
PHYSICAL REVIEW A 90, 012501 (2014)

Consistent calculation of the screening and exchange effects in allowed β− transitions
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The atomic exchange effect has previously been demonstrated to have a great influence at low energy on the
241Pu β− transition. The screening effect has been given as a possible explanation for a remaining discrepancy.
Improved calculations have been made to consistently evaluate these two atomic effects, compared here to the
recent high-precision measurements of 241Pu and 63Ni β spectra. In this paper a screening correction has been
defined to account for the spatial extension of the electron wave functions. Excellent overall agreement of about
1% from 500 eV to the end-point energy has been obtained for both β spectra, which demonstrates that a rather
simple β decay model for allowed transitions, including atomic effects within an independent-particle model, is
sufficient to describe well the current most precise measurements.
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I. INTRODUCTION

Beta emission probabilities from neutral atoms are highly
influenced at low energy by atomic effects, as demonstrated
in [1]. The sudden change of the nuclear charge can induce
atomic excitations (shake-up) or internal ionizations (shake-
off) because initial- and final-state orbitals are not strictly
orthogonal. However, the two major atomic effects are the
screening and the exchange effects. The latter arises from the
creation of a β electron in a bound orbital of the daughter atom
corresponding to one that is occupied in the parent atom. An
atomic electron from the bound orbital simultaneously makes
a transition to a continuum orbital of the daughter atom. This
process cannot be distinguished from the direct decay to a final
state containing one continuum electron.

At present, precise knowledge of the shape of energy
spectra from β transitions, coupled with well-established
uncertainties, are sought by end users from the nuclear power
industry and the medical care sector [2,3] or for ionizing
radiation metrology [4,5]. These shapes have been little studied
since the late 1970s. At that time, the knowledge of the spectral
shape was thought to be appropriate. Following this demand,
a program to calculate analytically the shape of β spectra for
allowed and forbidden unique transitions has already been
developed and described elsewhere [6]. This work improves it
in calculating exchange and screening effects consistently.

A β spectrum is the product of (i) a weak interaction
coupling constant, (ii) a statistical phase space factor pWq2

that simply reflects the momentum distribution between the
electron and the neutrino, (iii) the so-called Fermi function
F0L0 that corrects for the Coulomb effects, and (iv) a
shape factor C(W ) that contains all the remaining energy
dependences such as leptonic and nuclear matrix elements
or corrections for atomic effects. Thus, following Behrens’s
formalism used throughout this work [7],

dN

dW
∝ pWq2F0L0C(W ), (1)

with W = 1 + E/me the total energy of the electron defined
from its kinetic energy E and its rest mass me, the correspond-
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ing momentum p = √
W 2 − 1, and the neutrino momentum

q = W0 − W where W0 = 1 + Emax/me. The Fermi function,
usually denoted by F (Z,W ), is

F0L0 = α2
−1 + α2

1

2p2
, (2)

where the ακ are the Coulomb amplitudes of the electron radial
wave functions, defined in Sec. II B. The parameter κ will be
defined in Sec. II.

Denoting by (Ji,πi) and (Jf ,πf ) the initial and final
nuclear spins and parities, β decays are classified according to
�J = |Ji − Jf | and πiπf . For allowed and forbidden unique
β transitions, the energy dependence of the nuclear matrix
elements can be factored out. Introducing L = 1 if �J = 0
and L = �J otherwise, the shape factor of an allowed (L = 1)
or an (L − 1)th forbidden unique transition is

C(W ) = (2L − 1)!
L∑

k=1

λk

p2(k−1)q2(L−k)

(2k − 1)![2(L − k) + 1]!
, (3)

with k = |κ| and λk = (α2
−k + α2

k )/(α2
−1 + α2

1). These λk pa-
rameters have to be calculated numerically and the procedure
is not straightforward. For this reason, a usual but not justified
assumption is to set λk ≡ 1 in classical β spectra calculations,
even in the most recent ones [8].

