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Using a biased quantum random walk as a quantum lumped element router
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Quantum random walks have received much attention for their intrinsic interest and many possible uses and
have been experimentally demonstrated. In this work we look at the possibility of using a biased one-dimensional
(1D) quantum walk as an element within a larger quantum device. We ask whether one can use a quantum walk
to act as a router with one bias setting engineering the quantum walk to route probability flow one direction
while another bias setting routes flow in the opposite direction. Appealing to electrical circuit terminology, we
consider a biased quantum walk over a large spatial lattice to act as a single “lumped element” whose routing
action depends on the coin bias. We discover that the lumped-element current, when summed over the quantum
walk lattice, reaches a steady state and for specific initial states we derive an analytic form for this steady-state
lumped-element current. We show that we can control the magnitude and the direction (routing) of the steady-state
current. Curiously the control phase and steady-state total current exhibits a sinusoidal current-phase relationship
indicating that the lumped element may be similar to that found in Josephson junctions. Finally we illustrate that
conservative 1D Hamiltonian systems can also exhibit steady-state dynamics similar to the quantum walk.
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I. INTRODUCTION

Discrete quantum systems can be used to study novel
quantum phenomena such as quantum walks (QWs). Quantum
walks have received much attention over the past two decades,
initially motivated as being the quantum analog of the well-
known classical random walk (RW). Initial interest in QWs
focused on the behavior of the spatial evolution of the walks.
In the classical case the spatial probability distribution of
the walker after a time τ is Gaussian with a width σ (τ ) ∼
τ 1/2 while the typical coined quantum walk has a bimodal
spatial distribution with a width that scales linearly with time,
σ (τ ) ∼ τ [1–3].

Beyond fundamental interest, researchers have also shown
that quantum walks can be the basis for constructing quan-
tum algorithms, such as graph searching [4–6] and graph
isomorphism testing [7,8], and for moving towards full-blown
quantum computing [9], which, in part, is due to the presence of
quantum entanglement in quantum walks [9,10]. A number of
interesting physical implementations of quantum walks have
been proposed, including trapped ions [11], Bose-Einstein
condensates [12], linear optics [13], neutral atoms in optical
lattices [14], and circuit quantum electrodynamics [15], and
a number of experimental demonstrations include nuclear
magnetic resonance (NMR) [16] and photonic systems [17].
Finally, an emerging direction of study for quantum walks is
their use in quantum simulation, for example, the simulation
of bosonic or fermionic quantum walks using integrated
photonics [18].

In this work we look at the possibility of using a biased
one-dimensional (1D) quantum walk as an element within a
larger quantum device to route quantum information either
in one direction or another by appropriately biasing the
quantum walk. By considering the entire quantum walk as
a single “lumped element” whose routing action depends on
the coin bias (see Fig. 1), we investigate this idea further
and find that we must generalize the concept of a quantum
probability current density, which is typically defined for a

continuous time and space setup, to the case of a coined
quantum walk with discrete time and space. Although there
are many ways to perform such a generalization, we argue that
to be physically relevant the generalized discrete probability
current density must satisfy a discretized continuity equation
which essentially encodes the microscopic detailed balance
of the probability density with time. We show that the
lumped-element current, obtained by summing over the entire
quantum walk lattice, reaches a steady state and for specific
initial states we derive an analytic form for this steady-state
current. We show that by altering a phase factor within the
biased coin we can engineer the magnitude and the direction
(routing) of the steady-state current. The control phase and
steady-state total current exhibits a sinusoidal current-phase
relationship indicating some similarity to the behavior of a
Josephson junction. Finally we illustrate that conservative 1D
Hamiltonian systems can also exhibit steady-state dynamics
similar to the lumped-element quantum walk router.

