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Universality and scaling in the N-body sector of Efimov physics
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Universal behavior has been found inside the window of Efimov physics for systems with N = 4,5,6 particles.
Efimov physics refers to the emergence of a number of three-body states in systems of identical bosons interacting
via a short-range interaction becoming infinite at the verge of binding two particles. These Efimov states display
a discrete scale invariance symmetry, with the scaling factor independent of the microscopic interaction. Their
energies in the limit of zero-range interaction can be parametrized, as a function of the scattering length, by
a universal function. We have found, using the form of finite-range scaling introduced by A. Kievsky and M.
Gattobigio [Phys. Rev A 87, 052719 (2013)], that the same universal function can be used to parametrize
the ground and excited energy of N � 6 systems inside the Efimov-physics window. Moreover, we show that
the same finite-scale analysis reconciles experimental measurements of three-body binding energies with the
universal theory.
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I. INTRODUCTION

Universality is one of the concepts that have attracted physi-
cists along the years. Different systems, even having different
energy scales, share common behaviors. The most celebrated
example of universality comes from the investigation of critical
phenomena [1,2]: At the critical point, materials that are
governed by different microscopic interactions share the same
macroscopic laws, for instance, the same critical exponents.
The theoretical framework to understand universality has been
provided by the renormalization group (RG); the critical point
is mapped onto a fixed point of a dynamical system, the RG
flow, whose phase space is represented by Hamiltonians. At the
critical point the systems have scale-invariant (SI) symmetry,
forcing all of the observables to be exponential functions of
the control parameter. A consequence of SI symmetry is the
scaling of the observables: For different materials, in the same
class of universality, a selected observable can be represented
as a function of the control parameter and, provided that both
the observable and the control parameter are scaled by some
material-dependent factor, all representations collapse onto a
single universal curve [3].

More recently, a new kind of universality has captured
the interest of physicists, namely the Efimov effect [4,5].
A system of three identical bosons interacting via two-body
short-range interaction whose strength is tuned, by scientists or
by nature, to the verge of binding the two-particle subsystem,
exhibits the appearance of an infinite tower of three-particle
bound states whose energies accumulate to zero. Moreover,
the ratio between the energies of two consecutive states is
constant and independent of the very nature of the interaction;
this last property points out to the emergence of a discrete-
scale invariance (DSI) symmetry (for a complete review, see
Ref. [6]).

Even this example of universality has found in the RG its
theoretical framework. Systems sharing the Efimov effect are
mapped onto a limit cycle of the RG flow, where they manifest
the emergence of DSI. In turn, DSI implies that all of the

observables are log-periodic functions of the control parameter
[7], and this property is what characterizes Efimov physics, of
which the Efimov effect is an example. The limit cycle implies
the emergence of a new dimensional quantity, which in the
case of Efimov physics is known as the three-body parameter.
Strictly speaking, the DSI is an exact symmetry for systems
with zero-range interaction, or equivalently in the scaling limit;
for real systems, which possess an interaction with finite range
r0, there are deviations from DSI called finite-range effects.

Atomic physics, and more precisely experiments using
ultracold-alkali atoms, has recently (re)sparked the interest in
Efimov physics [8]. At present, several different experimental
groups have observed the Efimov effect in alkali systems
[9–12], where the key point has been the scientists’ ability
to change the two-body scattering length a by means of
Fano-Feshbach resonances. In fact, the theory predicts how
observables change as a function of the control parameter,
κ∗a, which is proportional to the scattering length, making the
tuning of a crucial to test the theory’s predictions. In particular,
the Efimov equation for the three-body binding energies En

3
can be expressed in a parametric form as follows [6]:

En
3 /(�2/ma2) = tan2 ξ, κ∗a = e(n−n∗)π/s0

e−�(ξ )/2s0

cos ξ
, (1)

with �(ξ ) a universal function whose parametrization can be
found in Ref. [6], s0 = 1.00624, and κ∗ is the emergent three-
body parameter which gives the energy �

2κ2
∗/m for n = n∗ at

the unitary limit 1/a = 0.
The ability of tuning a has allowed the different ex-

perimental groups to measure the value of the scattering
length a− at which the three-body bound state disappears
into the continuum (ξ → −π ). From Eq. (1) we see that
measuring a− = −e−�(π)/2s0/κ∗ ≈ −1.56/κ∗ [13,14] is a way
to measure the three-body parameter κ∗, which in principle
should be different for different systems. However, it has
been experimentally found [9–12], and theoretically justified
[15,16], that in the class of alkali atoms a−/� ≈ −9.5, with
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� being the van der Waals length, a universality inside
universality. Recently the same behavior has been seen in a
gas of 4He atoms [17].