In our previous study [1], the exchange effect was evaluated
through Harston and Pyper’s formalism [9] using the analytical
electron wave functions given by Rose in [10]. A remaining
discrepancy was highlighted, possibly due to the usual, but
overly simple, screening correction [11]. In the present work
we propose a consistent calculation of these two atomic
effects. The continuum and bound orbital electron wave
functions have been determined consistently using Behrens’s
formalism [7], resolving numerically the Dirac equation within
an independent-particle model. The complete process is given
in Sec. II, detailing the structure of the atomic potential for an
extended nucleus including screened and exchange potentials.
Atomic corrections for allowed β transitions are stated in
Sec. III, with a screening correction for the β spectrum. These
calculations are compared to recent precise measurements of
the 63Ni and 241Pu β spectra in Sec. IV.
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Consistent with Behrens’s formalism, natural units � =
me = c = 1 are used throughout this work, except when
explicitly specified. All numerical integrations were performed
using a three-point Lagrangian interpolation.

II. ELECTRON WAVE FUNCTIONS

A β− decay changes a neutron into a proton, ejecting an
electron and an antineutrino. The relativistic behavior of the
electron within the Coulomb field of the nucleus is described
by the Dirac equation. The Coulomb potential is assumed to
be scalar, static, and spherically symmetric. The electron wave
function can then be split into a radial part and an angular part
as [7]

�(�r) =
(

Sκfκ (r)χμ
−κ

gκ (r)χμ
κ

)
, (4)

with the electron radial wave functions fκ (r) (small compo-
nent) and gκ (r) (large component), the spin-angular functions
χμ

κ , and the sign of κ Sκ = κ/|κ| = κ/k. Here κ is the
eigenvalue of the operator K̂ = β(�σ · �L + 1), which appears
by applying the theory of angular momentum to an electron in
a Coulomb central field; β is the Dirac matrix, �σ designates the
Pauli matrices σx,y,z, and �L is the orbital angular momentum
operator. The usual spin-angular functions χμ

κ are expanded
into the orthonormal basis of the spherical harmonics Y

μ−m

l ,

χμ
κ = ıl

∑
m

C(l1/2j ; μ − m,m)Yμ−m

l χm, (5)

with the Clebsch-Gordan coefficients C(· · · ) and the two-
component spin eigenfunctions χm. Here l = k and j =
l − 1/2 if κ > 0, or l = k − 1 and j = l + 1/2 if κ < 0.
Notice that the factor ıl in this definition of χμ

κ is specific
to Behrens’s formalism.

The Dirac equation therefore leads to the following system
of coupled differential equations:

dfκ

dr
= κ − 1

r
fκ − [W − 1 − V (r)]gκ,

dgκ

dr
= [W + 1 − V (r)]fκ − κ + 1

r
gκ,

(6)

with V (r) a central potential. Beyond free states, analytical
solutions for fκ and gκ exist only for pure Coulomb potential,
i.e., V (r) = −αZ/r . Here Z is the atomic number and α the
fine-structure constant. These solutions can be found in [10].

Even a slightly more complex description of the nucleus
requires a numerical solution. We have followed the method
described in detail in [7], where the electron radial wave
functions are expressed locally as power-series expansions.

A. Atomic potential

The structure of the atomic potential is essential in the
determination of the electron wave functions. Its construction
is detailed here with our choices regarding the β spectra
calculation in which we are interested.

Using Behrens’s method [7], a power-series expansion of
the potential is also needed. Equations (6) exhibit two singular
points r = 0 and r = ∞. Assuming a local C∞ function, the

atomic potential can be expressed locally as a Taylor series,
namely, with r0 denoting an ordinary point,

V (r) =
∞∑

m=0

vm(0)rm, r ∼ 0, (7)

V (r) =
∞∑

m=1

vm(∞)r−m, r ∼ ∞, (8)

rV (r) =
∞∑

m=0

ṽm(r0)(r − r0)m, r ∼ r0. (9)

Notice that in β decay the initial system is a neutral atom
and the final system is an ion plus an electron at infinity.
The emitted electron thus experiences the potential of one
elementary charge.