As mentioned above, central to our study is the existence of
a probability current density which satisfies an appropriately
physical continuity relation. We note that although quantum
walks have received much attention and that their evolution can
be studied analytically we are aware of only two previous stud-
ies that make use of a QW probability current density [19,20].
Moreover, in both cases, neither of their proposed currents
satisfies a continuity equation and thus are physically of little
relevance. Below we derive a form for the local probability
current density which manifestly satisfies the local discrete
continuity equation for probability. We derive an analytical
expression for the total current when summed over the spatial
lattice of the QW—this corresponds to the current through
the entire lumped element of the QW router—and we show
that this total current reaches a steady state whose value
can be controlled by considering a two-parameter family of
SU (2) biased coined QWs. We find that the total stationary
current is an oscillatory function of this one parameter and
we discuss the similarity in behavior to the current-phase
relation of Josephson junctions. We then show that one can
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FIG. 1. (Color online) Using the “lumped-element” biased quan-
tum walk as a router. We examine whether one can control the routing
of an initial quantum state injected at the middle of a quantum walk to
either end of the lumped element. We consider a 1D biased quantum
walk with a large number of lattice sites as a lumped element, which
can be used to redirect quantum probability to either end and into
attached quantum wires (not described here). The bias parameters
(θ,δ) parametrize the type of coin used in the quantum walk.

find a more symmetric expression for the local probability
current density through a central difference approach to the
continuity equation and finally we explore what types of
continuous conservative dynamical systems possess similar
stationary currents.

II. DISCRETE-TIME COINED QUANTUM WALK

We quickly review the model of the typical coined quantum
walk. For a detailed overview of quantum walks, see [2]. In this
model, a particle with an internal chirality (or two-state coin)
resides on a discrete 1D lattice and is displaced conditioned
on the state of the quantum coin, where the latter periodically
experiences an operation similar to coin tossing in a classical
random walk. Let the position eigenkets of the particle at
position n be |n〉 ∈ Hp and with an internal chirality state
|c〉 ∈ Hc, where Hp and Hc are the position and coin Hilbert
space, respectively:Hp = {|n〉 : n ∈ Z},Hc = {|↑〉 , |↓〉}, and
|↑〉 and |↓〉 are the coin states that specifies the direction of
motion. The combined Hilbert space H = Hc ⊗ Hp and the
coin-flip operation is performed via a unitary coin operator,
Ĉ, which operates only on the coin Hilbert space. The most
general form of this operator is

Ĉ(ξ,θ,η) =
(

eiξ cos θ eiη sin θ

e−iη sin θ −e−iξ cos θ

)
, (1)

which is a three-parameter unitary operator. The unitary
conditional translation (or step) operator Ŝ is

Ŝ = |↑〉 〈↑| ⊗ |n + 1〉 〈n| + |↓〉 〈↓| ⊗ |n − 1〉 〈n| , (2)

which implies that, if the particle is at position n with an
internal coin state |↑〉, Ŝ shifts the particle to position n + 1,
whereas if its chirality state is |↓〉, Ŝ shifts it to position n − 1.
If we put θ = π

4 , ξ = η = 0, we realize the Hadamard coin
that has been used extensively to study quantum walks [1,21].

In our study of the transport properties of the quantum walk
we use the two-parameter unitary coin operator Ĉ(θ,δ):

Ĉ(θ,δ) =
(

cos θ eiδ sin θ

e−iδ sin θ − cos θ

)
, (3)

which we find sufficient to study the properties of quantum
transport in our model, namely the spread of the quantum

walk through θ and also any bias of the walk in the ‘lumped
element’ through δ. Moreover, later in the paper we show
that any other phase factor in a three-parameter coin appears
only in combination with the phase factors of the initial coin
state of the walker, a fact that has been noted too by previous
authors [22]. Hence, we mainly use a two-parameter coin
operator.