II. FINITE-RANGE CORRECTIONS

Equation (1), as well as the parametrization of �(ξ ),
have been derived in the scaling limit, where the DSI is
exact. Experiments and calculations made for real systems
deal with finite-range interactions, r0 �= 0, and for this reason
finite-range corrections have to be considered [18–21]. In a
recent paper [22], the authors have observed in which manner
finite-range corrections manifest in numerical calculations
using potential models:

(i) There are corrections coming from the two-body sector
which can be taken into account by substituting aB for a,
defined by E2 = �

2/ma2
B , with E2 being the two-body binding

energy if a > 0, or the two-body virtual-state energy in the
opposite case, a < 0 [23]. One simple way to obtain the virtual-
state energy is looking for the poles of the two-body S matrix
using a Padè approximation, as shown in Ref. [24]. It should
be noticed that in the zero-range limit aB → a.

(ii) The finite-range corrections enter as a shift in the
control parameter κ∗aB . The value of the shift depends on
the observable under investigation.

For instance, in the case of three-body binding energies, (i)
and (ii) applied to Eq. (1) give

En
3 /E2 = tan2 ξ, κ3

naB + �3
n = e−�(ξ )/2s0

cos ξ
, (2)

where we have defined κ3
n = κ∗e(n−n∗)π/s0 and introduced the

shifts �3
n. In Ref. [22] the authors have shown that this type

of correction appears in the energy spectrum, in atom-dimer
scattering length and in the effective range function of three
boson atoms. Moreover, in Ref. [25] it has been shown that
the shift appears in recombination rate of three atoms close to
threshold too.

Our finite-range analysis can be applied to describe exper-
imental data. In Fig. 1 we report the experimental three-body
binding energies measured in 7Li [10] and for reference the
corresponding magnetic field [26]. Using Eq. (2) with the
values of the two three-body parameters �3

1 = 4.95 × 10−2

and κ3
1 = 1.61 × 10−4 a0 the experimental points collapse on

the universal curve (solid line).
To explain the origin of this form of finite-range correction,

we refer to the original derivation [5] of Eq. (1) and to the
parametrization of the universal phase �(ξ ), for instance,
in Ref. [6]. In the zero-range limit r0 = 0 the adiabatic
approximation is exact, and the three-body problem is equiv-
alent to a single Schrödinger equation in a scale-invariant
1/R2 potential, where R2 ∝ r2

12 + r2
13 + r2

23 is the hyperradius;
Eq. (1) has been derived by matching the scale-invariant phase
shift �(ξ ) originating from the long-range physics to the
scaling-violating phase shift originating from the short-range
physics (see Eq. (193) of Ref. [6]). The short-range physics
can be encoded in a scale-violating momentum �0, see
Eq. (147) of Ref. [6], and the parametrization, for a zero-range
theory, of �(ξ ) is such that �0 = κ∗. Now, when we consider
a finite-range system, r0 �= 0, the lowest adiabatic potential
is coupled to the other adiabatic potentials: For instance, it
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FIG. 1. (Color online) The experimental data on 7Li [10], in the
form of ratio between the three-body binding energy E1

3 and the
two-body binding energy E2, as a function of 1/(κ3

1 aB + �3
1) with

the values of the three-body parameters given in the text. The solid
curve represents the prediction of the universal function, Eq. (2). In
the upper abscissa the magnetic field from Ref. [26] is given.

has been demonstrated by Efimov [18] that the coupling can
be taken into account by a correction ∼r0/R

3 on the lowest
potential. This means that, keeping the same parametrization
of �(ξ ), the relation between �0 and κ∗ is modified, and at the
first order we can expect

�0 � κ∗

(
1 + A r0

aB

)
, (3)

which gives the shift �3
n∗ = A κ∗r0. The constantA is expected

to take natural values.