The general structure is the same as that depicted in [7],
but the required information to perform the calculation is very
poorly documented in the literature. We give below all the
necessary equations and our choices for the few parameters of
this model.

1. Construction

To take into account the finite-nuclear-size effect in β

spectra calculations, the nucleus is described as a uniformly
charged sphere with nuclear radius R, leading to the usual
quadratic behavior of the potential inside the nucleus. Further,
the influence of the atomic electrons has to be taken into
account, e.g., through a screened potential. A simple model for
a neutral atom has been adopted, well adapted to β decay [7]

V (r) = −αZ

r

N∑
i=1

aie
−βir = −αZ

r
φ(r), (10)

where ai and βi are fitted parameters for the considered
atom. These parameters have been tabulated many times
in the literature. The ones from [12] were chosen in this
study because of their completeness and their assumption of
independent particles. Using N = 3 is sufficient to represent a
screened potential with good accuracy in most applications.

The structure of the atomic potential has to be consistent
with the one described by Eqs. (7)–(9), where the space is
divided into three parts, and a quadratic behavior inside the
nucleus is required. This potential has to be continuous in
any point. A point R2, sufficiently far away to ensure the
convergence of the asymptotic solutions, was introduced. To
deal with the exponential part in Eq. (10), another space region
has been defined by introducing a radius R3. Within R3 � r �
R2, the remaining charge, which comes from the screened
potential, is spread by substituting the exponential by a second-
order polynomial that ensures continuity at R3 and R2.

For evaluating the bound states, we have also accounted for
the fermion nature of the electrons, which is characterized by
exchange symmetry within the many-particle description. An
exchange potential, adopted here, has already been introduced
by Slater and depends only on the electron charge density
by applying the free-electron-gas assumption [13]. Following
Behrens’s formalism, this exchange potential is

Vex(r) = KFexφ
1/3
ex (r), (11)
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with

Fex = 3α

2

(
3Z

4π2

)1/3

, φex(r) =
N∑

i=1

ai

β2
i

r
e−βir . (12)

Some Hartree-Fock calculations include a parametrization of
Slater’s exchange potential, the convergence process being
performed also on these parameters [14]. This possibility has
been added to our exchange potential through the adjustment of

the constant K (see Sec. II B). Notice that the charge density
does not depend upon the atomic orbitals, which might be
expected since each orbital does not have the same number of
electrons and the same mean radius. The exchange potential
can therefore be adjusted for each orbital.

To simplify further notation, we introduce V ′
ex and φ′ as the

first derivatives of Vex and φ, and V ′′
ex and φ′′ as their second

derivatives. All these considerations have led us to define the
atomic potential

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1 + t2
2 r2, 0 � r � R(−αZ

r

)[
Cφ(r) + δ + C

αZ
rVex + δex

]
, R � r � R3(−αZ

r

)[
1 − C + C

(
σ t2

3 + μt3
3 + νt4

3

)]
, R3 � r � R2(−αZ

r

)
(1 − C), R2 � r � ∞,

(13)

where the following parameters have been defined:

C = Z − 1

Z
, δex = −CR

αZ
[2Vex(R) + RV ′

ex(R)],

η =
∑

i

ai[1 − (1 + βiR)e−βiR],

δ = 1 − C + Cη,

t1 =
(

− 3αZ

2R

)
[1 + 2

3CRφ′(R) + 2
3δex],

t2 =
(

αZ

R3

)[
1 − 2CR

αZ
Vex(R)

]
,

t3 = r − R2

R3 − R2
, σ = D2

2
− 3D1 + 6D0,

(14)

μ = −D2 + 5D1 − 8D0, ν = D2

2
− 2D1 + 3D0,

D0 = φ(R3) + η + R3

αZ
Vex(R3) + δex

C
,

D1

R3 − R2
= φ′(R3) + Vex(R3) + R3V

′
ex(R3)

αZ
,

D2

(R3 − R2)2
= φ′′(R3) + 2V ′

ex(R3) + R3V
′′
ex(R3)

αZ
.

