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Average entanglement dynamics in open two-qubit systems with continuous monitoring
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We present a comprehensive implementation of the quantum trajectory theory for the description of the
entanglement dynamics in a Markovian open quantum system made of two qubits. We introduce the average
concurrence to characterize the entanglement in the system and derive a deterministic evolution equation for it
that depends on the ways in which information is read from the environment. This buildt-in flexibility of the
method is used to address two actual issues in quantum information: entanglement protection and entanglement
estimation. We identify general physical situations in which an entanglement protection protocol based on local
monitoring of the environment can be implemented. Additionally, we methodically find unravelings of the system
dynamics providing analytical tight bounds for the unmonitored entanglement in the system at all times. We
conclude by showing the independence of the method from the choice of entanglement measure.
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I. INTRODUCTION

At the core of the physics behind quantum information
theory lies the fundamental fact that different constituents of a
quantum system can interfere coherently among themselves,
giving rise to correlations that are absent in classical systems.
Prospects of technological applications of this theory, from
quantum communication to quantum computation [1], rely
ultimately on our capacity to harness these correlations under
physically realistic conditions—that is, in the deleterious
presence of the decoherence induced by the unavoidable
interaction of the quantum systems with their surroundings—a
goal that, despite the enormous effort invested in its pursuit
during recent years, has been only partially achieved. The
fragility of quantum correlations to perturbations, a shortcom-
ing which is magnified in the face of the transition from
the microscopic to the macroscopic scales demanded for
applications, persists arguably as one of the main hurdles for
the emerging quantum technologies and a topic on which our
knowledge remains limited. Until recently [2–4], for instance,
our understanding of the time evolution of entanglement—a
prominent embodiment of these quantum correlations and a
recognized key resource for quantum information processing
and communication [5]—under the effects of decoherence had
barely increased beyond what we had gathered during its initial
exploration period, as the shortage of general results, both
theoretical and experimental, illustrates [6–15].

The essential difficulty faced by any attempt to formulate
a complete description of the entanglement dynamics in open
quantum systems resides in the nonlinear dependence of en-
tanglement with the system state. Not surprisingly, therefore,
the traditional head-on approach to the problem—in which
the time evolution of the system state is solved first, and only
afterwards, for each point in time, is the state entanglement
estimated—yields limited results. The necessary resources this
strategy demands, both computationally and experimentally,
pile up very rapidly with the system size, strongly restricting
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its application [6–15]. In recent years, however, new insight
into the subject has been gained by exploiting the symmetries
of the entanglement measures used, which has led to the
formulation of efficient dynamical equations for entanglement
in composite systems in which a single one of the constituents
is coupled to a noisy channel [2–4] and opened a path to further
generalizations [16].

Fruitful results have also emerged lately from a different
perspective altogether on the problem. In the quantum trajec-
tory description of open systems [17] the state of the system
can be resolved at all times if information is being read from the
environment in a continuous way, hence the state evolution is
no longer deterministic but stochastic and conditioned by the
measurement record of the environment. As a consequence,
also the entanglement in the system varies according to
how the environment is being monitored and a systematic
characterization of its time evolution is then naturally achieved
by considering its average over the emerging ensemble of
quantum trajectories [18,19]. Numerical and analytical imple-
mentations of this approach showed the average entanglement
to be pivotal for a truthful characterization of the dynamics
of entanglement [18–21], entanglement of assistance [22],
and hidden entanglement [23,24] in continuously monitored
Markovian systems and suggested it as an efficient alternative
to the quantification of the conditional [25] and uncondi-
tional [26,27] state entanglement in non-Markovian open
systems. It also played a central role in the formulation of new
protocols for entanglement protection [21,28] and quantum
computation [29] and was even adapted for the study of general
quantum correlations [30].

Here we present a rigorous implementation of the quantum
trajectory theory for systematic study of the dynamics of
entanglement in open quantum systems of two qubits and
lay with clarity the groundwork for its extension to quantum
systems of arbitrary size. The strength of our operational
method is demonstrated with a methodic approach to the topics
of entanglement protection and analytical bound estimation for
the entanglement dynamics of the unmonitored system state.

Central to our description of the entanglement dynamics in
2 × 2 Markovian open systems is the issue of its quantification.

1050-2947/2014/90(1)/012338(14) 012338-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.012338


IVONNE GUEVARA AND CARLOS VIVIESCAS PHYSICAL REVIEW A 90, 012338 (2014)

We address this problem in Sec. III with the formalism
introduced in Sec. II and use the average concurrence as entan-
glement measure—a choice motivated only by convenience,
as will become apparent. The quantum trajectory theory then
allows for a methodical derivation of a deterministic equation
for the dynamical evolution of the average concurrence, whose
solution does not require complete knowledge of the state of
the system at all times. Moreover, concomitant with the frame-
work of quantum trajectory theory, the dynamical portrait of
entanglement provided by this equation of motion changes
depending on the measurement scheme chosen to monitor the
environment, granting the method a versatility and control that
can potentially be exploited for quantum-information-related
tasks. We demonstrate this point by exhibiting two facets of
our formalism: In combination with only local environments,
in Sec. IV we propose local measurement strategies of the en-
vironments to effectively and efficiently protect entanglement
in the system, generalizing concepts presented in Ref. [28]. In
contrast, considering nonlocal monitoring schemes, in Sec. V
we develop computational methods to obtain tight dynamical
bounds on the entanglement of the unconditional state of the
system, which outperform previously reported ones [2,4,31].
To conclude, in Sec. VI we discuss the implementation of the
method for entanglement of formation as an example of the
use of measures different from concurrence.

II. CONTINUOUS MARKOVIAN UNRAVELINGS

We study the entanglement dynamics in open quantum
systems which are weakly coupled to large environments
and follow a Markovian dynamics dictated by an evolution
equation of the Lindblad form [32]:

ρ̇ = − i

�
[H,ρ] −

L∑
k=1

D[Jk]ρ. (1)

Here, the unitary dynamics generated by the system Hamilto-
nian H is accounted for in the first term on the right-hand side,
while the effects of the environment on the system state ρ are
included through

D[Jk]ρ ≡ JkρJk − 1
2 (J †

k Jkρ + ρJ
†
k Jk),

with Lindblad operators Jk—which we lump together as
a vector J = (J1, . . . ,JL)T hereafter—fixed by the specific
coupling between system and environment.