III. SCALING AND COLLAPSE

In this work we extend the application of the modifications
to the zero-range theory in order to analyze the ground-
and excited-binding energy of N -body systems obtained by
numerical calculations inside the window of Efimov physics.
The Efimov effect is strictly related to the N = 3 system,
but one can try to investigate if and how Efimov physics
affects N > 3 sectors. Some seminal-theoretical studies
[27–29], and subsequent experimental investigation [30], have
demonstrated that for each trimer belonging to the Efimov
tower there are only two attached four-body states. This
property has also been observed in N = 5,6 [31–33]: There
are only two attached five-body states to the four-body ground
state and there are only two attached six-body states to the
five-body ground state. These states have been characterized
by measuring ratios between energies close to the unitary limit,
and these ratios have been found to be universal. Moreover,
their stability has been analyzed along the Efimov plane in
wide region of the angle ξ [34].

We want to make a step forward showing that the three-
body equation, Eq. (2), can be modified to predict N -body
ground- and excited-state energies E0

N and E1
N . Even though

our calculations have been done up to N = 6, a clear indication
of validity for generic N can be inferred. We have solved the
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Schrödinger equation using two different potentials: The first
is an attractive two-body Gaussian (TBG) potential

V (r) = V0 e−r2/r2
0 , (4)

where r0 is the range of the potential and V0 < 0 is the strength
that can be modified in order to tune the scattering length inside
the Efimov window. This kind of potential has been previous
used to investigate clusters of 4He [22,25,33,35], and some
numerical results, used in this work, have been previous given
in Ref. [33]. The second is a Pöschl-Teller (PT) potential [36]

V (r) = − �
2

mb2

2(1 + C)

cosh2(r/b)
, (5)

where the dimensionless parameter C can be varied to
change the scattering length. The solution of the N -body
Schrödinger equation has been found using the nonsym-
metrized hyperspherical harmonic (NSHH) expansion method
with the technique recently developed by the authors in
Refs. [31,37–39]

In Fig. 2(a) we show selected results for the N = 3,4,5,6
ground-state binding energies calculated with both potentials.
The N -body ground-state binding energies E0

N are divided
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FIG. 2. (Color online) The TBG and PT ground-state N -body
binding-energy E0

N in units of E2 as a function of (a) 1/κN
0 aB , and

(b) 1/(κN
0 aB + �N

0 ). E2 is the two-body binding energy for a > 0,
and the two-body virtual state energy for a < 0. In panel (b) the
ground-state energies in terms of the scaled variable collapse onto
the zero-range curve (solid line).

TABLE I. The parameters κN
n , in unit of r0, and selected ratios for

the TBG potential. When available, we report the ratios at the scaling
limit between parenthesis.

N = 3 N = 4 N = 5 N = 6

κN
0 r0 4.88 × 10−1 1.18 1.96 2.77

κN
1 r0 2.12 × 10−2 5.11 × 10−1 1.24 2.07

κN
0 /κN

1 23.0 (22.7 [4]) 2.31 1.58 1.34

κN
0 /κN−1

0 2.42 (2.147 [29]) 1.66 1.41

κN
1 /κN−1

0 1.05 (1.001 [29]) 1.05 1.06

κN
1 /κN−1

1 24.1 2.43 1.67

by E2, which is the two-body binding energy for a > 0 or
the virtual-state energy for a < 0. These ratios are given as
a function of the inverse of the control parameter κN

0 aB . The
parameter κN

0 is fixed by the N -body ground-state binding
energy E0

N = �
2(κN

0 )2/m calculated at the unitary limit 1/a =
0. The corresponding values and some relevant ratios are given
in Tables I and II. The solid curve represents the result of the
N = 3 zero-range theory given in Eq. (1) for n = n∗. In the
figure only a subset of the numerical data is shown in order to
better appreciate the trend.

In Fig. 2(b) the same data are shown, but this time the
control parameter, κN

0 aB , has been shifted by a quantity
�N

0 , different for each potential and each particle sector.
As a remarkable result, the different sets of data collapse
on the three-body zero-range universal curve. This is very
reminiscent of the scaling property in critical phenomena [3].
In our case we have a N -dependent parameter, κN

0 , that fixes
the scale of the system and, in this respect, we refer here to it as
a scaling parameter. Furthermore an N -dependent parameter,
�N

0 , appears to take into account finite-range corrections. In
this respect we refer to it as a finite-range scaling parameter.

