
α(mF ) E2, (1b)

where α
(3)
0 = α

(3)
0 (F = 4) and α

(3)
2 = α

(3)
2 (F = 4) are the third-

order scalar and tensor polarizabilities, respectively, of the F =
4 hyperfine state, mF is the magnetic quantum number defined
by the quantization axis (chosen along the magnetic field B̂),
and f (θ ) = 3 cos2(θ ) − 1 with cos θ = Ê · B̂. Equations (1a)
and (1b) represent the result originally derived by Sandars
[17], after correction of a sign error that was uncovered in
Refs. [15,16]. Note also that we set h = 1 in the definition of
polarizabilities, so that the latter are expressed in the practical
“laboratory units” of Hz/(kV/cm)2.

The Stark shift, �νStark(mF = 0), of the clock transi-
tion |6S1/2,F = 3,mF = 0〉 → |6S1/2,F = 4,mF = 0〉 can be
parametrized as

�νStark(mF = 0) = [ks + kt f (θ )] | �E |2, (2)

with scalar and tensor constants ks and kt that are related to
the quantities introduced above via

ks + kt f (θ ) = − 8
7α

(3)
0 + 2

7α
(3)
2 f (θ ). (3)

The clock shift arising from the blackbody spectrum is
isotropic, implying 〈f (θ )〉 = 0, and is thus not sensitive to
α

(3)
2 , i.e., to kt . Laboratory experiments, on the other hand,

measuring the clock shift by applied ac or dc fields must,
therefore, consider α

(3)
2 (or kt ) when extracting α

(3)
0 (or ks)

from the measured effect, while model calculations of the BBR
frequency shift determine the scalar contribution ks [9,10] only.

The dependence of the BBR shift on temperature T is
normally [1] expressed in one of three ways,

δν(T ) = −�α
(3)
0

2

(
831.9

V

m

)2(
T

300 K

)4[
1 + ε

(
T

300 K

)2]
,

= ks

(
831.9

V

m

)2(
T

300 K

)4[
1 + ε

(
T

300 K

)2]
, (4)

= βν00

(
T

300 K

)4[
1 + ε

(
T

300 K

)2]
,

where ν00 = 9 192 631 770 Hz is the Cs clock transition
frequency and 831.9 V/m represents the root-mean-square
(rms) electric field of the blackbody spectrum at 300 K. The
correction factor ε was evaluated to be 0.014 [1] or 0.013 [18].
Various publications present either α

(3)
0 (F), �α

(3)
0 [≡α

(3)
0 (F =

4) − α
(3)
0 (F = 3) = + 16

7 α
(3)
0 (F = 4)], ks[= − 8

7α
(3)
0 (F = 4)],

or β.

B. Experimental approach

Experiments were carried out in an effusive cesium beam
using an all-optical Ramsey pump-probe technique relying
on coherent population trapping (CPT) by a bichromatic
laser field, rather than on the conventional Ramsey resonance
method using (spatially or temporally) separated interactions

〉

〉

〉

FIG. 1. (Color online) Principle of the all-optical Ramsey
method for measuring the Stark shift. The carrier and a sideband
(spaced by ωμw) of a phase-modulated laser beam are used to create a
coherent superposition of ground-state hyperfine levels in a Cs atomic
beam. The phase accumulated by the coherence through the atoms’
interaction with combined electric and magnetic fields is probed by a
weaker bichromatic field whose microwave modulation has a fixed,
but tunable phase with respect to the pump field modulation.

in microwave cavities, such as deployed in atomic beams
[19,20] or in fountain clocks [4]. Details of our method were
already described in the literature [21–23]. In brief, CPT
pumping by a phase-coherent bichromatic optical field with
components of identical (circular or linear) polarization and
with frequency splitting given by the microwave frequency
ωμw is used to create a specific coherent superposition of
hyperfine-Zeeman states |F = 3,mF 〉 and |F = 4,mF 〉 in the
Cs ground state (Fig. 1). In a subsequent light-free evolution
zone, the coherence oscillates at the specific level splitting
frequency ω0 that is subject to tunable static electric and
magnetic fields. In a probe zone, the phase accumulated by
the hyperfine coherence is compared to the phase accumulated
by the constant evolution of the transition-driving microwave
oscillator. When ωμw is scanned, Ramsey resonance signals
are observed in the transmitted probe laser power. When a
magnetic field lifts the Zeeman degeneracy, the full spectrum
contains six or seven distinct �mF = 0 resonances depending
on the relative orientation of the magnetic and electric fields
and the light fields’ polarization.

We have implemented two different methods of data
collection and analysis. In the first method, full Ramsey
resonance curves were measured by scanning ωμw for different
electric-field values and the data were reduced by Fourier
decomposition.

In the second method, active feedback was used to lock
the frequency ωμw of the microwave generator (producing
the bichromatic laser field by phase modulation) to the zero
crossing of the central dispersive Ramsey fringe, allowing
a tracking of ωμw as a function of the applied electric-field
strength.

The two methods have their respective advantages and
drawbacks. The Fourier decomposition allows the extraction
of both the Ramsey signal frequency and its phase at the
cost of a slow acquisition rate, since ωμw has to be scanned
several times over the Ramsey spectrum (20 s per scan).
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Conversely, recording the locked value of ωμw with respect
to the central Ramsey fringe zero-crossing point yields a
much better statistical uncertainty, since the signal of interest
is continuously recorded, but has the disadvantage that the
frequency and phase information are not separable.