The first derivative of V (r), also continuous, and the second
derivative have been established by straightforward calcula-
tions. The potential for continuum states is simply obtained by
setting all the exchange terms to zero in Eqs. (13) and (14).

The parameters R2 and R3 influence the shape of the
atomic potential. For r � R2, an electron in a continuum
state experiences the potential of a unique charge. Thus,
R2 is a kind of atomic radius. The authors of [7] do not
provide any specific criterion to set R2 and R3. Being inspired
by [15], these parameters have been set to R2 = 350(W/p) and
R3 = 150(W/p). No convergence problem of the asymptotic
solutions was noticed in our study.

The validity of the asymptotic solutions of the bound states,
beyond R2, can be closer than for the continuum states when
considering inner orbitals. To speed up the calculation, these
parameters have been set differently for the bound states. The

radius R2 has been determined as the smallest radius for which
the asymptotic solutions of the considered orbital converges.
The radius R3 has been empirically set to R3 ∼ R2/2 in order
to smooth the reconnection to the asymptotic potential.

2. Usable form for calculation

Particular attention has to be paid when going from the
potential of Eq. (10) to the potential defined in Eqs. (7)–(9).
For the continuum states, the atomic potential with screened
potential but no exchange potential is needed. The following
helpful relation was used:

e−βr = e−βr0

∞∑
m=0

1

m!
(−β)m(r − r0)m. (15)

The vm coefficients have been established within the different
space regions: In 0 � r � R,

V (r) =
2∑

m=0

vmrm for v0 = t1, v1 = 0, v2 = t2

2
; (16)

in R � r � R3,

rV (r) =
∞∑

m=0

vm(r − r0)m

for v0 = (−αZ)

(
δ + C

∑
i

aie
−βir0

)
, (17)

vm = (−αZ)C
∑

i

aie
−βir0

(−βi)m

m!
∀m > 0;

in R3 � r � R2,

rV (r) =
4∑

m=0

vm(r − r0)m

for v0 = (−αZ)[1 − C + CU0], (18)

vm = (−αZ)CUm ∀m > 0,

where Rd = r0 − R2, t4 = Rd

R3−R2
, U0 = σ t2

4 + μt3
4 + νt4

4 ,

U1Rd = 2σ t2
4 + 3μt3

4 + 4νt4
4 , U2R

2
d = σ t2

4 + 3μt3
4 + 6νt4

4 ,
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U3R
3
d = μt3

4 + 4νt4
4 , and U4R

4
d = νt4

4 ; and in R2 � r � ∞,

V (r) = v1r
−1 for v1 = −α. (19)

For the bound states, the parameter v1 is identical in [R2,∞[.
The vm coefficients within [0,R] and [R3,R2] remain the same
provided the parameters t1, t2, D0, D1, and D2 are evaluated
by taking the exchange potential into account.

In [R,R3], a specific treatment is required because of the
r−1/3 behavior. In this study an exact evaluation of the potential
was implemented. Equation (9) is just the Taylor series of any
function f (r) in the vicinity of r0. Thus we can define

∞∑
m=0

f (m)(r0)

m!
(r − r0)m =

∞∑
m=0

ṽm(r0)(r − r0)m. (20)

The first three terms of this series are trivial. The residual can
be calculated exactly since the exact values of the potential
and its derivatives are known

Res = rV (r) −
2∑

m=0

f (m)(r0)

m!
(r − r0)m. (21)

A final third-order term is therefore added, identifying Res ≡
v3(r0)(r − r0)3. This cubic term of the series is not exact, but
the calculated potential is exact and the polynomial exhibits
an appropriate behavior up to at least m = 2. Of course, this
requires a dense enough r grid to have a small residual. In
practice, this residual is about 10−4% and always less than
0.1%.