It should be noticed that the values of κN
0 has been obtained

from our data, and in doing so we have included some range
corrections into these quantities. As is well known, the lower
energy states, as those considered here, have some dependence
on the form of the potential. This dependence decreases in
higher level states [29]. However, we want to emphasize that
κN

0 are not new N -body parameters in the same sense as the
emergent three-body parameter κ∗. In the present treatment,
where we only use two-body interaction (eventually, we could
have also added three-body interactions [33]), there are not
such things as four-, five-, and six-body parameters; in the

TABLE II. The parameters κN
n , in units of b, �N

n , and selected
ratios for the Pöschl-Teller potential.

N = 3 N = 4 N = 5 N = 6

κN
0 b 0.3668 0.9088 1.521 2.175

κN
1 b 0.3934 0.971 1.633

κN
0 /κN

1 2.31 1.58 1.33

κN
0 /κN−1

0 2.48 1.68 1.43

κN
1 /κN−1

0 1.07 1.07 1.07

κN
1 /κN−1

1 2.46 1.68
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FIG. 3. (Color online) The TBG and PT excited-state N -body
binding-energy E1

N in units of E2 as a function of (a) 1/κN
1 aB and (b)

1/(κN
1 aB + �N

1 ). E2 is the two-body binding energy for a > 0 and
the two-body virtual state for a < 0. In panel (b) the excited-state
energies in terms of the scaled variable collapse onto the zero-range
curve (solid line).

scaling limit all their values are fixed by the three-body
parameter κ∗, as discussed below (for a different scenario see
Ref. [40]).

In Fig. 3(a) we show our calculations for the N -body excited
states E1

N using the TBG and PT potentials. We report the
ratios E1

N/E2, where E2 is still either the two-body binding
energy for a > 0 or the virtual-state energy for a < 0, as a
function of the inverse of the control parameter κN

1 aB . As for
the ground states, the parameters κN

1 are fixed by the excited-
binding energy E1

N = �
2(κN

1 )2/m at the unitary limit. The
solid line shows the universal function. Again, we stress that
they are not new N -body parameters, but they are fixed by the
value of κ∗. As before, κN

1 has some range corrections which
can be estimated in the case of N = 3 from Tables I and II. The
zero-range theory imposes κ3

0 /κ3
1 ≈ 22.7 whereas we found

≈23.0 and ≈22.4 using TBG and PT potentials respectively.
In Fig. 3(b) our data sets are shown with a shift in the

control variable κN
1 aB by a N -dependent quantity �N

1 . As for
the ground states, the excited states collapse on the universal
curve too, pointing out to the emergence of a common universal
behavior in the N -boson system.

Our numerical findings can be summarized in a modified
version of Eq. (1). We propose for the N -body bound-state
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FIG. 4. (Color online) The TBG finite-range scaling parameters
�N

m as a function of the angle ξ derived from Eq. (6). The symbols
are the same as in Figs. 2 and 3.

energies

Em
N/E2 = tan2 ξ, κN

m aB + �N
m = e−�(ξ )/2s0

cos ξ
, (6)

where the function �(ξ ) is universal and it is determined by
the three-body physics. The above equation shows the same
universal character of the three-boson system with, due to the
DSI, the same universal function �(ξ ). It is valid for a general
N as long as the N -body bound-state energies do not leave the
Efimov window. We stress the fact that the index m can take
two values indicating the ground-sate (m = 0) and the excited
state (m = 1) of the N -boson system. This form a tree structure
with two levels attached to the ground state of the three-boson
system. The parameter κN

m appears as a scale parameter and the
shift �N

m is a finite-range scale parameter introduced to take into
account finite-range corrections. The introduction of the shifts
�N

m is probably a first-order correction of finite-range effects.
In fact, we can use Eq. (6) to see that a small dependence on
the parameter ξ still remains. This is illustrated in Fig. 4 in
which the TBG �N

m parameters are obtained by subtracting to
the universal term e−�(ξ )/2s0/cos ξ the computed value κN

m aB

at the corresponding values of the angle ξ .
In Fig. 5 we report all our numerical calculations, for

both ground- and excites-state energies, in the full range of
scattering length, where the collapse of data is most evident.

IV. SCALING PARAMETERS

In this section we comment on the scaling parameters κN
m .

In the zero-range limit, their values are fixed by the three-
body parameter κ∗. For instance, by identifying κ3

0 = κ∗ as
the ground-state energy wave number, an accurate study in the
four-body sector gives κ4

0 = 2.147κ3
0 [29]. In Table I, together

with the values for TBG potential, we report, when available,
the corresponding zero-range-limit values, whereas in Table II
the same values are reported for the PT potential.