C. Atomic pump-evolution-probe model

Consider the two hyperfine ground states |a〉 =
|6S1/2,F = 3,mF 〉 and |b〉 = |6S1/2,F = 4,mF 〉 (inset of
Fig. 1) whose energies differ by the hyperfine splitting energy
�ω0. The bichromatic pump light field

�Epump(t) = �Ea e−iωa t + �Eb e−iωbt (5)

= �Ea e−iωt + �Eb e−i(ω−ωμw)t , (6)

where the fields �Ea and �Eb are near resonant with transitions
|a〉 → |e〉 and |b〉 → |e〉 to a specific excited state |e〉 =
|6P1/2,F

′,m′
F 〉, will put the atoms into a coherent superpo-

sition state,

|�0〉 = ηa |a〉 + ηb |b〉 e−iω0t , (7)

where we have omitted the (irrelevant) phase factor e−iωt .
When probed by a weaker bichromatic field, in-phase with the
pump field

�Eprobe(t) = ε �Eae
−iωt + ε �Ebe

−i(ω−ωμw)t , (8)

where ε is the ratio between the weak- and strong-field
amplitudes, the power absorbed from the probe beam is given
by

�Pprobe ∝ ε2|〈e| �d · �Eprobe|�0〉|2 (9)

∝ |ηa
�dae · �Ea + ηb

�dbe · �Eb ei(ωμw−ω0)t |2 (10)

∝ |ηa�ae + ηb �bee
i(ωμw−ω0)t |2, (11)

where �die denotes the electric dipole matrix elements 〈e| �d |i〉
and where the Rabi frequencies are defined by ��ie = �die · �Ei .
On resonance, ωμw = ω0, the absorbed power will vanish,
when the state amplitudes ηa,b obey

ηa

ηb

= −�be

�ae

= −
�dbe · �Eb

�dae · �Ea

, (12)

and the corresponding (normalized) state

|�0〉 = �be√
�2

ae + �2
be

|a〉 − �ae√
�2

ae + �2
be

|b〉 e−iω0t (13)

is called a dark state, since it does not absorb light and hence
does not emit fluorescence radiation. The formation of dark
states, their perturbation by interactions with external fields,
and their detection via light absorption (or fluorescence) form
the basis of coherent-population-trapping (CPT) spectroscopy.
With the matrix elements being given, the amplitudes Ea,b of
the two field components can be chosen such that the state
amplitudes in Eq. (12) obey ηa = −ηb, so that the power
absorbed from the probe beam interrogating the atoms after an
evolution time T takes on the simple form

�Pprobe ∝ |1−ei(ωμw−ω0)T |2 ∝ 1− cos[(ω0−ωμw) T ]. (14)

D. Phase and frequency shifts of the Ramsey spectrum

The expressions above have assumed that the bichromatic
fields in the pump and probe regions oscillate in phase. Since
the pump and probe beams travel different paths from the
source to their respective interaction zones, the relative phase
between their two frequency components will acquire an
additional spatial phase shift,

�ϕpath = ωμw
�x

c
, (15)

where �x is the difference of the paths traveled by the
pump and probe beams. This phase propagates through the
calculation and modifies the detuning-dependent term in
Eq. (14) to

�Pprobe ∝ cos[(ω0 − ωμw) T − �ϕpath]. (16)

Choosing the propagation phase to be �ϕpath = 0 mod π

will yield symmetric (absorptive) Ramsey fringes with respect
to the line center (ωμw = ω0), while �ϕpath = π/2 mod π

will produce antisymmetric (dispersive) fringes. We define the
Ramsey signal S(ωμw) as being the velocity-averaged change
of the probe transmission (16) for a separation L between the
pump and the probe optical beams, viz.,

S(ωμw) =
∫ ∞

0
ρ(v) cos

{
[ω0 + �ω(mF ) − ωμw]

L

v

−�ϕ(mF )

}
dv, (17)

where ρ(v) is the atomic velocity distribution, and where the
Stark and Zeeman shifts, i.e., the frequency shift induced by
the electric and magnetic fields, respectively, are given by

�ω(mF ) = �ωStark(mF ) + �ωZeeman(mF ), (18)

while

�ϕ(mF ) = �ϕpath(mF ) + �ϕmot(mF ) (19)

represents the sum of phase shifts due to the pump and probe
beams path-length differences and due to the motional Zeeman
effects, respectively, as discussed in more detail below. For
hyperfine coherences formed by the pair of states |3,mF 〉
and |4,mF 〉, the (differential) frequency shift induced by
the Stark interaction of interest is �ωStark = 2π�νStark(mF ),
where �νStark(mF ) is given by Eq. (1a). The Zeeman frequency
shift induced by the static applied magnetic field �B is
given by �ωZeeman = (γ4−γ3) | �B| mF , where the γF are the
gyromagnetic ratios of the hyperfine levels F .

In a monochromatic beam, all atoms will have the same
time of flight T between the pump and probe zones, leading
to a cosinelike oscillatory dependence (16) on the microwave
detuning. Averaging over the broad velocity distribution of the
thermal beam used in the experiment will impose the typical
Ramsey-type envelope (17) on that oscillatory structure. The
velocity distribution ρ(v) is not known a priori since it differs
appreciably from a perfect Maxwell-Boltzmann distribution in
our effusive beam, with the discrepancy arising from atomic
collisions in the oven’s nozzle and collimation regions [24].
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E. Fourier transform of the Ramsey spectrum

The real and imaginary parts of the (inverse) Fourier
transform of Eq. (17) are given by

A(t) ≡ Re{F−1[S(ωμw)]} (20)

=
√

π

2
ρ(t)

L

t2
cos[(ω0 + �ω)t − �ϕ], (21)

and

B(t) ≡ Im{F−1[S(ωμw)]} (22)

=
√

π

2
ρ(t)

L

t2
sin[(ω0 + �ω)t − �ϕ], (23)

where �ω represents the sum of the Zeeman and Stark shifts
in Ref. (17). These Fourier transforms allow the determination
of the time-of-flight distribution,

ρ(t) = t2

L

√
2

π

√
A2(t) + B2(t), (24)

between the pump and probe zones (separated by L), and the
phase

(ω0 + �ω) t − �ϕ = arctan

[
B(t)

A(t)

]
, (25)

accumulated by the atoms on their flight from the pump to the
probe zone.

F. Effects of a static electric field on the Ramsey pattern

Subjecting the atoms to an electric field during their flight
between the pump and probe interactions changes the energies
of the hyperfine sublevels both via the Stark interaction proper
and via the Zeeman effect induced by the motional magnetic
field experienced by the atoms moving through the transverse
electric field. Both effects appear simultaneously and modify
the Ramsey line shape of Eq. (17) in different ways, due to
their different velocity dependencies.