We represent the state of the quantum particle at any time t

by a state vector

|ψ(t)〉 =
∞∑

n=−∞

(
αn,t

βn,t

)
⊗ |n〉

=
∞∑

n=−∞
αn,t |↑ ,n〉 + βn,t |↓ ,n〉 , (4)

where αn,t and βn,t are the amplitudes associated with the
walker which has a given chirality. We have chosen the
representation |↑〉 = (1

0) and |↓〉 = (0
1). The update rule for

our quantum walk is given by

|ψ(t + 1)〉 = Ŝ(Ĉ ⊗ 1) |ψ(t)〉 , (5)

from which we obtain the (recurrence) relations satisfied by
the amplitudes αn,t and βn,t ,

αn,t = cos θαn−1,t−1 + eiδ sin θβn−1,t−1,

βn,t = e−iδ sin θαn+1,t−1 − cos θβn+1,t−1. (6)

These are the basic recurrence relations defining the
evolution of the quantum walk on the 1D lattice which we
use to derive the probability current density. Denoting the
probability ρ(n,t) for the particle to be found at position n at
time t as ρ(n,t) = |αn,t |2 + |βn,t |2, we have the conservation
of probability with time, i.e.,

∑n=∞
n=−∞ ρ(n,t) = 1, ∀t .

III. PROBABILITY CURRENT DENSITY
OF THE COINED QUANTUM WALK

Some authors have previously found an expression for the
probability current density for the QW of the form [19,20]

j (n,t) = |αn,t |2 − |βn,t |2, (7)

which, however, does not satisfy the continuity relation and
hence is not suitable for our purpose. We now outline how to
derive an expression for the current density in our quantum
walk from the recurrence relations (6) starting from the
continuity equation. The continuity equation (in its continuous
form) can be written as ∂xj = −∂tρ and implies that the net
flow of probability, ∂xj , into or out of a region is equal to the
rate of change of the overall probability, −∂tρ, in that region.
We consider the discrete version of the continuity equation to
be

−�t ρ(n,t) =�n j (n,t), (8)

where �n,t is a forward difference operator in space and time
given as �t ρ(n,t) ≡ ρ(n,t + 1) − ρ(n,t), and �n j (n,t) ≡
j (n + 1,t) − j (n,t).

The left-hand side of Eq. (8) can be computed easily if we
consider that the local probability ρ(n,t) = |αn,t |2 + |βn,t |2
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FIG. 2. (Color online) For a QW which is initialized to yield
a spatially symmetric walk, where (αn,0,βn,0) = 1√

2
(1,i)δn,0, i.e.,

where the walker is initially located at the origin, and using θ =
π/4,δ = 0 (a Hadamard coin), we plot (top) the probability for
the walker to be found at spatial location n at time t , i.e., ρ(n,t),
and (bottom) the probability current density j (n,t). We see that
although the probability evolves in a spatially symmetric fashion
the forward-difference defined probability current density breaks this
symmetry.

and then use the recurrence equations (6) to get ρ(n,t + 1):

− �t ρ(n,t)

= |αn,t |2 + |βn,t |2 − cos2 θ |αn−1,t |2
− sin2 θ |βn−1,t |2 − sin2 θ |αn+1,t |2 − cos2 θ |βn+1,t |2
+ sin 2θ Re{eiδ(α∗

n+1,tβn+1,t − α∗
n−1,tβn−1,t )} (9)

This equation can be arranged in a more suggestive form as

− �t ρ(n,t) = (cos2 θ |αn,t |2 − sin2 θ |αn+1,t |2)

− (cos2 θ |αn−1,t |2 − sin2 θ |αn,t |2)

+ (sin2 θ |βn,t |2 − cos2 θ |βn+1,t |2)

− (sin2 θ |βn−1,t |2 − cos2 θ |βn,t |2)

+ sin 2θ Re[eiδ(α∗
n+1,tβn+1,t + α∗

n,tβn,t )]

− sin 2θ Re[eiδ(α∗
n,tβn,t + α∗

n−1,tβn−1,t )],

(10)

and from this the following expression for the probability
current density can be read:

j (n,t) = cos2 θ (|αn−1,t |2 − |βn,t |2)

− sin2 θ (|αn,t |2 − |βn−1,t |2)

+ sin 2θ Re[eiδ(α∗
n−1,tβn−1,t + α∗

n,tβn,t )]. (11)