B. Radial wave functions

In Behrens’s method [7], the electron radial wave functions
are expressed locally as power-series expansions, allowing
Eqs. (6) to be solved using recurrence relations. Special
treatment is needed for the solutions relative to the regular
singular point r = 0 and for the asymptotic solutions relative
to the irregular singular point r = ∞. Then the calculation
consists in evaluating the wave functions near r = 0, near
r = ∞, and step by step between these two points in order to
reconnect each solution with the appropriate renormalization
and phase shift. Coulomb amplitudes ακ are given, and defined,
by the reconnection of the solutions near r = 0 with the
ordinary solutions. They are linked to the values of the radial
wave functions at the nuclear radius. Similarly, the phase shifts
are given by the reconnection of the asymptotic solutions with
the ordinary solutions.

In order to be sure of our calculations for the continuum
wave functions, the tables from [16] of various parameters used
to calculate β spectra were recalculated. Unscreened Coulomb
functions (Table II in [16]) were perfectly reproduced and the
ratios of screened to unscreened Coulomb functions (Table III
in [16]) were in very good agreement for all Z. Incidently, this
allows us to calculate these parameters at any desired energy,
especially the λk parameters involved in the shape factors of
Eq. (3), avoiding any interpolation in these tables.

For the bound wave functions, the procedure is basically
the same but the orbital energy T is not known in advance.
An iterative procedure is needed, which has to start with a
relatively good initial energy to ensure a quick convergence
toward the actual energy.

Behrens and Bühring proposed a Newton iteration
method [7], used in this study. Starting from the analytical
energy T0 given in [10], the zeros of the following estimator
have to be found:

D(T ) = gR(rM )fL(rM ) − gL(rM )fR(rM ), (22)

with rM = γ (γ + n′)/αZ, using the recurrence relation

Tn+1 = Tn − D(T )/Ḋ(T ), (23)

with Ḋ(T ) the first derivative of this estimator. Our calculation
stops when |Tn − Tn−1| < 10−13.

This procedure is not sufficient because the power-series
expansions of the wave functions do not depend explicitly on
the main quantum number n, but only on κ . Thus, for the same
value of κ , several convergence energies are possible. The
number of nodes of fκ and gκ therefore have to be checked to
select the desired orbital.

The orbital energy determines the oscillation frequency of
the radial wave functions. As an overlap between the bound and
continuum wave functions is needed for the exchange effect,
good accuracy of the orbital energy is required. Significant
discrepancies have been found for low-lying orbitals using the
procedure detailed just above. An additional procedure has
thus been implemented in order to ensure good convergence.
The one-electron energies EDes of Desclaux in [17] have
been chosen for their completeness and for the quality of
the calculations. The K constant parameter of the exchange
potential in Eq. (11) is adjusted by dichotomy inside an
empirical interval Kmin = −2 and Kmax = 2. The convergence
is reached in about ten iterations, when the orbital energy is
close to EDes at the 0.01% level, with a minimum of 0.1 eV.
Finally, notice that this method is generic in the sense that the
tabulated energies from [17] can be changed to experimental
ones, for instance.

To verify our calculations, the parameters of Table V
from [16] for the bound wave functions, useful in electron
capture calculations, were recalculated. Good agreement for
all Z has been obtained. The Coulomb amplitudes of the bound
wave functions given in Table IX by Bambynek et al. [18] were
also recalculated and good agreement has also been achieved.

III. ATOMIC EFFECTS ON β SPECTRA

A. Exchange effect

The formalism of the exchange effect has already been set
out in detail in [19]. For allowed transitions, only β electrons
created in an s bound orbital of the daughter atom can take part.
This effect is expressed as a correction factor [1 + ηT

ex(E)],
which modifies the β spectrum defined in Eq. (1). The total
exchange factor ηT

ex(E) depends on the β electron energy E and
involves an overlap between the electron radial wave functions
of the bound and continuum orbitals. It can be written in terms
of the subshell contributions ηns

ex ,

ηT
ex(E) =

∑
n

ηns
ex(E) +

∑
m,n

(m 
= n)