The frequency shift �ωStark that the �mF = 0 coherence
acquires in the free evolution zone L due to the direct Stark
interaction with an electric field of spatial distribution �E(z) is
given by

�ωStark = −1

2
α(mF ) 〈| �E |2〉L (26a)

= −1

2
α(mF )

1

L

∫ L

0
| �E(z)|2dz, (26b)

where α(mF ) was introduced in Eq. (1b). The Stark shift
proper will thus shift the entire Ramsey spectrum (fringes plus
envelope) along the ωμw axis, as shown on the top of Fig. 2.

The electric field has a second effect on the Ramsey
spectrum. In the reference frame of atoms moving at velocity
�v through the (transverse) electric field appears a motional
magnetic field that is given, to first order in v/c, by

�Bmot = �v
c2

× �E . (27)

For a typical mean atomic velocity v of ∼250 m/s and an
electric field strength | �E | of ∼20 kV/cm, the motional field is
| �Bmot| ∼ 5 nT for �E ⊥ �v. Atoms with a �mF = 0 coherence

FIG. 2. (Color online) Expected unperturbed dispersive Ramsey
line shape for �ϕpath = π/2 (black line) and its change (red dashed
line) by a frequency shift �ω = �ωStark (or �ωZeeman) (top) and the
motional phase shift �ϕmot (bottom). The frequency shift displaces
both the fringes and their envelope, while the phase shift displaces
the fringes under the envelope. Both effects, therefore, displace the
zero crossings (marked by dots).

will thus acquire, via the linear Zeeman effect induced by �Bmot,
a phase shift

�ϕmot = γ4 − γ3

c2
mF sin(ξ )v

∫ T

0
| �E(t)|dt (28a)

= γ4 − γ3

c2
mF sin(ξ )

∫ L

0
| �E(z)|dz, (28b)

where T is the pump-probe flight time of an atom with velocity
v, and ξ is the angle between �v and �E . In contrast to the
frequency shift induced by the Stark interaction of interest, the
motional field effect is a topological (velocity-independent)
phase shift that manifests itself as a displacement of the
Ramsey fringes under their otherwise fixed envelope, as shown
in the bottom graph of Fig. 2. We note that both effects displace
the zero crossings of the Ramsey fringes.

III. EXPERIMENTAL APPARATUS

The main elements of the apparatus have been presented
in Refs. [21–23] and are shown in Fig. 3. We have used two
methods for measuring the differential Stark shift of the Cs
clock transition. Some elements of the experimental method
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894 nm

signal of interest

FIG. 3. (Color online) General experimental configuration of the
Ramsey interrogation scheme. Details are given in the text.

used to lock the microwave frequency to the Ramsey fringe
center were presented in Ref. [25] and a preliminary data
analysis using the Fourier-transform method was reported in
Refs. [22,23]. Here we present the final analysis and results
based on data obtained with the fringe-tracking and Fourier-
transform methods, respectively.

A. Atomic beam

A thermal Cs atomic beam is produced by an effusive
reflux oven inspired by the design described in Ref. [26].
Additional collimating elements are placed along the atomic
beam trajectory to restrict the beam’s cross section (horizontal
and vertical divergence angles of ±4.5 and ±8.5 mrad,
respectively) to a rectangular profile of 9 mm along x̂

and 4 mm along ŷ in the Ramsey interrogation zone. The
atomic densities in the pump and probe interaction regions
are estimated to be ∼50 × 106/cm3 and ∼16 × 106/cm3,
respectively. The pump, probe, and electric-field regions are
enclosed in a vacuum chamber with typical pressure of
5 × 10−7 mbar surrounded by a cylindrical two-layer μ-metal
shield. A nominally homogeneous transverse magnetic field of
3.57(1) μT is applied to all regions of interest. The laser beams
enter and leave the vacuum chamber through 10-mm-diameter
windows.

B. Electric-field generation and calibration

A complete view of the field generating capacitor and its
dielectric support structure is shown in Fig. 4. The electrodes
are made of two rectangular (50 × 260 × 4 mm) float glass
plates with a conductive coating. The plate spacing is defined
by 10 optical flats with a thickness of 6.065(1) mm, inserted
in an insulating polycarbonate holder. Two grounded metal
plates at each end of the capacitor are used to collimate the Cs

FIG. 4. (Color online) View of the electrode support structure.
Grounded metallic collimator plates placed upstream and downstream
of the capacitor prevent the fringe fields from perturbing the pump and
probe interaction zones. Long rectangular Helmholtz coils produce
a homogeneous dc magnetic field parallel to the electric field over
the entire Ramsey interaction region. Inset: the electrical connection
scheme.

beam and to prevent the electric fringe fields from perturbing
the two optical interaction regions.

High voltage, provided by a Heinzinger PNC 60000–1ump
power supply capable of delivering up to 60 kV with a stability
of 10−4 over eight hours, is applied to one electrode while
the other electrode is grounded. The maximum voltage used
in the experiment was 10 kV to avoid sparking inside the
vacuum chamber. The electrode voltage is measured by a
digital voltmeter (DVM) with a resolution of 10−4; the device
was calibrated just before the final measurements at the Swiss
metrology institute METAS. A 200 M� protection resistor
between the generator and the high-voltage electrode is used
to limit the current, and hence the destructive power, of any
sparks generated during breakdown. For the Fourier-transform
measurements described below, the voltage drop over the field-
producing capacitor was measured directly (DVM measuring
at the capacitor plate, point “A”), while for the fringe-tracking
experiments, we measured the voltage at the power supply
(DVM connected at point “B”), leading—because of leakage
currents through the resistor—to an increased uncertainty of
the electric field.

In order to determine the average electric field applied to
the atoms from measurement of the voltage applied to the
electrodes, the electric field’s spatial distribution was modeled
by Dr. Z. Andjelić [ABB Corporate Research in Baden (CH)],
using the code POLOPT [27] that is based on the advanced
boundary integral method in three dimensions described in
Ref. [28]. The modeling relied on the accurate representation
of the mechanical structures supporting the capacitor plates,
including all surfaces, conductors, and insulators in the region
between the two grounded collimation slits. The model
calculates the electric field throughout the volume for a
potential of 1 V applied to one electrode, with the other held at
ground, and assumes that the field increases linearly with the
applied voltage. The obtained electric-field distribution for one
atomic path is shown in Fig. 5 as well as the three-dimensional
(3D) model used for the calculation.