From the tables we can deduce a linear relation between
the ground states that can be approximated as

κN
0

κ3
0

= 1 + (N − 3)

(
κ4

0

κ3
0

− 1

)
. (7)
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FIG. 5. (Color online) The TBG and PT ground- and excited-state N -body binding energies Em
N in units of E2 as a function of 1/(κN

m aB +
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m ). E2 is the two-body binding energy for a > 0, and the two-body virtual state for a < 0. The symbols are the same as in Figs. 2 and 3 of
the paper. All the data collapse on the three-body universal curve (solid line) calculated in the scaling limit.

In the scaling limit, using the universal value of κ4
0 /κ3

0 , this
relation reduces to κN

0 /κ3
0 = 1 + 1.147(N − 3). The linear

relation with N can also been seen in Refs. [41,42].

V. CONCLUSIONS

In the first part of this work we have studied finite-range
corrections in a three-boson system having a large two-body
scattering length. Following a previous finding (see Ref. [22])
we have modified the zero-range Efimov equations, Eq. (1),
introducing a finite-range parameter. Its origin has been
discussed in Eq. (3); in the case of a finite-range interaction
the scale-violating momentum �0 cannot be directly identified
with the three-body parameter κ∗. The relation of these two
parameters can be expressed in terms of an expansion in the
small parameter of the theory r0/aB . By limiting the expansion
up to first order Eq. (2) is directly obtained. From one side
Eq. (2) is able to describe results obtained using different
interactions and here we have shown two examples, the TBG
and PT potentials. On the other side we have shown that our
finite-range analysis reconciles experimental measurements
of trimer-binding energies on 7Li [10] with the universal
theory, showing the collapse of the data on the universal
curve.

In the second part of the work we have used our finite-range
analysis to investigate N -body bound-state energies, up to
N = 6, obtained by solving the Schrödinger equation with
two different potential, the TGB and PT potentials. This
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FIG. 6. (Color online) The ground-state N-body binding energy
E0

N from Ref. [41] in units of �
2/ma2 as a function of 1/(κN

0 a + �N
0 ).

The solid curve represent the universal zero-range curve.

analysis has allowed us to extend Eq. (2) to describe the
ground and excited states of an N -boson systems. Varying
the two-body scattering length, we have demonstrated that
scaled ground- and excited-state energies of systems up to
(at least) N = 6 collapse over the same universal curve,
which is parametrized by the universal function appearing
in Eq. (6); the only parameters are the N -body scaling
parameters κN

m and the finite-range scaling parameters �N
m .

In the Appendix we further show that our scaling hypoth-
esis applies also to calculations of Ref. [41] up to N = 8
particles.

In the final part of the work we have proposed a linear
relation with N of the scaling parameters κN

0 valid in the
zero-range limit. This relation has been extracted from our
numerical results given in Tables I and II, and points to the
fact that, in the scaling limit, all the parameters are governed
by the sole emergent three-body parameter.
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APPENDIX: ANALYSIS OF DATA OF REF. [41]

In this appendix we show that our theory can be ap-
plied to calculations of Ref. [41], where the ground-state
energies are calculated up to N = 8 and where different
potentials have used. In that paper the author performed
few-body calculations using two- plus three-body Gaussian
potentials for N = 6, and a two-body square-well potential
plus three-body hard-wall potential for N = 7,8. In that
paper the author gives a four-parameter parametrization of

TABLE III. The parameters κN
0 , in units of κ3

0 , and �N
0 , used to

analyze the data of Ref. [41].

N = 6 N = 7 N = 8

κN
0 /κ3

0 4.29 5.22 6.18

�N
0 −0.393 −0.414 −0.382

012502-5



M. GATTOBIGIO AND A. KIEVSKY PHYSICAL REVIEW A 90, 012502 (2014)

the ground-state energies for N = 6,7,8, and we have used
that parametrization in order to reconstruct the calculated
data.

In Fig. 6 we show that the extracted data, once analyzed
with Eq. (6) of our paper, collapse onto the universal zero-range

curve. As a side effect, we see that only two parameters are
needed to describe data, and that the collapse does not depend
on the Gaussian form of the potential. In Table III we report
the parameters we used to make the collapse of the data onto
the universal curve.
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