μmμn, (24)

and the exchange factor of the nth subshell is given by

ηns
ex(E) = f

(
μ2

n − 2μn

)
. (25)
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The parameters μn and f are expressed using the bound
(f b

n,κ ,g
b
n,κ ) and continuum (f c

κ ,gc
κ ) electron radial wave func-

tions evaluated at the nuclear radius according to

μn = 〈Es ′|ns〉g
b
n,κ (R)

gc
κ (R)

, f = gc
κ (R)2

gc
κ (R)2 + f c

κ (R)2
. (26)

For s orbitals, κ = −1. Here 〈Es ′|ns〉 is the overlap between
the initial bound orbital of the parent atom |ns〉 and the final
continuum orbital of the daughter atom 〈Es ′| over the entire
space. In contrast with our previous study [1] and the study
in [9], here the screened electron wave functions for both
the continuum and bound states have been determined in a
complete and consistent manner.

B. Screening correction

When calculating a β spectrum, the screening effect
is generally corrected for using a constant Thomas-Fermi
potential that is subtracted from the total energy of the parti-
cle [11]. This method creates a nonphysical discontinuity at the
minimum energy defined by the Thomas-Fermi potential [6].
This minimum energy is �20 keV, hence the discontinuity
does not generally affect the practical use of the spectrum.
Physically, the influence of the atomic electrons is expected
to be significant when the β wavelength is comparable to the
atom size, i.e., at low energy. As it has been shown in [1], this
simple method, which allows analytical wave functions to be
used, cannot be reasonable for high Z and at low energy.

Beta spectra are classically calculated using the electron
radial wave functions evaluated at the nuclear radius. To
take the screening into account, it is not just sufficient to
renormalize the wave functions and evaluate them at the
nuclear radius because the screened potentials are very weak at
this distance and so the modification is completely negligible
over the entire range of the spectrum. For example, in the
case of 241Pu and using the parameters given in [12], one can
evaluate 1 − φ(R) = 7.24 × 10−6.

It is in fact necessary to take into account the spatial
extension of the wave functions. As described in [7], this can be
done by evaluating the transition matrix of the corresponding
β decay. However, the calculations become very complicated
because the electron wave functions are coupled with the
nuclear matrix elements involved. To avoid this difficulty, we
can benefit from the parameter f defined in Eq. (26) for the
exchange effect. This parameter represents the fraction of β

electrons that emerge in a continuum κ state if the exchange
process is omitted. Instead of squared wave functions evaluated
at the nucleus surface, the mean value of the squared radial
wave functions over the entire space has been used

g2
κ = 1

�R

∫
�R

g2
κ (r)dr, (27)

where �R is the effective integration interval. The correction
factor that takes the screening into account is

Csc = 1 − �Runsc

�Rsc

(
1 − fsc

funsc

)
, (28)

where the subscript sc (unsc) means that the screened (un-
screened) wave functions were used. In this way, the screening

correction is physically meaningful because of the definition
of the Fermi function in Eq. (2).

C. Numerical procedure

The calculation of the exchange effect is performed in two
stages. First, the bound wave functions have to be calculated
and stored. The minimal sampling that corresponds to the
adaptive step given in [7] is used for the r grid. The continuum
wave functions are calculated at the desired energies in the
final β spectrum, with their own adaptive r grids. Next the
overlap between the bound and continuum wave functions can
be determined and thus the contribution of each orbital and the
total correction factor for the exchange effect.

To perform the calculation of the overlap, the bound and
continuum r grids are concatenated and the wave functions
are evaluated at these new points. However, if the common
grid is not sufficiently dense, numerical fluctuations appear in
the overlap calculation and thus in the final β spectrum. In
practice, we observed that a refined grid with just one more
point between each point of the common grid is sufficient to
ensure good convergence with a precision �10−3%.

IV. RESULTS

Accurate calculations, based on inclusion of the various
effects covered above, have been performed for the allowed
transition of 63Ni and the first forbidden nonunique transition
of 241Pu. Radiative corrections have also been included, but
their influence on the β spectrum is negligible, as shown in [6].