The separation of time scales implied in the above master
equation means that for this kind of system the environment
can be continuously measured for times much shorter than
any characteristic times of the system. Assuming that such
a continuous monitoring scheme of the environment is im-
plemented with perfect efficiency, the measurement record
obtained in this way yields information about the system.
Ignore this record, and the disregarded information implies
that a pure state of the system is transformed into a statistical
mixture [33,34] with a time evolution given by the master
equation (1). If, on the other hand, one does take note of
the outcomes of the measurements, then the state of the
system immediately after measurement is again pure, changing
stochastically and conditioned on the measurement outcomes.

In the latter case the evolution of the system, induced by
the monitoring, describes a quantum trajectory on the system
Hilbert space [17,35–38]. Both procedures are reconciled by
noting that at a given time the system unconditional state ρ

is recovered upon averaging the conditioned state |ψc〉 over
an ensemble of independent realizations of the stochastic
quantum trajectories,

ρ(t) = E[|ψc(t)〉〈ψc(t)|],
with E[·] denoting the ensemble average. Since in this
manner at each instant in time a pure-state decomposition
of the density matrix of the system is obtained, we say that
the quantum trajectories unravel the master equation. The
existence of a plurality of unravelings is a remarkable feature
of this approach, which is in correspondence with the many
different ways in which the environment can be continuously
measured [17] and lies at the heart of our work.

In this paper we concentrate on diffusive unravelings
[36–39], however, our methods can be implemented for all
other kind of unravelings. In its Itô form, the nonlinear stochas-
tic equation, representing a general diffusive unraveling and
determining the evolution of the conditional state |ψc〉, is

|dψc〉 = |v(ψc)〉dt + dξ †|f(ψc)〉. (2)

The explicit form of the drift and diffusive amplitudes is,
respectively,

|v(ψc)〉 =
[
− i

�
H − 1

2

(
J†J + 〈J†〉c〈J〉c − 2〈J†〉cJ

)] |ψc〉,

(3a)

|f(ψc)〉 = (J − 〈J〉c)|ψc〉, (3b)

where the expectation values 〈O〉c for any operator O are taken
with respect to the conditional state |ψc〉, and † represents
the transpose (T) of the vector and Hermitian adjoint of
its components. The stochastic nature of the time evolution
is incorporated in the noise term through the vector dξ =
(dξ1, . . . ,dξL)T, composed of infinitesimal complex Wiener
increments [40]. The random process dξ has vanishing
ensemble average, E[dξ ] = 0, with correlations

dξdξ † = Idt, dξdξT = udt, (4)

where I is the identity matrix and u is an L × L complex
symmetric matrix. Physical choices of u are restricted by the
condition that the 2L × 2L correlation matrix R for the real
vector (Redξ ,Imdξ )T,

R ≡ dt

2

(
I + Reu Imu

Imu I − Reu

)
, (5)

is positive definite.
Associated with each unraveling is the measurement record

upon which the evolution of |ψc〉 is conditioned. It can be
written as the vector of the complex currents [38]

YT dt = 〈J†u + JT〉c dt + dξT, (6)

where each component represents a specific detection event.
A diffusive unraveling is then completely specified once the
correlation matrix u is given and the experimental setup for
measuring the environment fixed.
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Although all unravelings of the master equation are equiv-
alent, i.e., they all lead, on average, to the same unconditional
solution ρ of the master equation, we note that the access to
different unravelings of the master equation is achieved by
a proper tuning of the noise correlations. Different choices
of u lead to ensembles of quantum trajectories with distinct
statistical properties and, consequently, to pure-state decom-
positions of the unconditional state with varying statistical
features. Such differences are irrelevant for the evaluation of
expectation values of linear operators because 〈A〉 = Tr(ρA)
for all linear operators A, yet, as we show below, for the
quantification of entanglement in the ensemble of quantum
trajectories they are of the utmost significance.

III. QUANTUM TRAJECTORY AND ENTANGLEMENT
DYNAMICS

The use of quantum trajectory theory to describe the time
evolution of an open quantum system offers new paths for
the characterization of the entanglement in an ensemble of
stochastic trajectories [18,19] that goes beyond the standard
approach to the entanglement dynamics. In order to offer a
clear picture of these new ideas, in the remainder of this paper
we concentrate on two-qubit systems coupled to different kind
of environments and study their impact on the entanglement
of the system. In all cases we take a pure state as the initial
state of the dynamics, and since our primary interest is on
the decoherence effects, we assume that the qubits do not
interact directly, i.e., the system Hamiltonian only induces
local transformations. For quantification of the entanglement
in the system we chose concurrence, a widespread and well-
studied entanglement measure, which is easily computable for
the systems at hand [41]. These choices are made for the sake
of concreteness only, as our arguments and conclusions can
be extended straightaway to composite systems of arbitrary
dimensions [42] and to the use of other entanglement measures,
e.g., entanglement of formation [41] (see Sec. VI) and SL-
invariant measures [4,43,44].

A. Average concurrence

Within the quantum trajectory formalism the entanglement
associated with a particular unraveling u of the open system
dynamics is accounted for in a natural way [18,19]. Inasmuch
as along a quantum trajectory the conditional state of the
system remains pure, we utilize concurrence to quantify its
entanglement. The concurrence C(ψ) of a general pure state
of a two-qubit system |ψ〉 = ψ00|00〉 + ψ01|01〉 + ψ10|10〉 +
ψ11|11〉 is defined as the absolute value of the precon-
currence c(ψ) ≡ 〈ψ |ψ̃〉 = 2(ψ∗

01ψ
∗
10 − ψ∗

00ψ
∗
11), i.e., C(ψ) ≡

|c(ψ)| [41]. Here |ψ̃〉 = σy ⊗ σy |ψ∗〉 is the corresponding
spin-flip state, with |ψ∗〉 the complex conjugate of |ψ〉 in the
computational basis and σy the second Pauli matrix. Consider
now an ensemble of quantum trajectories corresponding to an
unraveling u of the master equation. Along each trajectory,
following the evolution of the conditional state |ψc〉, the
entanglement jumps in a random manner, giving rise, at
each time point t , to a distribution of concurrence over the
ensemble of conditional states belonging to different quantum
trajectories. The entanglement in the ensemble is then naturally

characterized by the mean of this distribution,

Cu(t) ≡ E[C(ψc(t))]. (7)

The average concurrence defined in this way depends on the
selected unraveling u of the master equation and therefore
quantifies the entanglement in the ensemble of quantum
trajectories associated with a specific way of monitoring
the environment. As a consequence, different strategies for
monitoring of the environment lead to different entanglement
contents in the system, lending versatility to the method
that is unavailable when the entanglement content of the
unconditional state is taken as the fundamental quantity
characterizing the ensemble entanglement. This, as we show
below, can be used to approach a variety of entanglement
central issues.