The three vector components of �E are calculated every
1.75, 1.5, and 2 mm along the x, y, and z axis, respectively.
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FIG. 5. (Color online) Example of computed electric-field distri-
bution along the central atomic beam path in the capacitor. The red
lines show the positions of the pump and probe laser beam, while
the gray bands represent the grounded slits. The field asymmetry in
the spacing between the lasers and grounded slits on the two sides
of the capacitor is due to the different geometry and size of the
input and output slits. In the center, the picture shows the 3D model
used for the simulation, with the color scale representing the voltage
from 0 to 1 V.

Since the modeling produces the electric field throughout all
space between the electrodes, the mean-field values and their
standard deviations are evaluated for several possible atomic
trajectories. Along the y axis, the trajectories that contribute
to the signal are limited by the probe laser beam’s extension
of ±1.2 mm. Figure 6 represents an “atom’s-eye” view of the
apparatus and shows the positions of the trajectories chosen
for averaging.

In order to relate the frequency shift �ωStark and the
motional phase shift �ϕmot to the field integrals in Eqs. (26b)
and (28b), respectively, one has to know the pump-probe

FIG. 6. (Color online) Inbound-atom view of the second collima-
tor plate. This corresponds to a section view of the electrode support
of Fig. 4 at the “capacitor” label position. The five dots at the center
show the atom trajectory positions considered in the electric-field
modeling.

TABLE I. Numerical values for the two electric-field integrals
defined by Eqs. (29) obtained by field modeling, with a pump-probe
separation L = 301.8(7) mm and a potential difference of 1 V. The
uncertainty on the individual path calibration constants is dominated
by the uncertainty on L; however, the uncertainty on the average is
the standard deviation of the values.

Trajectory (x,y) I1 (V) I2 (V/cm)2

(0,0) 44.4208 2.393(6)
(0,+1.5 mm) 44.9346 2.434(6)
(0,−1.5 mm) 44.2066 2.382(6)
(±1.75 mm,0) 44.4154 2.392(6)
Average 44.48(12) 2.399(9)

separation L. This distance was measured directly on the
apparatus by determining the separation of the centers of
the pump and probe beams’ intensity distributions. In order
to account for a possible nonparallelism of the beams, the
separations measured near the entrance and exit windows of the
vacuum chamber were averaged, yielding L = 301.8(7) mm.

The L-averaged electric-field integrals, defined as

I1 =
∫ L

0
| �E(z)|dz ≡ L

deff
(1V), (29a)

I2 = 1

L

∫ L

0
| �E(z)|2dz ≡ 1V2

(d2)eff
, (29b)

for the five paths are given in Table I, along with the final
average value.

Since the modeling calculations were done for a voltage of
1 V, the integrals can be parametrized in terms of effective plate
spacings deff and (d2)eff , defined by Eqs. (29), that represent
the effect of the capacitor’s finite size. The numerical values
of the effective spacings from the modeling calculation are
compared to the geometrical electrode spacing in Table II.

C. The bichromatic laser fields

The (single) laser used for the pump-probe experiments is
a 40 mW extended cavity diode laser emitting monochromatic
radiation near the Cs D1 transitions (∼894.6 nm) with a spec-
tral linewidth below 1 MHz. The laser wavelength is actively
stabilized to the F = 3 → F ′ = 3 hyperfine component of

TABLE II. Comparison of electrode spacings. Upper two values:
Effective spacings from the modeled average value of the electric
field and its square as defined by Eqs. (29) with values from Table I.
Bottom: Geometrical electrode spacing determined by spacers.
The difference between geometrical and effective separations is
dominated by the ratio of L = 301.8 mm, the pump-probe distance, to
the physical capacitor length of 260.0 mm (260.0/301.8 mm = 0.86,
dgeom/deff = 0.89), with the remaining difference due to the structure
of the fringe fields.

deff = L/I1 6.79(2) mm
(d2)eff= 1/I2 41.69(16) mm2√

(d2)eff = 1/
√

I2 6.457(12) mm
dgeom 6.065(1) mm
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the D1 line using Doppler-free spectroscopy in an auxiliary Cs
vapor cell.

The phase-coherent bichromatic light field needed for
the CPT pump-probe scheme is provided by a polarization
maintaining fiber coupled lithium niobate electro-optic phase
modulator (EOM, Photline, model NIR-MPX800-LN08).
The EOM is driven by a frequency-tunable microwave source
(Rohde & Schwarz, model SMP 02 signal generator) capable
of delivering frequencies from 10 MHz to 20 GHz with
a resolution of 0.1 Hz, but here used to create νμw close
to the Cs hyperfine frequency of 9.2 GHz. The microwave
generator is referenced to the 10 MHz signal from an atomic
clock (Temex, model PFRS Rb clock) for better stability and
accuracy. The EOM creates sidebands at positive and negative
integer multiples of νμw around the laser carrier frequency.
The carrier and first sideband form the two components
of the phase-coherent bichromatic field. The modulation
index is chosen to yield identical Rabi frequencies of the
two transitions (6S1/2,F = 3 → 6P1/2,F

′ = 3 and 6S1/2,F =
4 → 6P1/2,F

′ = 3), whose oscillator strengths are in the ratio
1:3, and that are driven coherently by the bichromatic field.

A ∼500 μW pump beam and a ∼10 μW probe beam
are derived from the modulated beam using a beam splitter,
as schematized in Fig. 3. The probe beam path length and
hence the spatial phase factor given by Eq. (16) are varied
by a delay line formed by two orthogonal mirrors on a
micrometer-controlled linear translation stage. Each change
of the optical path-length difference �L by one microwave
wavelength (λμw

∼= 32.6 mm for νμw = 9.192 GHz) changes
the phase of the Ramsey pattern by 2π . Phase adjustments
were made with no electric field applied to the atoms.

D. Heterodyne detection

Two distinct heterodyne detection methods, shown in Fig. 7,
were used to measure the shift of the central Ramsey fringe’s
frequency as a function of the applied electric field applied to
the atoms.