It is interesting to note that the current density j (n,t) in Eq. (11)
is more involved than had been initially supposed [Eq. (7)].
Interestingly we find a dependence on the interferences
between αn,t and βn,t but since the amplitudes αn,t and βn,t

oscillate forever, j (n,t) does not achieve a steady state. In
the next section we instead consider the total cumulative
current over the entire 1D lattice and find that this indeed does
achieve a steady state. As an illustration we show in Fig. 2
the probability current density for the Hadamard QW (δ = 0)
as a function of time for a localized symmetric initial coin
state (αn,0,βn,0) = 1√

2
(1,i)δn,0. We observe that the probability

current density as defined using the forward differences has
some peculiarities; i.e., although the probability distribution
for the evolving QW is spatially symmetric about the origin,
the introduction of the forward difference has introduced an
apparent symmetry breaking into the associated probability
current density. Despite this, the forward difference proba-
bility current density still satisfies the associated continuity
equation (8). This apparent asymmetry is remedied later on
when we describe how to use a central difference form
of Eq. (8).

IV. STEADY-STATE CURRENT

We now examine the asymptotic behavior of the “total”
current on the entire 1D lattice. Let the total cumulative current
J (t) be defined as

J (t) =
∞∑

n=−∞
j (n,t). (12)

By using the dynamical recurrence equations we can derive
a very compact analytical expression for the steady-state
value of this current, e.g., J∞ ≡ limt→+∞ J (t). We also
investigate the steady-state value J∞ by numerical simu-
lation using Eq. (6) and find perfect agreement with our
analytic formula. We now define some useful quantities,
the global probability amplitudes and global interference
terms, as ρ+(t) ≡ ∑∞

n=−∞ |αn,t |2, ρ−(t) ≡ ∑∞
n=−∞ |βn,t |2,

and Q(t) ≡ ∑∞
n=−∞ α∗

n,tβn,t . From Eq. (6), we can
find

|αn,t+1|2 = cos2 θ |αn−1,t |2 + sin2 θ |βn−1,t |2
+ sin 2θ Re(eiδα∗

n−1,tβn−1,t ),

|βn,t+1|2 = sin2 θ |αn+1,t |2 + cos2 θ |βn+1,t |2
− sin 2θ Re(eiδα∗

n+1,tβn+1,t ), (13)

012339-3



AYENI M. BABATUNDE, JAMES CRESSER, AND JASON TWAMLEY PHYSICAL REVIEW A 90, 012339 (2014)

and summing over space in Eqs. (13) gives

ρ+(t + 1) = cos2 θρ+(t) + sin2 θρ−(t)

+ sin 2θ Re(eiδQ(t)),

ρ−(t + 1) = sin2 θρ+(t) + cos2 θρ−(t)

− sin 2θ Re(eiδQ(t)). (14)

In the long-time limit, we define the following: ρ+(t →
∞) = �+, ρ−(t → ∞) = �−, Q(t → ∞) = Q0, and J (t →
∞) = J∞.

In this limit, Eqs. (14), in matrix form, become(
1 −1

−1 1

)(
�+
�−

)
= 2 cot θ Re(eiδQ0)

(
1

−1

)
(15)

which, with �+ + �− = 1, has the solution(
�+
�−

)
= 1

2

(
1 + 2 cot θ Re(eiδQ0)

1 − 2 cot θ Re(eiδQ0)

)
. (16)

This remarkable result was previously derived by Ro-
manelli [23]. The steady-state current J∞ then easily proceeds
from Eqs. (11), (12), and (16) as

J∞ = 2 cot θ Re(eiδQ0). (17)

The above equation clearly indicates that the total current in
our quantum walk depends on a number of factors including
(a) the interferences through Q0 which ultimately depend on
the initial state |ψ(t = 0)〉 and (b) the bias parameter δ.