B. Average concurrence dynamics

With our choice of the average concurrence Cu to character-
ize the entanglement in an unraveling of the master equation,
we now turn to the description of its time evolution. For a given
unraveling u of the master equation, the dynamical equation
for the concurrence change dC(ψc) along a single quantum
trajectory follows from the stochastic evolution equation (2),
for the conditional system state (see Appendix A),

dC(ψc) = V (ψc,u)dt + Re[dξ †F(ψc)]. (8)

The explicit dependence on the unraveling of the open
dynamics is displayed in the deterministic term amplitude,

V (ψc,u) = −Re

[
c(ψc)

C(ψc)

(
〈J̃†J〉c − 1

c(ψc)
|〈̃J〉c|2

+ c(ψc)

C(ψc)2
〈J̃T〉cu∗〈̃J〉c −

∑
kl

〈J̃kψc|Jlψc〉u∗
kl

)]
,

(9)

with the presence of the conjugate matrix u∗. As expected, for
noninteracting particles the effects of the local Hamiltonians
on the entanglement evolution vanishes. The noise term
amplitude, in contrast, is independent of the unraveling:

F(ψc) = c(ψc)

C(ψc)
(〈̃J〉c − c(ψc)∗〈J〉c). (10)

To simplify the notation, in both equations above we have
introduced 〈Õ〉c ≡ 〈ψ̃c|O|ψc〉 for any operator O.

The entanglement evolution in the ensemble of trajectories
generated by a particular way of gathering information from
the environment, as described by Cu(t), then follows the
dynamical equation

dCu

dt
= E[V (ψc,u)], (11)

obtained after the ensemble average of Eq. (8). This evolution
law for the average concurrence is the central result of
this paper, providing a complete characterization of the
entanglement evolution in an open quantum system being
continuously monitored.

From the form of the drift term, (9), it is apparent that
Eq. (11) is not, in general, a closed dynamical equation, but its
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solution entails the integration of a set of coupled equations
involving other system observables. The number and nature of
these relevant quantities for the determination of the ensemble
entanglement evolution depend on the particularities of the
system at hand and the environment measurement scheme
used. It is remarkable, however, that within our approach they
can be identified and a complete closed system of equations
constructed whose solution yields the time evolution of the
system entanglement.

In the next sections we turn to the application of the
previously developed formalism and illustrate its potential for
approaching different aspects of entanglement dynamics in
composite systems. For this we study a collection of simple, yet
not trivial, exemplary two-qubit systems coupled to different
kinds of environments.

IV. LOCAL ENVIRONMENTS AND LOCAL DETECTION

In commonly encountered quantum information protocols
the parties involved are distant from each other and have
access only to their own part of the system, which in turn
is coupled to a local reservoir. Information about the system
can then be read from the environments only through local
measurements. As we now show, for this class of systems
Eq. (11) alone completely determines the time evolution of
the system entanglement.

In a system of two noninteracting qubits satisfying the setup
just stated, the effects of the baths are described by local
Lindblad operators of the form Jk = (Jk ⊗ I) or Jk = (I ⊗ Jk),
acting, respectively, on the first or second qubit. Additionally,
within the quantum trajectory approach, local measurements
on these independent environments are accounted for by
restricting the possible unravelings to ukl = 0 if Jk and Jl

are operators acting on different qubits, i.e., considering
measurement records of local currents only [cf. Eq. (6)]. Under
these conditions Eq. (11) reduces to (see Appendix A)

dCu

dt
= −k(u)Cu,

with the unraveling dependent function

k(u) = 1

2

∑
k

[
TrC2 (J †

k Jk) − 1

2
|TrC2Jk|2

]

+ 1

2
Re

(∑
kl

u∗
kl

[
TrC2 (JkJl) − 1

2
TrC2JkTrC2Jl

])
.

(12)

This linear dynamical equation can be immediately integrated
to obtain

Cu(t) = e− ∫ t

0 dt ′k(u(t ′))C0,

which provides a thorough description of the entanglement
time evolution in the system when C0 ≡ C(ψ(t = 0)) is the
initial-state concurrence.

Hence, for systems coupled to local environments and sub-
ject to local measurements the average concurrence dynamics
depends solely on the concurrence of the initial state and
is completely determined by the function k(u) alone, which
contains all the information about the unraveling. This clearly

indicates that in the search for effective measurement strategies
aimed at broad-ranging, i.e., state-independent, effects on the
entanglement dynamics, e.g., entanglement protection, local
monitoring schemes may have the upper hand over other
possible approaches.

In general, local monitoring setups may lead to a k(u) which
explicitly depends on time, as would be the case if, for example,
unravelings with adaptative noise [38,39,45] were considered.
Most cases of interest, however, comprise situations in which
k(u) is independent of time and, consequently, the entangle-
ment evolution reduces to an exponential dynamics [21],

Cu(t) = e−k(u)tC0, (13)

where the rate k(u) is fixed by the monitoring scheme.
This prospect of control over entanglement evolution in the
system with the proper choice of measurement schemes on
the environment widens the spectrum of applications of our
formalism, from providing easy-to-evaluate bounds for the
entanglement of the unconditional state (see Sec. V) to offering
local measurement schemes to perfectly shield the system
entanglement from the detrimental effects of decoherence, as
described in the next section.

A. Entanglement protection

The use of quantum trajectory schemes based on local
monitoring of the environments for entanglement protection
in systems of two qubits was first proposed in Ref. [21] for
the specific cases of dephasing and infinite-temperature envi-
ronments. For the latter kind of noisy channel the protection
scheme was later extended to an arbitrary number of qubits in
Ref. [28]. In this section we considerably expand this set of
examples by using our theory to identify general conditions
on two-qubit systems which would allow such protection
strategies to be applied.

From the dynamical equation (13), it is evident that
local unravelings yielding k(u) = 0 fully protect the average
concurrence in the system at all times, i.e., Cu(t) = C0 for all
t . Accordingly, requirements on the environments leading to
the aforementioned unravelings can be found by looking at the
definition of k(u). A closer inspection of Eq. (12) is enough
to convince oneself of the following statement: For systems
of two noninteracting qubits, coupled independently to local
noisy channels characterized by Hermitian Lindblad operators,
i.e., J

†
k = Jk , local continuous monitoring of the environment

corresponding to the unraveling

u
p
kl = −δkl (14)

perfectly protects the entanglement in the system for all
initial states; that is, a local continuous measurement of
the environment following the prescription given by up

effectively counteracts the deleterious effects of decoherence
on the system entanglement, preserving it despite the system’s
coupling to its surroundings.