The first method consists in recording complete Ramsey
spectra by monitoring the transmitted probe laser power
while scanning the microwave frequency ωμw over a given
|3,mF 〉 → |4,mF 〉 transition. In these experiments, the pump
beam components were σ+ polarized and the field configu-
ration was �E ⊥ �B, corresponding to θ = π/2 in Eq. (1a). In
the probe region, we measured the circular dichroism of the
beam by switching the probe beam polarization between σ+
and σ− states using a photoelastic modulator (PEM, Hinds
Instruments, model I/FS50). The transimpedance-amplified
(400 kHz bandwidth) photodiode signal was analyzed by
a lock-in amplifier referenced to the modulation frequency
(50 kHz) of the PEM.

In the second method, the microwave frequency was
actively locked to the central Ramsey fringe’s zero crossing
and the electric-field-induced frequency shift of the resonance
frequency was inferred from the feedback signal. For these
experiments, the pump-probe path-length difference �x was
set to a multiple of λμw, thus yielding cosinelike Ramsey
fringes (the absorptive counterpart of the spectra shown in
Fig. 2). The frequency of the microwave oscillator was
modulated by 23 kHz with a frequency of 525 Hz and

FIG. 7. (Color online) Experimental schemes of the two hetero-
dyne detection methods deployed here. Top: Heterodyne detection
used to record Ramsey spectra for Fourier-transform analysis. The
polarization of the probe beam is modulated between σ+ and
σ− with a photoelastic modulator (PEM) at 50 kHz. Bottom: The
slope of the dispersive Ramsey fringe’s zero crossing is used as a
discriminant to lock the microwave frequency to the fringe center.
The heterodyne measurement is done by modulating the microwave
generator frequency, and the error signal, after PID amplification, is
sent to the frequency modulation input of the 10 MHz reference of
the microwave generator.

the probe detector’s photocurrent demodulated by a lock-in
amplifier locked to that modulation frequency. Scanning the
microwave frequency ωμw then yields a dispersive fringe
pattern (the derivative of the absorptive cosine pattern) similar
to the one shown in Fig. 2. The near-resonance linear zero
crossing of this signal is used as a discriminator signal to
form, after a proportionnal-integral-derivative (PID) controller
amplification, a feedback signal Ufb controlling the frequency
of the microwave oscillator. This control was achieved in
the following way: The Rb clock references a function
generator (Agilent, model 33220A), which generates the
10 MHz reference signal for the microwave generator. In order
to lock the microwave frequency to the atomic signal, the

012505-7



JEAN-LUC ROBYR, PAUL KNOWLES, AND ANTOINE WEIS PHYSICAL REVIEW A 90, 012505 (2014)

10 MHz generated by the function generator is controlled
by applying Ufb to the generator’s FM control input. The
feedback signal Ufb in the locked mode is recorded on a digital
oscilloscope for ∼600 s and its average value is determined as
a function of the applied electrode voltage U . The calibration
constant converting the feedback voltage into frequency units
is used to express the displacement of the Ramsey fringe center
in Hz. The pump and probe laser beams were σ+ polarized for
experiments with �E ⊥ �B and linearly polarized for �E ‖ �B.

IV. MEASUREMENTS

A. CPT-Ramsey spectra with E = 0

Figure 8 shows a large range scan of the microwave
frequency near the |6S1/2,F = 3〉 → |6S1/2,F = 4〉 Raman
transition. The width of ∼9 MHz reflects the efficiency of the
Raman process that is limited by the (power-broadened) width
of the excited 6P1/2 state. The (∼400-kHz-wide) dip in the top
spectrum is a strongly power-broadened CPT resonance that
occurs in the pump region. Here the pump beam acts both as
pump and probe, similar to microwave CPT spectroscopy in
vapor cells.

The middle graph of Fig. 8 is a zoom of the bottom of
that CPT dip. It reveals six individual �mF = 0 Ramsey
resonances that are split by the 3.6 μT magnetic field applied
to the beam. We note that each resonance is superposed on a
curved background that varies from resonance to resonance.
Finally, the lower graph of Fig. 8 shows the Ramsey pattern of
the |6S1/2,F = 3,mF = 0〉 → |6S1/2,F = 4,mF = 0〉 clock
transition (after background removal by fitting), whose Stark
shift is the object of the measurement reported below. All
graphs represent the circular dichroism recorded in the probe
zone by the method described in Sec. III D yielding dispersive
fringes since �ϕpath = π/2 for this measurement.

B. E-field-induced frequency and phase shift

As discussed in Sec. II F, a static electric field will change
both the frequency and the phase of the Ramsey fringes. The
polarizability of interest, defined by Eqs. (1a) and (1b), is
inferred from the electric-field-induced frequency shift of the
Ramsey fringe pattern (17) via

α(mF ) = −2
�νStark(mF )

〈| �E |2〉L
= −2

�νStark(mF )

U 2
(d2)eff, (30)

where �νStark is obtained from the difference of the central
fringe’s center frequency when measured with and without
applied electric field. The phase shift of the fringes due
to the motional magnetic field is used to test the field
modeling predictions. The following sections describe the
results obtained by the two methods introduced in Sec. III D
for determining that center frequency.

C. Stark shifts from Fourier-transform analysis

In order to apply the Fourier transformation described in
Sec. II E, we have recorded Ramsey spectra, such as the one
shown in the bottom graph of Fig. 8, for different voltage
differences U applied to the electric-field plates. Spectra were
taken by scanning the microwave frequency over a typical
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FIG. 8. (a) Probe beam spectrum of the unresolved
|6S1/2,F = 4,mF 〉 → |6P1/2,F = 3,mF 〉 transitions as a function of
the Raman frequency, i.e., the microwave frequency producing the
laser sidebands. The central dip represents the coherent-population-
trapping effect. (b) Zoom of the bottom of the dip revealing the
resolved mF → m′

F = mF transitions split by the 3.57(1) μT
magnetic field, together with quadratic background. (c) Closeup
of the mF = 0 → m′

F = 0 clock transition after background
subtraction. In all graphs, the microwave frequency νμw is measured
with respect to the clock frequency ν00 = 9.192 631 770 GHz.

span of 15 kHz, in steps of 15 Hz with 20 ms dwell time
at each frequency value. The output of the lock-in amplifier
measuring the circular dichroism seen by the probe beam (cf.
Sec. III D) was recorded on a digital oscilloscope, and typically
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FIG. 9. Time-of-flight distribution ρ(t) (top) and phase �ω t −
�ϕ (bottom), obtained by Fourier transformation of the Ramsey
signals under different electric-field conditions. Data between the
vertical dashed lines were used to infer the frequency �ω(U ) and
phase �ϕ(U ) shifts of interest.