The global interference term Q0 can be computed using
a Fourier series method and this same method has been
quite successful in analyzing the asymptotics of quantum
walks [1,24,25]. Using this method and assuming a sharply
localized initial state |ψ(t = 0)〉 at n = 0 as

|ψ(t = 0)〉 =
(

cos φ

2

eiγ sin φ

2

)
⊗ |n = 0〉 , (18)

where φ ∈ [0,π ] and γ ∈ [0,2π ], with some effort (see the
Appendix), one can derive Q0 to be

Q0 = (1 − sin θ )e−iδ tan θ

2

[
cos φ + sin φ

(
e−i(δ+γ ) tan θ

+ i sin(δ + γ )
cos θ

1 − sin θ

)]
. (19)

Through numerical simulation one can observe the asymp-
totic approach of Q(t) to Q0 (see Fig. 3) in the long-time
limit.

From this we can express the steady-state total current J∞,
for the particular case of the initial state (18), as

J∞ = (1 − sin θ ) [cos φ + sin φ cos(δ + γ ) tan θ ] , (20)

which depends not only on the initial state through φ,γ , but
also on the nature of the dynamics through θ and δ as shown in
Fig. 4. The term cos(δ + γ ) indicates that J∞ can be controlled
in an identical fashion either by the coin bias factor δ or by
the phase of the initial state. One has the freedom to adjust J∞
dynamically irrespective of the initial state.

Finally it is curious to note that the sinusoidal dependence
of the current on the phase δ (or γ ) is very reminiscent
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FIG. 3. (Color online) Global interference term Q(t) for a sym-
metric localized initial coin state (αn,0,βn,0) = 1√

2
(1,i)δn,0 and with

coin parameters θ = π/4, δ = 5π/12, smoothed in time using a
moving window average of width 10. The solid line is the numerical
result while the dashed line is the asymptotic value Q0.

of the sinusoidal current-phase relationship (CPR) found in
Josephson junctions [26]. The highly nonlinear dependence
of the Josephson current on the phase difference across the
junction has led to numerous quantum devices, the most
prominent being the superconducting quantum interference
device (SQUID). Indeed, based on the Josephson CPR the total
current in a SQUID varies sinusoidally with the magnitude of
the trapped flux.

V. SYMMETRIC PROBABILITY CURRENT DENSITY

Above we derived a probability current density according
to a forward difference approximation to the continuity
equation (8), and we noted that this lack of symmetry in
this discretization led to peculiar asymmetric behaviors in the
associated probability current density. We now show how this
can be remedied by choosing a central difference version of
the continuity equation, where we now choose

− �C
t ρ(n,t) =�C

n jC(n,t), (21)
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FIG. 4. (Color online) Total “steady” current J∞ against δ for
various coin values θ for a symmetric localized initial coin state
(αn,0,βn,0) = 1√

2
(1,i)δn,0. The points are the results of numerical

simulation using Eq. (11) while the lines are the analytical result (20).
We note that J∞(−δ) = −J∞(δ); i.e., J∞(δ) is an odd function of δ.
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where �C
n,t are the central difference operators in space and

time given as �C
t ρ(n,t) ≡ [ρ(n,t + 1) − ρ(n,t − 1)]/2, and

�C
n j (n,t) ≡ [jC(n + 1,t) − jC(n − 1,t)]/2. We find that

jC(n,t) = cos2 θ (|αn,t |2 − |βn,t |2) + sin 2θ Re[eiδα∗
n,t βn,t ].

(22)

To show this we use the recurrence relations (6) to express
ρ(n,t + 1) in terms of the amplitudes αk,t and βl,t , at time
step t . We then note that these same recurrence relations can
be recast in the matrix format(

αn+1,t

βn−1,t

)
=

(
cos θ eiδ sin θ

e−iδ sin θ − cos θ

) (
αn,t−1

βn,t−1

)
, (23)

and as the transformation matrix in Eq. (23) is unitary we
straightaway can reexpress ρ(n,t − 1) in terms of quantities at
time t ,

ρ(n,t − 1) = |αn,t−1|2 + |βn,t−1|2 = |αn+1,t |2 + |βn−1,t |2.
(24)

With Eq. (24), one can write ρ(n,t + 1) − ρ(n,t − 1), involv-
ing quantities expressed only at time step t , to be

�t ρ = ρ(n,t + 1) − ρ(n,t − 1)