63Ni decays entirely by β− emission to the ground state
of 63Cu. This allowed transition has an end-point energy of
Emax = 66.980(15) keV [20]. 241Pu decays mainly by β−
emission to the ground state of 241Am. This first forbidden
nonunique transition, with Emax = 20.8(2) keV [21], fulfills
the assumption of the ξ approximation and can be calculated
as allowed [22], as it has been proved in [1].

The low maximum energies of these two transitions make
them ideal cases for evaluating the influence of the atomic
effects. The β spectra of 63Ni [23] and 241Pu [24] were recently
measured using metallic magnetic calorimeters. Each source
was enclosed in a gold absorber assuring a 4π solid angle and
100% detection efficiency. These spectra are first compared
to classical β calculations and then taking into account the
screening and exchange effects. The theoretical spectra were
normalized to the data by integration from 500 eV to Emax for
both 63Ni and 241Pu decays, to be as independent as possible
from the statistical fluctuations of the measurement.

A. Simple statistical analysis

To evaluate the global quality of our theoretical spectra,
some simple elements of statistical analysis are proposed. For
a set of n measurements {yi}, the fit quality of a model, leading
to n predictions {yth

i }, with respect to the data is given by the
quantity

R2 = 1 − var(êi)

var(yi)
. (29)

Valid for n 
 1, this definition is general, without
any restriction on the type of model. This quantity falls in
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0 � R2 � 1, where R2 = 1 corresponds to perfect predictions.
The modeling error is êi = yi − yth

i . Nonbiased estimators of
the variances are

var(yi) =
n∑

i=1

(yi − y)2

n − 1
, var(êi) =

n∑
i=1

(êi)2

n − p − 1
, (30)

with y the simple mean of the measurements and p the
number of parameters of the model. For β spectra, p = 2 was
considered, namely, the maximum energy of the transition
and the normalization of the theoretical spectrum to the
data. Therefore, the coefficient 1 − R2 quantifies the general
disagreement between the measurements and the predictions.

For the end user, this criterion does not provide any
information about the uncertainty of the emission probability
at a given energy. We propose first to look at the distribution
of the standardized residuals

ri = êi√
var(êi)

. (31)

If these residuals are almost equally distributed around zero, it
is appropriate to assume that they are distributed according to a
Gaussian probability variance var(ri). The standard deviation
σri

= √
var(ri) then gives an estimate of the overall uncertainty

of the calculated spectrum in the energy range where the
measurements exist. Notice that this analysis is not relevant
if the standardized residuals are not equally distributed. Given
the energy thresholds of the measured β spectra considered
in this study, these statistical parameters have been calculated
from 500 eV to the maximum energy of the transition for both
63Ni and 241Pu.

B. 63Ni β spectrum

Figure 1 presents the total exchange factor ηtot for the
63Ni decay, with the contribution of each orbital ηns . These
results are consistent with those calculated in the framework
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FIG. 1. (Color online) Total exchange factor ηtot for the 63Ni
decay, with the contribution of each orbital ηns .
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FIG. 2. (Color online) Measured 63Ni β spectrum compared to
analytical calculation (green), numerical calculation with screening
(red), and numerical calculation with screening and exchange (blue).
Normalization to the data was done by integration from 500 eV to
Emax. Standardized residuals between the data and the most complete
calculation are also given. A zoom of the low-energy region is also
given.

described in [1] where relativistic analytical wave functions
and relativistic effective nuclear charges had been used. In both
this previous framework and the present one, a partial negative
contribution of one orbital was found, creating a maximum in
the total exchange factor of 10.7% at 500 eV for this study.

Figure 2 compares the experimental spectrum with three
theoretical predictions: an analytical β calculation, without
screening and exchange; a numerical calculation from this
work, with screening but without exchange; and a complete
numerical calculation with screening and exchange. Notice
that the end-point energy from the measured spectrum is
Emax = 67.176(173) keV [23]. This value disagrees with the
most recently evaluated one [20]. The latter value comes from
mass measurements and is therefore well known. The value
from [23] probably points out some small nonlinear effects of
about 0.1% that were not taken into account within the data
analysis. Nevertheless, this spectrum is the only one available
of such high quality at low energy. These two end-point ener-
gies were tested and the results did not change significantly.