24 complete scans over each resonance were averaged to
yield one Ramsey spectrum as a function of the microwave
frequency.

The curved background (seen in the middle graph of Fig. 8)
was removed by fitting the left and right side of each fringe
pattern with a second-order polynomial, and subtracting the fit
result from the whole spectrum, yielding the signal S(ωμw,U ).
Following each two measurements with applied voltage, a
reference spectrum S(ωμw,U = 0) with no applied voltage
was recorded.

We next performed numerical Fourier transforms (FT) of
the spectra S(ωμw,U ) and S(ωμw,0) recorded with and without
applied voltage to yield the time-of-flight distribution ρ(t) and
the phase �ω t − �ϕ. A typical result is shown in Fig. 9.
The data show that the phase obeys a linear time dependence
only for a restricted range of time of flights. The signal
becomes very noisy for very fast and very slow atoms, whose
density ρ(t) is small. While all time-of-flight distributions are
mutually consistent below t ∼1.5 ms, the distribution shows a
background for t > 1.5 ms that increases with the electric-
field intensity. This systematic dependence on the applied
voltage can be seen in Fig. 10, where we have superposed
(peak-normalized) time-of-flight distributions recorded with
different applied fields for the mF = 0 → mF ′ = 0 transition.
Although several interpretations of this effect (including
field-dependent forces on the atoms in the field entrance
and exit regions due to the electric-field gradients) were
attempted, we could find no model explaining this feature in a
quantitative way. The hyperfine coherence of slow atoms thus
seems to acquire a field-dependent phase shift of unexplained
origin.
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FIG. 10. Normalized time-of-flight distributions for all Ramsey
spectra of the mF = 0 → mF ′ = 0 transitions recorded with different
applied voltages. For times above ∼1.6 ms, the electric field affects
the relative atom density.

Because of the above, we have restricted the time range
used to fit the data to 0.6 � t � 1.1 ms, an interval where
ρ(t) has significant density and where the phase is well
represented by Eq. (25), independent of the applied field. Our
error analysis is based on variations of those fit limits. The
phase data in the chosen time interval were fitted by a linear
time dependence, and the electric-field-induced frequency
and phase shifts obtained from the fitted slope and intercept
according to

�νStark = �ν(U ) − �ν(0) and �ϕmot = �ϕ(U ) − �ϕ(0).

(31)

The Stark shifts �νStark of the clock frequency extracted
in this way are presented in Fig. 11 together with
their fit by a second-order polynomial of the form
�νStark = c0 + c1U + c2U

2. The fitted coefficients c0 =
0.3(9) Hz and c1 = −180(110) mHz/kV are consistent with
zero, as expected.
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FIG. 11. Quadratic Stark shift of the 6S1/2,F = 3,mF = 0 →
6S1/2,F = 4,mF = 0 clock transition frequency determined by the
Fourier analysis method. The solid line is a fit with a second-order
polynomial.
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The scalar polarizability α
(3)
0 (F = 4) is related to the

parameter c2 by

α
(3)
0 = − 7

8 c2 (d2)eff − 1
4α

(3)
2 . (32)

Using the fitted value c2 = −5.51(3)stat Hz/kV2 and the
literature-based [19,20,29] weighted average −3.51(16) ×
10−2 Hz/(kV/cm)2 for the tensor polarizability α

(3)
2 (F = 4),

we find

α
(3)
0 = 2.020(10)stat(9)syst Hz/(kV/cm)2 (33a)

= 2.020(13) Hz/(kV/cm)2, (33b)

and

ks = −2.308 (11)stat(10)syst Hz/(kV/cm)2 (34a)

= −2.308 (15) Hz/(kV/cm)2, (34b)

where we have added the statistical and systematic uncertain-
ties in Eqs. (33a) and (34a) quadratically to yield the global
errors in Eqs. (33b) and (34b), respectively.

The systematic uncertainty is dominated by the 5×10−3

precision of field calibration constant (d2)eff , to which adds
an uncertainty of the pump-probe separation L. The distance
between the centers of the pump and probe beams’ intensity
distributions was measured to be L = 301.1(1) mm. To correct
for the fact that optical pumping occurs with a higher
probability in the upstream part of the atomic laser beams’
intersection volume, L was lengthened by δL, taken as half of
the 1/e2 width of the pump laser beam, and the uncertainty on
L was increased accordingly. We therefore assign the value of
L + δL = 301.8(7) mm to the pump-probe separation. When
added quadratically to the uncertainty of (d2)eff , the 2×10−3

effect due to δL leads to a systematic error of ∼0.6%.
Following Eq. (1a), the relative orientation θ of the

(nominally orthogonal) electric and magnetic fields affects the
contribution from α

(3)
2 to α(0). A mismatch of �θ = 5◦ from

perfect orthogonality yields a relative change of only 10−4 in
the total Stark shift. By construction, the orthogonality of the
two fields is obeyed at the ±0.5◦ level, thus giving a negligible
contribution the systematic error budget.

We have also measured the Stark shifts of the six
mF �= 0 transitions. Their Fourier analysis revealed some mF -
dependent systematic phase perturbations that did not allow
for an improved determination of the clock transition’s Stark
shift. However, when extrapolated to t → 0, the values of the
seven phase plots (equivalent to the one shown for mF = 0 in
the bottom graph of Fig. 9) allowed the extraction of the phase
�ϕ in Eq. (25). As discussed in Sec. II F, one expects a linear
electric-field-dependent contribution �ϕmot ∝ E ∝ U due to
the motional Zeeman effect. Being a Zeeman shift, one further
expects �ϕmot to have a linear dependence on mF . Figure 12
illustrates the anticipated linear dependence of �ϕmot on U

and mF for all seven �mF = 0 transitions. The increasing
uncertainty with mF in Fig. 12 is due to the systematic
perturbation mentioned above. The average slope of the fitted
line in the figure is 20(1) μrad V−1 m−1

F , while Eq. (28b),
together with the field integral of Eq. (29a) and the modeled
numerical value of Table II, yields 22(1) μrad V−1 m−1

F , thus
giving confidence in the field modeling calculations.
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FIG. 12. (Color online) Ramsey signal phase as a function of mF

for the seven possible �mF = 0 hyperfine transitions [each point is
the result of a linear fit of the phase �ϕmot(U ) given by Eq. (28) as a
function of the applied voltage U ].