Even though the argument for the protection protocol was
made at the level of the average concurrence, its consequences
actually reach deep down to the single-trajectory level. Indeed,
for the protective unraveling up the stochastic change in the
concurrence (8) along a single trajectory reduces to (see
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Appendix A)

dC(ψc) =
∑

k

Re(dξ ∗
k )

(
1

2
TrC2Jk − 〈Jk〉c

)
C(ψc), (15)

where we have used that k(up) = 0 and Jk is a Hermitian
operator, and hence the expression in parentheses is real.
Note now that for unraveling (14) the noise correlations (4)
become dξkdξ ∗

l = δkldt and dξkdξl = −δkldt and, therefore,
define a purely imaginary noise dξk = idWk with real Wiener
increments satisfying dWkdWl = δkldt . As a consequence, the
right-hand side of (15) vanishes and we obtain that along
single trajectories belonging to unraveling up the system
concurrence does not change, dC(ψc) = 0, but remains equal
to the concurrence of the initial state C0, i.e., entanglement is
protected. This stronger result, besides providing an obvious
explanation for the average concurrence protection, offers
insight into the unique dynamics of the ensemble of quantum
trajectories of the protective unraveling: Along any of these
trajectories the conditional state of the system jumps from
one pure state to another in a stochastic manner, yet all of
the states along the trajectory possess the same entanglement
as the initial state. Furthermore, since the protection takes
place on a single-trajectory basis, the entanglement dynamics
becomes deterministic and the distribution of entanglement
over the whole ensemble of trajectories becomes localized.
An illustration of this conclusion is given in Fig. 1.

It is illustrative at this point to look at the currents (6) for the
protective unraveling, as they provide the record of outcomes
conditioning the state evolution. Using definition (14) for the
unraveling they become imaginary,

Ykdt = idWk,

and consist of purely white noise with average E[Yk(t)] = 0.
This comes about because up selects the measured quadrature
of each of the Jk as the one with instantaneous vanishing mean
value and therefore the currents provide no information about
the system observables but are a record of the measurement
noise, which is perfectly correlated with the reservoir noise
inducing decoherence in the system [46].

Noisy local channels satisfying the required conditions for
our entanglement protecting protocol include not only the
already mentioned dephasing channel, with Jdph = √

γ σ+σ−,
and the infinite temperature bath, with J∞ = √

γ (σx,σy)T,
but also, for example, the depolarizing channel given by
Jdp = √

γ (σx,σy,σz)T [47]. Far from limiting the scope of the
protocol, this list of fundamental exemplary baths [1] opens
the way for the formulation of more sophisticated strategies
for entanglement protection, involving, for example, the use of
engineered environments, as shown in Ref. [28]. Finally, note
that since the protection is of a local character, not only can
the two qubits be coupled to different kinds of environments
but also, depending on the nature of the environments and
the available local resources, partial protection can still be
achieved, a situation illustrated in Fig. 1.

It is noteworthy that since our entanglement protecting
protocol is deeply rooted in the quantum trajectory theory,
it is independent of the system size and can be developed to
cover general composite systems with an arbitrary number of
parties and dimensions [42].

FIG. 1. (Color online) Entanglement protection for a 2 × 2 sys-
tem with its first qubit incoherently coupled to a phase damping
environment and its second to a thermal bath at infinite temperature.
We assume that the coupling strength to both baths lead to the same de-
cay rate γ . Initially the system is prepared in the entangled pure state
|ψ(0)〉 = (|00〉 − |01〉 + i|10〉 + i

√
5|11〉)/√8 with C0 = 0.809. If

the local unraveling up is implemented for the continuous monitoring
of each of the environments, then the entanglement in the system
is protected along each single quantum trajectory, the concurrence
distribution becomes localized, and the average concurrence Cup

remains constant for all times (solid line). If, however, the protection
is only partial, implementing up for the monitoring of the phase

damping channel only, while u = (−1 0
0 1

)
is used for the thermal

bath, the average concurrence decays exponentially with Cu(t) =
C0e

−2γ t (dashed line), but still more slowly than the unmonitored
entanglement. Additionally, concurrence fluctuates randomly on
the ensemble of trajectories. At each time the probability density
distribution of concurrence is depicted in the background (darker
regions correspond to higher densities). For times shorter than the
characteristic time of the system entanglement ∼ 1/2γ , most of the
trajectories exhibit an increase in their concurrence, i.e., entanglement
creation, a situation that is reversed for longer times when states in
most of the trajectories become separable.

V. UNMONITORED STATE ENTANGLEMENT
ESTIMATION

A. Mixed-state entanglement

The extension to mixed states of most of the
well-established entanglement measures for pure states—
concurrence included—is built over the pure-state decompo-
sitions of mixed states: ρ =∑i pi |ψi〉〈ψi |, with non-negative
weights pi and

∑
i pi = 1. For a chosen entanglement measure

E and a given decomposition a sensible approach to the
quantification of entanglement would be by the ensemble
average Ē(ρ) =∑i piE(ψi). However, as it turns out, the
way to write a given mixed state as a mixture of (in general
nonorthogonal) pure states is not unique and can be achieved
in infinitely many ways. Bona fide entanglement measures
for mixed states lift this arbitrariness in different ways, for
example, by stipulating the entanglement E(ρ) as the infimum
over all possible averages Ē(ρ) [41,48,49], at the cost of
introducing a counterintuitive definition whose evaluation very
rapidly turns into a daunting numerical problem for systems
larger than two qubits. This scenario becomes even worse if a
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description of the time evolution of entanglement is required,
for which almost no general results exist so far [2,4]. Here,
with the help of the quantum trajectory approach we face
these obstacles and partially overcome them, displaying the
capability of the method to render good analytical as well as
computationally cheap approximations to the entanglement of
the unconditional state in open quantum systems.

To quantify the entanglement of the unmonitored state ρ

we select two entanglement measures for mixed states: the
concurrence [41,48],

C(ρ) = inf
{pi ,|ψi 〉}

∑
i

piC(ψi) , (16)

and the concurrence of assistance,

CA(ρ) = max
{pi ,|ψi 〉}

∑
i

piC(ψi) , (17)

the latter assessing the maximum possible average entangle-
ment that an assistance party can create between the other
parties by reducing the state [50,51]. Both measures are
uniquely defined through an optimization over all possible de-
compositions into pure states of the mixed state ρ: concurrence
by minimizing and concurrence of assistance by maximizing
the mean concurrence of the decompositions. For the case
of 2 × 2 systems analytical expressions for both expressions
exist [41,51], which allows us to assess the quality of our
approximations.