�t ρ = cos2 θ |αn−1,t |2 + (sin2 θ − 1)|βn−1,t |2
+ sin 2θ Re[eiδα∗

n−1,tβn−1,t ]

+ (sin2 θ − 1)|αn+1,t |2 + cos2 θ |βn+1,t |2
− sin 2θ Re[eiδα∗

n+1,t βn+1,t ]

= cos2 θ (|αn−1,t |2 − |αn+1,t |2)

+ cos2 θ (|βn+1,t |2 − |βn−1,t |2)

+ sin 2θ Re[eiδ(α∗
n−1,tβn−1,t − α∗

n+1,tβn+1,t )]

= cos2 θ |αn−1,t |2 − cos2 θ |βn−1,t |2
+ sin 2θ Re[eiδα∗

n−1,t βn−1,t ]

−[cos2 θ |αn+1,t |2 − cos2 θ |βn+1,t |2
+ sin 2θ Re[eiδα∗

n+1,t βn+1,t ]]. (25)

Now using the central difference form for the continu-
ity equation as ρ(n,t + 1) − ρ(n,t − 1) = −(jC(n + 1,t) −
jC(n − 1,t)), by inspection we obtain the central difference
probability current density (22).

In Fig. 5 we plot out the behavior of jC(n,t) for the same
symmetric initial state as in Fig. 2, and now we observe that
the spatial symmetry of the QW’s evolution is maintained by
jC . We also can define the total symmetric probability current
JC(t) ≡ ∑∞

n=−∞ jC(n,t), and we find that JC(t) reaches a
steady-state value which is identical to that found in the
forward difference case.

VI. DO WE EXPECT THE TOTAL PROBABILITY
CURRENT TO HAVE A STEADY STATE?

We have seen that for the coined QW the total current
attains a steady state. We now ask the question whether
this is typical or not? In classical mechanics, we associate a
steady-state current or momentum with terminal velocity, i.e.,

n

t

FIG. 5. (Color online) For a QW which is initialized in an
identical fashion to Fig. 2, we plot (top) the probability density ρ(n,t)
and (bottom) the symmetric probability current density jC(n,t). We
see that now the current density is symmetric in space.

acceleration in a dissipative medium. Our biased-coined QW
is completely unitary and thus one may pose the question: in a
purely Hamiltonian system (classical or quantum), what type
of dynamics will result in steady-state momenta or probability
current? We show that such conservative dynamics are possible
and may yield a continuous space-time analog of our biased
or directed quantum walk.

Looking now within classical mechanics, a steady-state cur-
rent typically corresponds to a terminal velocity or momentum.
Considering a massive particle moving in one dimension, and
assuming that its momentum attains a terminal value of pf as
t → ∞, and that we have no interest in the detailed dynamics
before steady state, we can phenomenologically model the
long-time dynamics as

ṗ = λ(pf − p), (26)

where pf is the terminal momentum; i.e., at t = ∞, p∞ = pf

and λ > 0. Now taking the classical Hamiltonian to be

H = p2

2m
+ λW (x,p), (27)
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where W (x,p) depends on both x and p, using Hamilton’s
equations of motion, ẋ = ∂H

∂p
, ṗ = − ∂H

∂x
, we can construct a

sample H as

H = p2

2m
− λx(pf − p), (28)

from which the equations of motion are ẋ = p

m
+ λx, ṗ =

λ(pf − p). The solution to this dynamics is

p(t) = pf (1 − e−λt ), x(t) = pf eλt

2mλ
(1 − e−λt )2, (29)

with the initial conditions p(0) = 0, x(0) = 0. With this sam-
ple Hamiltonian the particle reaches a steady-state momentum
pf as it travels to x → sgn(pf ) × ∞.

The quantization of this sample classical Hamiltonian turns
out to be somewhat ambiguous. If we shift p by pf , i.e.,
p → pf + p, the classical Hamiltonian becomes

H = (p + pf )2

2m
+ λxp. (30)

To quantize this equation, we can let p → p̂, and x̂p̂ →
1
2 (x̂p̂ + p̂x̂) to have the Hamiltonian Hermitian. However,
there are many ways of promoting the classical quantity xp

to a Hermitian operator, and many issues relating to these
difficulties have been addressed before in the literature under
the so-called H = xp model [27,28].