D. Stark shifts from microwave tracking
of the resonance frequency

Unfortunately, Stark shift measurements using the
frequency-tracking method (Fig. 7) described in Sec. III D
were made prior to calibrating the high-voltage (HV) volt-
meter. A feedback loop controlling the synthesized microwave
frequency νμw was used to lock the latter to the zero crossing of
the dispersive central Ramsey fringe (Fig. 2). For each voltage
applied to the electric-field generating electrodes, the feedback
signal was recorded on a digital oscilloscope for 600 s.
Figure 13 shows an example of such a time series.

Stark shift measurements were made for two different rel-
ative orientations of the electric and magnetic fields, viz., �E ⊥
�B, corresponding to f (θ = π/2) = −1, and �E ‖ �B, equivalent

to f (θ = 0) = 2. Measurements with the former configuration
used σ+–σ+ polarized components of the bichromatic optical
field, while their polarization was π–π (with respect to �B) in
the latter configuration. The dependence of the central fringe’s
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FIG. 13. Typical feedback signal Ufb (calibrated in frequency
units) recorded with the microwave frequency locked to the Ramsey
fringe center with a voltage of −4.066 kV/cm. The origin of the
ordinate is the frequency generated by the microwave generator,
corresponding here to 9.192 631 770 GHz.
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FIG. 14. (Color online) Stark frequency shift of all seven
�mF = 0 hyperfine transitions in the �E ⊥ �B configuration with
σ+–σ+ polarized optical fields. The lowest mF value corresponds
to the leftmost curve and mF is increasing from left to right. The
fitting functions are polynomials of second order in U . The lateral
displacement of the parabolas is due to the motional magnetic field,
while their curvature results from the Stark interaction proper.

shift on the applied electrode voltage U was recorded for
all individual �mF = 0 hyperfine transitions in both field
configurations. The data were fitted with a second-order poly-
nomial of the form �ωStark/2π = c0 + c1U + c2U

2. Figure 14
presents data and the parabolic fit curves for all hyperfine
transitions in the �E ⊥ �B configuration. The mF dependence
of the fit parameters c1 for both configurations is shown in
Fig. 15 and numerical values of all parameters ci are given in
Tables III and IV. Note that the mF = 0 → mF ′ = 0 transition
is forbidden in the �E ‖ �B configuration.

No physical significance can be attributed to the constant c0,
which is indeed consistent with zero. The linear coefficient c1 is
due to the motional magnetic-field-induced phase shift �ϕmot
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FIG. 15. (Color online) mF dependence of the fit coefficients c1

representing the linear (motional field-induced) Stark shift of the
F = 3,mF → F = 4,mF transitions. The red triangles show data
from Table IV for the �E‖ �B configuration, and the black dots show
data from Table III for the �E ⊥ �B configuration. The lines are linear
fits to the data. As expected, the motional magnetic field shift vanishes
in the �E ‖ �B configuration.

TABLE III. Polynomial fit parameters for the �E ⊥ �B configuration.

mF → mF ′ c0 (Hz) c1 (Hz/kV) c2 [Hz/(kV)2]

0 → 0 0.01(9) −0.036(21) 5.532(4)
+1 → +1 0.17(14) 4.01(4) 5.593(14)
−1 → −1 −0.16(24) −4.14(5) 5.573(27)
+2 → +2 −0.19(20) 7.74(4) 5.588(15)
−2 → −2 −0.09(18) −8.23(5) 5.580(14)
+3 → +3 0.22(15) 11.83(3) 5.645(9)
−3 → −3 0.06(18) −12.37(5) 5.601(15)

of Eqs. (28), which influences the �ωStark(U ) dependence
in different ways for the two field configurations. In the
�E ‖ �B configuration, the motional magnetic field (≈nT) is
perpendicular to the applied magnetic field of ∼4 μT, so
that the motional field adds quadratically to the latter, thus
giving a negligible contribution. As expected, the fitted c1

coefficients for �E ‖ �B are compatible with zero within three
standard deviations. In the �E ⊥ �B configuration, on the other
hand, the motional magnetic field is directed along the applied
magnetic field, and thus increases or decreases the latter
directly. Being a Zeeman effect, the motional field effect is
expected to be proportional to mF , a feature that is well obeyed
by the experimental data shown in Fig. 15.

The fitted c2 coefficients are related to the Stark polariz-
abilities α(mF ) and the polarizability of interest α

(3)
0 via

α(mF )

2
= − c2 (d2)eff (35a)

=
[

8

7
α

(3)
0 + 4

7
f (θ ) α

(3)
2

]
− 3

28
f (θ )α(3)

2 m2
F , (35b)

where α
(3)
k = α

(3)
k (F = 4), and where f (θ ) = +2 and −1

for the �E ‖ �B and �E ⊥ �B configurations, respectively. The
polarizability α(mF ) = −2 �νStark(mF )/E2, extracted from
the measured Stark shifts �νStark(mF ) using E2 = U 2/(d2)eff ,
has mF -independent and mF -dependent contributions from
the third-order polarizabilities α

(3)
0 and α

(3)
2 , with α

(3)
2 being

∼2 orders of magnitude smaller than α
(3)
0 .