B. Physically realizable pure-state ensembles

One of the main features of the quantum trajectory method
is the control it offers over the kind of continuous measurement
performed on environments to yield varying values of Cu(t).
We take advantage of this flexibility in order to look for
unravelings which generate ensembles of trajectories extrem-
izing the values of the average concurrence and provide an
estimation of the unconditional state concurrence C(ρ(t)). For
this we proceed from the equation of motion (11), where it is
apparent that a necessary condition for the optimal unraveling
u+ (u−) that minimizes (maximizes) Cu(t) in a continuous
way is that it has to minimize (maximize) the average change
dCu. We make use of this condition to determine u+ (u−) by
optimizing the parameters which define u.

Although at this point the way to approach the quantification
of the mixed-state entanglement within our method seems
natural [19,20], its success, as we now explain, is limited by
the nature itself of the quantum trajectory ensembles. Note
that in the mixed-state entanglement measures (16) and (17)
the optimization is taken over all possible decompositions into
pure states, regardless of the way they are generated. The con-
tinuous measurement process, however, imposes constraints
on the ensembles of states it gives rise to, which represent
the unconditional system state at any given time [52]. These
so-called physically realizable decompositions then form a
subset of all possible pure-state decompositions in which it
is not a priori clear that the optimal decompositions, in the
sense of (16) and (17), are contained. As a consequence, the
extent of our results is tempered, and we can only affirm in
general that C(ρ(t)) � Cu+(t) and CA(ρ(t)) � Cu−(t). This
notwithstanding, in the following sections we demonstrate in

experimentally relevant examples of two-qubit systems that
these bounds provide tight approximations—in some cases
even exact results—and offer a computable and reliable profile
of the unconditional entanglement dynamics in quantum open
systems.

C. Dephasing environments

As the first example we apply the quantum trajectory
scheme to the entanglement dynamics of a two-qubit system
in which each of the qubits is coupled to its own, independent
dephasing channel. Hence, the subsystems do not exchange
excitations with their environments, but lose coherence due
to elastic scattering. The Lindblad operators describing the
effects of the channels on the system are

J = √
γ (σ+σ− ⊗ I,I ⊗ σ+σ−)T,

where σ+ and σ− are, respectively, the excitation and de-
excitation operators acting on a single qubit, and γ the
dephasing rate, which we assume to be equal for both qubits.
Unravelings of the master equation describing the open-system
dynamics are then specified by a 2 × 2 matrix u.

After explicit evaluation of Eq. (11), the dynamical equation
for the average concurrence in the system reads

dCu

dt
= −γ

2
Cu

− γ

2
Re

(
E

{
c(ψc)

C(ψc)
[ψc01ψc10(u∗

11 + u∗
22 − 2u∗

12)

−ψc00ψc11(u∗
11 + u∗

22 + 2u∗
12)]

})
, (18)

in which different choices of u lead to diverse behaviors for
the system entanglement.

For local monitoring of the environment, i.e., u12 = 0, the
evolution of the average concurrence becomes exponential [cf.
Eq. (13)] with rate

k(u) = γ

4
Re(2 + u∗

11 + u∗
22) .

Since in this case the dynamics is independent of the initial
state, this path already offers two general and simple-to-
evaluate bounds for the system unconditional entanglement.
The first choice, u = I, gives the best exponential upper bound
for the concurrence evolution of ρ:

C(ρ(t)) � C0e
−γ t .

This result coincides with recently proposed bounds for
entanglement dynamics [2,4], and its performance was tested
in Ref. [31] for short times. For the second choice, u = −I,
one gets k = 0 and entanglement in the system is protected,
setting a lower bound for the concurrence of assistance of ρ,

CA(ρ(t)) � C0.

Remarkably, this plain bound already shows that the concur-
rence of assistance in the system never vanishes: a conclusion
that, of course, applies to all systems discussed in Sec. IV too.

Tighter bounds for the unconditional-state entanglement
are found if nonlocal measurements of the environment are
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implemented. Then, with no significant effort, it is verified
that the choice of nonlocal unravelings,

u±
11 = u±

22 = ± 1
2eiθc (eiθa − eiθb ), (19a)

u±
12 = ∓ 1

2eiθc (eiθa + eiθb ), (19b)

with θc = arg[c(ψc)], θa = arg(ψc01ψc10), and θb =
arg(ψc00ψc11), yields extreme values for (18), resulting
in the evolution equation

dCu±

dt
= −γ

2
{Cu± ± E[X(ψc)]}

for the average entanglement, where we have intro-
duced the conditional-state function X(ψc) = 2(|ψc01ψc10| +
|ψc00ψc11|). Here, the solution to the equation with a plus
sign provides an upper bound for the concurrence of the
unconditional system state, while the solution of the equation
with a minus sign sets a lower bound for its concurrence of
assistance. The system of coupled equations is completed with
the equation of motion for E[X(ψc)], which we evaluate in
Appendix B:

d

dt
E[X(ψc)] = ∓γ

2
{Cu± ± E[X(ψc)]}. (20)

The solution for the average concurrence in these unravelings
follows after integration of the above equations, leading to

Cu±(t,ψ0) = max
{
0, 1

2C0(1 + e−γ t ) ∓ 1
2X0(1 − e−γ t )

}
,

(21)

where the maximum is taken since Cu � 0 is an average
over non-negative quantities and we set X0 = X[ψ(0)]. The
above result provides analytical, nontrivial bounds for the
entanglement of the unconditional state at all times.

These bounds display a richer dynamics than the expo-
nential bounds previously considered and closely follow the
overall behavior of the exact dynamics (see Appendix C). The
dependence of Cu± on the initial state is a generic feature
of entanglement dynamics in systems in which more than
one subsystem is coupled to a noisy channel, reflecting the
varying effects of decoherence on different classes of states. In
particular, for initial pure states which are not of full dimension
in the system Hilbert space, i.e., for which one or more of its
components ψij vanish, C0 = X0 holds, and the dynamics sim-
plifies, resulting in the bounds Cu+ = C0e

−γ t for concurrence
and Cu+ = C0 for concurrence of assistance, which match the
exact dynamics of the unconditional-state entanglement. Thus
for these states, which, among others, include all of Bell’s
maximally entangled states, the concurrence vanishes only
asymptotically in time, while the concurrence of assistance
remains constant and equal to the concurrence of the initial
state at all times. These behaviors, however, are not generic
for all initial states, as the long-time limit of Cu± reveals.
For general initial states C0 � X0 holds, and hence (21)
predicts the existence of a separation time ts < ∞ after which
Cu+(t � ts) = 0 and the entanglement in the systems has
disappeared, indicating that ρ(t � ts) is a separable state. The
lower bound Cu− for the concurrence of assistance displays
yet a different evolution: It increases monotonically to its
asymptotic value Cu−(t → ∞) = 1