Eventually, excellent agreement is obtained with the ex-
perimental spectrum if the screening and exchange effects
are taken into account. The standardized residuals are equally
distributed around a mean value of r = 0.093%. The standard
deviation of the residuals is σri

= 1.03% and the global
disagreement is 1 − R2 = 0.028%. The discrepancy between
500 eV and the energy threshold of the measurement at
200 eV comes directly from the influence of the 3s orbital
in our calculation, but it is difficult to know if it is due
to the experiment or to the model. Mean energies are also
interesting quantities: Ean = 17.45 keV for the analytical
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FIG. 3. (Color online) Total exchange factor ηtot for the 241Pu
decay, with the contribution of each orbital ηns .

calculation, Esc = 17.40 keV for the numerical calculation
with screening, and Escex = 17.14 keV for the complete
calculation. As expected, the screening effect is weak for this
low-Z nucleus, but the exchange effect is of importance, as is
confirmed experimentally.

C. 241Pu β spectrum

Figure 3 presents the total exchange factor ηtot for 241Pu
decay, with the contribution of each orbital ηns . These results
are consistent with those calculated in the framework described
in [1]. The total exchange factor is more pronounced in this
study, with a higher contribution of the inner orbitals. Figure 4
compares the experimental spectrum with the same three
theoretical predictions as for the 63Ni spectrum. The fall of
the experimental spectrum between 500 eV and the energy
threshold of the measurement at 300 eV is most likely due
to the data analysis. Excellent agreement is obtained with the
experimental spectrum if the screening and exchange effects
are taken into account. The standardized residuals are equally
distributed around a mean value of r = 0.0019%. The global
disagreement is 1 − R2 = 0.040% and the standard deviation
of the residuals is σri

= 0.99%. For the mean energies, we
find Ean = 5.24 keV, Esc = 5.18 keV, and Escex = 5.03 keV.
As expected, the screening effect is strong for this high-Z
nucleus, equivalent to the magnitude of the exchange effect,
as is confirmed experimentally.

V. CONCLUSION

A consistent calculation of the screening and exchange
effects in allowed β− transitions has been given in detail. The
exchange effect has been determined with Harston and Pyper’s
formalism [9], but using more precise relativistic electron wave
functions calculated within Behrens’s formalism [7]. Special
care has been taken to explain the details of these calculations
because of the lack of information available in the literature.
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FIG. 4. (Color online) Measured 241Pu β spectrum compared to
analytical calculation (green), numerical calculation with screening
(red), and numerical calculation with screening and exchange (blue).
Normalization to the data was done by integration from 500 eV to
Emax. Standardized residuals between the data and the most complete
calculation are also given. A zoom of the low-energy region is also
given.

This work has demonstrated that a rather simple calculation
within an independent-particle model is sufficient to obtain a
fine understanding of the atomic effects that occur in β decays.
A screening correction that accounts for the spatial extension
of the electron wave functions had to be defined to reach the
required precision due to the high quality of the measurements
used for comparison. Excellent overall agreement of about
1% from 500 eV to the end point has been obtained for the
β spectra of both 63Ni and 241Pu decays. Even though more
complex calculations, such as multiconfigurational Dirac-Fock
ones, can take into account chemical effects through ionized
atomic states, they are not deemed necessary due to the current
precision of β spectra measurements.

Finally, this work allows the exact calculation of the
leptonic matrix elements within Behrens’s formalism. The
obvious next step is to generalize the screening and exchange
corrections to forbidden unique transitions, which can be
performed without taking into account the nuclear matrix
elements. A longer-term goal is the generalization to forbidden
nonunique transitions, which will inherently require the
calculation of the nuclear matrix elements.
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