The experimental values of α(mF )/2 inferred from the
fitted coefficients c2 following Eq. (35a) are shown in
Fig. 16, together with fitted curves, and exhibit the anticipated
quadratic mF dependence, with curvatures in the ratio (−1):2,

TABLE IV. Polynomial fit parameters for the �E ‖ �B configura-
tion. The mF = 0 → mF ′ = 0 clock transition is forbidden in this
configuration.

mF → mF ′ c0 (Hz) c1 (Hz/kV) c2 [Hz/(kV)2]

0 → 0
+1 → +1 0.55(45) −0.011(6) 5.609(17)
−1 → −1 1.09(37) −0.120(50) 5.605(8)
+2 → +2 0.02(40) 0.068(47) 5.577(14)
−2 → −2 −0.11(42) −0.061(57) 5.573(17)
+3 → +3 −0.08(52) 0.110(70) 5.532(23)
−3 → −3 −0.46(52) −0.160(60) 5.544(24)
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FIG. 16. (Color online) mF dependence of the differential Stark
polarizability α(mF )/2 from Ramsey fringe frequency-tracking ex-
periments using two field configurations, together with fits of Eq. (35)
made to all of the data at once. Red represents f (θ ) = +2 data and
black represents f (θ ) = −1. The solid lines are fits made with both
α

(3)
0 and α

(3)
2 as free parameters. The dashed lines are fits with α

(3)
2

fixed to the best existing literature value.

as predicted by the f (θ ) dependence. Note that based on
Eq. (35b), the fitted curves are expected to intersect at the
“fictitious” mF value of m∗

F = √
16/3 ≈ 2.31, for which

α(m∗
F )/2 = 8α

(3)
0 (F = 4)/7 = −ks .

We have taken two approaches for fitting Eq. (35b) to
the data of Fig. 16. In a first approach, we have left both
α

(3)
0 (F = 4) and α

(3)
2 (F = 4) as free parameters and, in a

second approach, we have left only α
(3)
0 (F = 4) as a free

parameter, by fixing α
(3)
2 (F = 4) to

α
(3)
2 (F = 4) = −0.0351(16) Hz/(kV/cm)2, (36)

taken as the weighted average of published measurements
[19,20,29]. In both cases, all data were fit simultaneously.
The two fit methods yield the same value for the scalar
polarizability,

α
(3)
0 (F = 4) = 2.033(1)stat(22)syst Hz/(kV/cm)2 (37a)

= 2.033(22) Hz/(kV/cm)2, (37b)

and the scalar Stark shift parameter

ks = −2.323(1)stat(25)syst Hz/(kV/cm)2 (38a)

= −2.323(25) Hz/(kV/cm)2, (38b)

respectively, where the errors in Eqs. (37b) and (38b) rep-
resent the squared sums of statistical and systematic errors,
respectively.

When fitted as a free parameter, we obtain a tensor
polarizability

α
(3)
2 (F = 4) = −0.046(4) Hz/(kV/cm)2 (39)

that agrees with the literature average within two standard
deviations.

The relative statistical uncertainty of α
(3)
0 (F = 4) obtained

by the frequency-tracking method is rather small, ∼5 × 10−4.
However, the systematic uncertainty on the polarizability in

the fringe-tracking experiment is dominated by imprecise
knowledge of the voltage drop across the field electrodes. In
those early experiments, the 200 M� protection resistor was
in series with the field-producing capacitor, but the voltage
was measured directly at the supply output. Any leakage
current across the field plates will thus lead to a voltage drop
over the protection resistor, thereby lowering the effective
voltage applied to the electrodes. We estimate the systematic
field uncertainty due to this unfortunate configuration as
follows: Based on the current (∼1 μA) drawn from the power
supply and the digital high-voltage voltmeter’s 6.5 G� internal
resistance, we estimate the uncertainty on the electrode voltage
U to be ∼5 × 10−3. Quadratically adding the latter uncertainty
and the ∼5 × 10−3 uncertainty of the field calibration constant
(d2)eff yields the systematic errors of Eqs. (37) and (38).

V. SUMMARY AND CONCLUSION

We have used two separate methods to measure the differ-
ential third-order electric polarizability of the Cs ground-state
hyperfine levels, from which we infer the third-order scalar
polarizability α

(3)
0 (F = 4) of the F = 4 state and the scalar

Stark shift coefficient ks , which are related by

ks = − 8
7 α

(3)
0 (F = 4) . (40)

The result obtained by the fringe-tracking method has
a very small statistical error, but suffers from a large
systematic uncertainty because of imprecisions in the voltage
measurement. The α

(3)
0 (F = 4) value obtained by the Fourier

analysis method, on the other hand, has comparable statistical
and systematic errors. The individual results and their average
value are presented in Fig. 17, together with past experimental
[4,5,30,31] and theoretical [9,10] values. For a comparison
with more previous results, we refer the reader to Fig. 3 of
Ref. [4].

The weighted average of our two independent measure-
ments, expressed in terms of the scalar Stark shift coefficient
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FIG. 17. (Color online) Comparison of results from present work
with previous experimental and theoretical values (see reference
numbers in brackets in figure) for the Cs clock transition’s scalar
Stark shift coefficient ks . The statistical and systematic uncertainty
intervals of our results are shown on the left and right, respectively,
of the experimental data points. The errors on our data points were
derived from those errors as discussed in the text. Note that the value
ks = 2.050(40)Hz/(kV/cm)2 of Godone et al. [6] is far off scale of
the present plot.
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ks , yields

ks = − 8
7α

(3)
0 (F = 4)

= −2.312(7)stat(10)systHz/(kV/cm)2. (41)

The (quadratically) combined statistical and systematic errors
of the individual measurements given in Eqs. (34b) and (38b),
respectively, were used as weights to derive the final value.
The statistical error on the final value is the statistical error of
the mean. The systematic error of the final value represents the
systematic uncertainty of the Fourier analysis data, with the
(larger) systematic error of the fringe-tracking data playing a
subordinate role because of the reduced contribution of those
data to the final result,

ks = −2.312(17)Hz/(kV/cm)2, (42)

where we have taken the conservative approach by (linearly)
adding the statistical and systematic errors of (41).

The ksvalue of (42) is equivalent to

α
(3)
0 (F = 4) = 2.023(6)stat(9)systHz/(kV/cm)2 (43)

= 2.023(15)Hz/(kV/cm)2, (44)

and

β = ks

ν00

(
831.9

V

m

)2

(45)

= −1.7406(53)stat(75)syst × 10−14. (46)

Our result has a relative error of 0.7% and is to be compared
to the most precise experimental value published to date [4],

ks = 2.282(4)Hz/(kV/cm)2,

with a relative uncertainty below 0.2% that testifies to the
remarkable control of the field integral in that experiment. Our
result differs by ∼2 standard deviations from that measurement
and from theoretical predictions, and can be considered to be
in agreement with those results.
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