2 (C0 + X0), which, for a
generic initial state, indicates the generation of entanglement

0.0

0.2

0.4

0.6

0.8

1.0

C
0

γt 0.5

0.0

0.2

0.4

0.6

0.8

1.0
γt 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C ρ upper bound

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C ρ upper bound

FIG. 2. (Color online) Concurrence dynamical upper-bound per-
formance. The entanglement evolution of an ensemble of 10 000
initially pure states of a 2 × 2 system coupled to phase damping
channels is depicted for two times. In the upper panels, points
indicate the concurrence of the final-state C(ρ) in units of the upper
bound Cu+ versus the initial-state concurrence C0. Darker regions
contain more data points. Lower panels display the cumulative density
function (CDF) (solid blue line) corresponding to the probability
density function in the upper panels. The CDF corresponding to the
exponential bound (dashed black line) is also shown for comparison.

signaled by the growth of its concurrence of assistance with
time.

The overall performance of bounds Cu± approximating
the exact concurrence C(ρ(t)) and concurrence of assistance
CA(ρ(t)) of the unconditional system state can be inferred
from Figs. 2 and 3, respectively. Since the obtained bounds
can be evaluated for any initial pure state, we follow the
entanglement dynamics of an ensemble of random uniformly
distributed pure states in the Hilbert space [53], in this way
avoiding any bias in the numerical sampling. Figure 2 shows
that the upper bound gives a very good approximation for
all initial states at all times. For highly entangled states this
is particularly true for short times, as the density of points
in the upper planes indicates. The capability of the bound
to detect the separability of states at finite times guarantees
its good performance also for longer times, as shown in the
right panels, where a concentration of points for initially low
entangled states that have already became separable is clearly
seen. These conclusions are quantitatively supported by the
cumulative distribution function displayed in the lower panels
(solid blue line), in which it can be recognized that even at
long times the error for almost all states remains below 20%.
Results for the exponential bound are discussed in Ref. [31]
and are shown (dashed black line) for comparison. The good
quality of the approximation to the concurrence of assistance
provided by our lower bound is illustrated in Fig. 3, where
the behavior of highly entangled states is especially well
reproduced. Its accuracy diminishes slowly with time as the
entanglement in the system increases to eventually reach its
long-time asymptotic value, as quantitatively shown in the
lower panels.
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FIG. 3. (Color online) Concurrence-of-assistance dynamical
lower-bound performance. The entanglement evolution of an
ensemble of 10 000 initially pure states of a 2 × 2 system coupled
to phase damping channels is depicted for two times. In the upper
panels, points indicate the concurrence of assistance of the final-state
CA(ρ) in units of the lower bound Cu− versus the initial-state
concurrence C0. Darker regions contain more data points. Lower
panels display the cumulative density function (CDF) (solid blue
line) corresponding to the probability density function in the upper
panels. The CDF corresponding to the constant—entanglement
protecting—bound (dashed black line) is also shown for comparison.

D. Thermal bath

In this section we consider a different two-qubit system, in
which each of the qubits is coupled to its own, independent
thermal bath exchanging excitations with the environment. The
Lindblad operators accounting for the action of the baths on
the system are

J = (
√

γ−σ− ⊗ I,I ⊗ √
γ−σ−,

√
γ+σ+ ⊗ I,I ⊗ √

γ+σ+)T,

with emission γ− = γ (n̄ + 1) and absorption γ+ = γ n̄ rates,
where γ is the coupling amplitude to the baths and n̄ is the
mean number of excitations in the thermal baths, which we
assume are kept at the same temperature. A 4 × 4 matrix u

specifies the unravelings in this system.
The time evolution equation of the system average concur-

rence is found after explicit evaluation of Eq. (11):

dCu

dt
= −(γ− + γ+ + √

γ−γ+(u∗
13 + u∗

24))Cu

+ 2Re

(
E

{
c(ψc)

C(ψc)

[
γ−ψ2

c11u
∗
12 + γ+ψ2

c00u
∗
34

−√
γ−γ+

(
ψ2

c10u
∗
14 + ψ2

c01u
∗
23

)]})
. (22)

In the following we consider the dynamics of Cu in two limiting
systems.

1. Zero-temperature bath

In the zero-temperature limit n̄ = 0 and thus the envi-
ronment becomes an amplitude damping channel into which
excitations in the system decay at rate γ− = γ , while γ+ = 0.

Unravelings of the system are now parameterized by the upper
left part of u only. The equation of motion (22) for the average
concurrence reduces to

dCu

dt
= −γCu + 2γ Re

{
E

[
c(ψc)

C(ψc)
ψ2

c11u
∗
12

]}
, (23)

which depends on the unraveling only through the nonlocal
correlations u∗

12.
Local monitoring of the environments implies u12 = 0 and

leads to an exponential decay of Cu, yielding the bounds

C(ρ(t)) � Cu(t) = C0e
−γ t � CA(ρ(t)) (24)

for the concurrence and concurrence of assistance of the
unconditional system state.

The dynamical evolution of Cu can nevertheless be maxi-
mized or minimized if nonlocal measurements are performed.
Simple inspection of Eq. (23) shows that the change in the
mean concurrence is extreme for the choice

u±
11 = u±

22 = 0, (25a)

u±
12 = ∓eiθopt (25b)

of unraveling, with θopt = arg[c(ψc)ψ2
c11]. For these unravel-

ings the equation of motion reads

dCu±

dt
= −γCu ∓ 2γE[|ψc11|2], (26)

which, after noting that on average the population in state
|11〉 is exponentially damped, E[|ψc11|2] = |ψ11(0)|2e−2γ t ,
reduces to the deterministic equation for the average concur-
rence,

dCu±

dt
= −γCu ∓ 2γ |ψ11(0)|2e−2γ t , (27)

with solutions that provide the bounds [20,22]

Cu±(t,ψ0) = max{0,e−γ t [C0 ∓ 2|ψ11(0)|2(1 − e−γ t )]}
(28)

for the unconditional entanglement dynamics.
The striking scenario of unraveling u+ was thorough

studied in Ref. [20], where it was proved that this upper
bound coincides with the concurrence of the unconditional
state C(ρ(t)) = Cu+(t) and therefore presents an accurate
description of the entanglement dynamics in the system. Here,
we turn to the analysis of the lower bound for concurrence of
assistance dispensed by unraveling u−.