VII. CONCLUSION

Both the theory pertaining to, and the experimental imple-
mentation of, quantum walks continues to attract widespread
interest. Despite this, little research has been done to un-
derstand their transport properties. In this work we derived
expressions for the probability current density based on a
discretization of the probability continuity equation. For the
specific case of an initial localized state we were able to derive
an analytical expression for the total spatial current and showed
that it reached a steady state. Curiously this steady-state total
current satisfied a type of sinusoidal current-phase relationship
akin to the current behavior in Josephson junctions. With some
effort we were able to derive an expression for the current
density when we used central difference approximations and
found that this symmetric probability current density behaved
more intuitively. Finally we asked the question whether one
can find conservative classical or quantum continuous systems
whose dynamics leads to steady-state currents or momenta and
found a wide class of such Hamiltonians.

APPENDIX

We show here the derivation of the global interference
term Q0 which we defined as Q0 = limt→∞

∑∞
n=−∞ α∗

n,tβn,t

in real space. We derive the expression for Q0 directly in
Fourier space as it is more convenient and has been reportedly
successful in analyzing the properties of quantum walks.

Let the amplitudes αn,t and βn,t be grouped together as
ψn(t) written as a column vector,

ψn(t) =
(

αn,t

βn,t

)
= αn,t |0〉 + βn,t |1〉 , (A1)

where vectors |0〉 = (1
0) and |1〉 = (0

1) are introduced for
notational convenience in the derivation of Q0. Note that the
vectors |0〉 and |1〉 are not necessarily related to the coin states
{|↑〉, |↓〉}.

Let the Fourier transform of ψn(t) be ψ̃k(t) given as

ψ̃k(t) =
∞∑

n=−∞
ψn(t)eikn (A2)

with k ∈ [−π,π ]. The recurrence relation Eq. (6) in Fourier
space becomes(

α̃k(t)

β̃k(t)

)
=

(
eik cos θ ei(k+δ) sin θ

e−i(k+δ) sin θ −e−ik cos θ

) (
α̃k(t − 1)

β̃k(t − 1)

)
,

(A3)

i.e.,

ψ̃k(t) = Ûkψ̃k(t − 1), (A4)

and iterating the “Markovian” equation recursively gives

ψ̃k(t) = Û t
kψ̃k(t = 0), (A5)

where ψ̃k(0) is the Fourier transform of the localized initial
state ψn(0). We assume here that our initial state ψn(0) is
localized at the origin of our lattice and is given as ψn(0) =
( cos φ

2
eiγ sin φ

2
)δn,0 as in Eq. (18), situated on a Bloch sphere, with

φ ∈ [0,π ] and γ ∈ [0,2π ]. Its Fourier transform is ψ̃k(0) =
( cos φ

2
eiγ sin φ

2
).

The Fourier transform of Q0 becomes

Q0 = lim
t→∞

∫ π

−π

dk

2π
α̃∗

k (t)β̃k(t). (A6)

As U is unitary, it can be diagonalized with complex eigenval-
ues and eigenvectors and written in spectral representation as

Uk = (
λ1

k

) |φ1(k)〉 〈φ1(k)| + (
λ2

k

) |φ2(k)〉 〈φ2(k)|, (A7)

from which the expression for Ut
k follows as

Ut
k = (

λ1
k

)t |φ1(k)〉 〈φ1(k)| + (
λ2

k

)t |φ2(k)〉 〈φ2(k)|, (A8)

where λ1
k = eiωk and λ2

k = −e−iωk are the eigenvalues with
their respective eigenvectors |φ1(k)〉 and |φ2(k)〉 as

|φ1(k)〉 = N (k)

(
ei(k+δ) sin θ

eiωk − e−ik cos θ

)
,

|φ2(k)〉 = N (π − k)

(
ei(k+δ) sin θ

−e−iωk − eik cos θ

)
, (A9)

where ωk is determined from sin ωk = cos θ sin k. N (k) given
as

N (k) = 1√
2 − 2 cos θ cos(ωk − k)

(A10)

is a normalization factor that ensures the orthonormality of the
eigenvectors |φ1(k)〉 and |φ2(k)〉.

From Eq. (A5) we have

|ψ̃k(t)〉 = α̃k(t) |0〉 + β̃k(t) |1〉
= cos

φ

2
Û t

k |0〉 + eiγ sin
φ

2
Û t

k |1〉, (A11)
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from which we could easily identify the amplitudes α̃k(t) and
β̃k(t) to be given as

α̃k(t) = cos
φ

2
〈0| Ut

k |0〉 + eiγ sin
φ

2
〈0| Û t

k |1〉,

β̃k(t) = cos
φ

2
〈1| Ut

k |0〉 + eiγ sin
φ

2
〈1| Û t

k |1〉, (A12)

where α̃k(t) = 〈0 |ψ̃k(t)〉 and β̃k(t) = 〈1 |ψ̃k(t)〉.
With the expression we have for Ut

k , we could compute the
expressions for α̃k(t) and β̃k(t) as

α̃k(t) = cos
φ

2
ak(t) + eiγ sin

φ

2
bk(t),

β̃k(t) = cos
φ

2
ck(t) + eiγ sin

φ

2
dk(t), (A13)

where ak(t), bk(t), ck(t), and dk(t) are certain oscillatory
functions which we list below:

ak(t) = eiωkt sin2 θN2(k) + (−1)t e−iωkt sin2 θN2(π − k),

bk(t) = eiωkt ei(k+d)(e−iωk − e−ik cos θ ) sin θN2(k)

− (−1)t e−iωkt ei(k+d)(eiωk

+ e−ik cos θ ) sin θN2(π − k),

ck(t) = eiωkt e−i(k+d)(eiωk − eik cos θ ) sin θN2(k)

− (−1)t e−iωkt e−i(k+d)(e−iωk

+ eik cos θ ) sin θN2(π − k),

dk(t) = eiωkt (1 − 2 cos θ cos(ωk − k) + cos2 θ )N2(k)

+ (−1)t e−iωkt (1 + 2 cos θ cos(ωk + k)

+ cos2 θ )N2(π − k).

With all the above equations, we can evaluate Q0 from
Eq. (A6) as

Q0 = cos2

(
γ

2

)
E0 + sin2

(
γ

2

)
F0 + eiϕ sin γ

2
G0

+ e−iϕ sin γ

2
H0, (A14)

where

E0 = lim
t→∞

∫ π

−π

dk

2π
a∗

k (t)ck(t),

F0 = lim
t→∞

∫ π

−π

dk

2π
b∗

k (t)dk(t),

G0 = lim
t→∞

∫ π

−π

dk

2π
a∗

k (t)dk(t),

H0 = lim
∫ π

−π

dk

2π
b∗

k (t)ck(t).

The asymptotics of the integrals above are easy to calculate
but lengthy. Using the stationary phase approximation (SPA),
the integral of the form

∫
f (k)eiϕ(k)t dk vanishes as t−

1
2

for a nonvanishing ϕ′′(k) as shown in [1] and hence every
time-dependent part of the integrals E0, F0, G0, and H0 gives
a negligible contribution and we can drop them in the the
evaluation of the integrals to obtain

E0 = e−iδ tan θ

2
(1 − sin θ ), (A15)

F0 = −e−iδ tan θ

2
(1 − sin θ ) , (A16)

G0 = sin θ

2
, (A17)

H0 = e−2iδ

(
(1 − sin θ ) tan2 θ − sin θ

2

)
. (A18)

Hence, Q0 is given as

Q0 = (1 − sin θ )e−iδ tan θ

2

[
cos φ + sin φ

(
e−i(δ+γ ) tan θ

+ i sin(δ + γ )
cos θ

1 − sin θ

)]
. (A19)

This result can also be checked if we compare it with
numerical results of Q(t) in the long-time limit as shown in
Fig. 3.
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