The lower bound Cu− reproduces all the qualitative features
of the concurrence of assistance. In particular, it also encom-
passes the hallmark of the entanglement dynamics in this
system, that is, its behavior clearly distinguishes between two
classes of initial states [see Appendix C for exact expressions
for CA(ρ(t))]. For initial states for which C0 < 2|ψ11(0)|, Cu−

increases for a time until it reaches a maximum, after which it
exponentially decays to 0. The peculiar increase in concurrence
of assistance for short times is also observed for some initial
separable states belonging to this class of states, signaling the
creation of entanglement within this unraveling. For all other
states Cu− simply follows an exponential decay.

That Cu− approximates CA(ρ(t)) well in this system can be
assessed with the help of Fig. 4, in which the entanglement

012338-8



AVERAGE ENTANGLEMENT DYNAMICS IN OPEN TWO- . . . PHYSICAL REVIEW A 90, 012338 (2014)

1 0 1 2 1 4 1 6 1 8
0.0

0.2

0.4

0.6

0.8

1.0

C
0

γt 0.5

0.0

0.2

0.4

0.6

0.8

1.0
γt 1.5

1.0 1.2 1.4 1.6 1.8
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CA ρ lower bound

C
D

F

1.0 1.2 1.4 1.6 1.8
0.2

0.4

0.6

0.8

1.0

CA ρ lower bound

FIG. 4. (Color online) Concurrence-of-assistance dynamical
lower-bound performance. The entanglement evolution of an
ensemble of 10 000 initially pure states of a 2 × 2 system coupled
to amplitude damping baths is depicted for two times. In the
upper panels the points indicate the concurrence of assistance of
the final-state CA(ρ) in units of the lower bound Cu− versus the
initial-state concurrence C0. Darker regions contain more data
points. Lower panels display the cumulative density function (CDF)
(solid blue line) corresponding to the probability density function in
the upper panels. The CDF corresponding to the exponential bound
in Eq. (24) (dashed black line) is also shown for comparison.

evolution for a uniform distribution of initial pure states is
depicted. The lower bound provides a very good approxima-
tion for highly entangled states and short times. Even though,
for times of the order of the system characteristic time 1/γ ,
the distribution of points in the upper panels becomes wider,
for the large majority of states the lower bound (solid blue
line) underestimates the concurrence of assistance with an
error smaller than 20%, as shown in the lower right panel.
This good agreement is due to the aforementioned qualitative
correspondence between Cu− and CA and can be contrasted
with the results obtained using a featureless bound as the
exponential bound (24) (dashed black line), which fails to
capture the particularities of the concurrence of assistance
evolution.

2. Infinite temperature

In contrast to the previous section, where we used our
quantum trajectory formalism to build a picture of the
entanglement dynamics of a quantum open system for all
initial pure states, in this section we approach the study of
the concurrence evolution for highly entangled states. This is
a significant physical situation, since commonly implemented
protocols in quantum information relay on highly entangled
pure states for their success [54]. As proves to be the case,
for this kind of state our stochastic method offers analytically
exact results for the system entanglement evolution.

In a thermal bath at infinite temperature excitations and
de-excitations in the system take place at the same rate 	. This
limit is reached by simultaneously taking n̄ → ∞ and γ → 0

with γ n̄ = 	 < ∞. Equation (22) then takes the simpler form

dCu

dt
= −	(2 + (u∗

13 + u∗
24))Cu

+ 2	Re

{
E

[
c(ψc)

C(ψc)

(
ψ2

c11u
∗
12 + ψ2

c00u
∗
34

−ψ2
c10u

∗
14 − ψ2

c01u
∗
23

)]}
. (29)

Now, if only local measurements on the environments are
allowed, possible unravelings are restricted by the constraints
u12 = u14 = u23 = u34 = 0, and the average concurrence
evolves exponentially in time at rate [cf. Eq. (13)]

k(u) = 	Re(2 + u∗
13 + u∗

24).

It is then apparent that with a local monitoring strategy the
best bound for the system unconditional-state concurrence
(concurrence of assistance) is obtained by choosing the
unraveling with uii = 0 for i = 1,2,3,4 and u13 = u24 = 1
(u13 = u24 = −1), leading to

C(ρ(t)) � C0e
−4	t and CA(ρ(t)) � C0.

As in the case of dephasing channels before, local measure-
ments of the environment offer an exponential upper bound
for the system concurrence and a constant lower bound, with
a protective unraveling, for the concurrence of assistance.

We now focus on the entanglement dynamics of maximally
entangled states and restrict our initial states to Bell states
|
±〉 = 1√

2
(|00〉 ± |11〉) (equivalent results are obtained for

states |�±〉 = 1√
2
(|01〉 ± |10〉)). Evidently, for completely en-

tangled states the lower bound for the concurrence of assistance
offered above is exact, CA(t) = 1. Hence we proceed to the
concurrence dynamics for which better bounds are found if
nonlocal unravelings are considered. For the specified initial
states in Appendix B we show that the time evolution of the
upper bound Cu+ is given by

dCu+

dt
= −2	Cu+ − 	(1 + e−4	t ), (30)

which can be integrated without difficulty to obtain

Cu+(t) = e−2γ t (C0 − sinh(2γ t)),

showing that the state becomes separable at a finite time.
The above result is noteworthy not only because it coincides

with the known exact concurrence for the specific physical
scenario under study here [55], but also because it was obtained
without solving first the master equation for the unconditional
dynamics. Although to arrive at Eq. (30) it was necessary
to integrate the time evolution of the populations in the
system, this task demands a substantially smaller effort than the
solution of the whole unconditional dynamics. The observation
that the entanglement evolution of maximally entangled initial
states can be accurately estimate within the quantum trajectory
theory has also been reported for various other two-qubit
systems [19–21].
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VI. ENTANGLEMENT OF FORMATION AND LOCALIZED
UNRAVELINGS

Since our ideas stem from the stochastic evolution of entan-
glement along single quantum trajectories, the application of
our method employing other entanglement measures for pure
states proceeds smoothly. To illustrate this, we now use our
scheme to address the relation between Cu and the similarly
defined average entanglement of formation,

EoFu(t) ≡ E[EoF (ψc(t))],

where the entanglement of the conditional state is
obtained after evaluation of its von Neumann entropy
EoF (ψc) = −Tr(ρ(1)

c log2 ρ(1)
c ) = −Tr(ρ(2)

c log2 ρ(2)
c ), with

ρ(1)
c = Tr(2)(|ψc〉〈ψc|) and ρ(2)

c = Tr(1)(|ψc〉〈ψc|) given by the
partial trace over one of the subsystems.

For two-qubit systems, however, entanglement of formation
can be written as a function of concurrence [41],

EoF (ψc) = h
[

1
2 (1 +

√
1 − C(ψc)2)

]
, (31)

with function h(x) = −x log2 x − (1 − x) log2(1 − x), which
allows us to write its stochastic change along a quantum
trajectory as a function of the concurrence change,

dEoF (ψc) = dh

dC

∣∣∣∣
ψc

dC(ψc) + d2h

dC2

∣∣∣∣
ψc

dC(ψc)2. (32)

The Itô form of the above equation of motion is reached
after substitution of the explicit expressions for dC(ψc) and
its square dC(ψc)2. The ensemble average of the drift term
determines the equation of motion for the average measure
(see Appendix A for details):

d

dt
EoFu = E

{
dh

dC

∣∣∣∣
ψc

V (ψc,u)

+ 2
d2h

dC2

∣∣∣∣
ψc

Re[FT(ψc)u∗F(ψc) + |F(ψc)|2]

}
.

(33)

Due to its explicit dependence on unraveling, continuous
measurements of the environment can be manipulated in order
to generate ensembles of quantum trajectories exhibiting a
desired entanglement property, which, in this case, may be
better quantified by the entanglement of formation, e.g., hidden
entanglement [23,24].

While it is then possible to find unravelings that, for exam-
ple, minimize the average of a particular entanglement measure
but not of another, it becomes of interest for the scheme
proposed in this paper to be able to identify unravelings for
which the attributes they imprint in the system entanglement
are independent of the entanglement measure. Specifically, for
the case at hand and assuming local environments, we would
like to determine under what conditions unravelings ū exist for
which relation (31) can be extended to the average measures;
that is,

EoFū(t) = h
[

1
2

(
1 +

√
1 − Cū(t)2

)]
. (34)

Observe that the above statement is true if EoFū(t) is a
solution of the equation of motion (33). Thus, after direct

substitution, and comparing terms with derivatives of h of the
same order, we arrive at the equations

dh

dC

∣∣∣∣
Cū

E[V (ψc,ū)] = E

[
dh

dC

∣∣∣∣
ψc

V (ψc,ū)

]
(35a)

and

FT(ψc)ū∗F(ψc) + |F(ψc)|2 = 0, (35b)

which provide the conditions to determine ū. Here, to write
the left-hand side of the first equation we used the equation
of motion, (11), to substitute the time derivative of the
average concurrence, while the second equation results from
demanding that the term proportional to the second derivative
of h in Eq. (33) vanishes. As we now demonstrate, both
equations are satisfied if the noise correlations are adaptively
chosen as

ū = − Fk(ψc)

F ∗
k (ψc)

δkl . (36)

That this choice of ū is a solution of (35b) is evident. To
verify that it also provides a solution of (35a) demands a little
more effort. Consider for a moment the stochastic evolution
of concurrence along single trajectories given by (8) when
unraveling ū is implemented. Since the environments are local,
the diagonal form of ū implies that the environment measure-
ment setup is local too, and therefore the drift term factorizes
V (ψc,ū)dt = −k(ū)C(ψc)dt . In addition, as can be verified
by inspecting the correlation relations (4) the noises corre-
sponding to ū are given by dξk = i(Fk(ψc)/F ∗

k (ψc))1/2dW

with real Wiener increments satisfying dWkdWl = δkldt ,
and hence the noise term Re[dξ †F(ψc)] vanishes. As a
result, the equation of motion (8) reduces to dC(ψc)/dt =
−k(ū)C(ψc), and the time evolution of concurrence along
single trajectories of unraveling ū is no longer random but
deterministic, and thus the same for all trajectories in the
ensemble. Consequently, the average concurrence is trivially
computed to be Cū(t) = C(ψc), and in general for any function
of concurrence f (C(ψc)) = f (Cū) holds. In particular, for
the derivative of h with respect to concurrence we ob-
tain dh/dC|ψc

= dh/dC|Cū
, showing that (36) is a solution

of (35a) too.
Our findings are properly illustrated in the following

example. In a 2 × 2 system coupled to amplitude damping
channels and initially prepared in the maximally entangled
state |�±〉 = 1√

2
(|01〉 ± |10〉), the evolution of the average

concurrence is given by Cu(t) = e−γ t , which not only is
independent of the unraveling, but also coincides with the
unmonitored concurrence evolution [cf. Eq. (28)]. That is,
for this particular physical setup, all possible ways in which
the environment can be continuously measured yield the
same value for the average concurrence in the system,
yet in the distinct ensembles of trajectories generated the
fluctuations of entanglement differ, as can be demonstrated if,
instead of concurrence, one uses entanglement of formation
as the entanglement measure. Indeed, the only unraveling
for which the average entanglement of formation exactly
reproduces the evolution of the entanglement of formation
of the unconditional state ρ, and (34) is satisfied, is ū. For
all other unravelings one finds that the average entanglement
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of formation provides an upper bound to the unconditional
entanglement evolution EoF (ρ(t)) � EoFu(t).

More significantly, however, than the proof of relation (34)
is that along the way we have shown a unique feature of
unraveling ū: in its ensemble of trajectories concurrence does
not fluctuate, but localizes along its mean value with a zero
width distribution. This observation, based on the analysis of
Eq. (8), goes beyond concurrence or entanglement of forma-
tion and constitutes a general statement about entanglement
in the system independently of the entanglement measure.
Note, for example, that localization is an essential property
of the entanglement protecting protocol proposed in Sec. IV
and is, therefore, independent of the entanglement measure.
The existence of such localized unravelings gives way to
interesting applications of our method, both experimentally
and theoretically, as all the information about the entanglement
evolution in the system is encoded in a single trajectory
and therefore single realizations of the system are sufficient
for a comprehensive analysis of it [20,44]. Besides, the
adaptability of the method to different entanglement measures
complements its already established adjustability regarding
the choices of unravelings, enhancing its overall strength
as a tool for the characterization of entanglement time
evolution.

VII. SUMMARY

In this work we have presented a thorough implementation
of the quantum trajectory theory for the description of the
entanglement time evolution in a Markovian open quantum
system made of two qubits. To characterize the entangle-
ment in the ensemble of trajectories unraveling the system
dynamics we used the average concurrence and derived for
it a deterministic equation of motion, providing in this way
a comprehensive description of the entanglement evolution
in the system. Remarkably, this complete picture is achieved
without having to specify the state of the system beyond its
initial configuration, i.e., for times longer than the initial
time, conferring the method an efficiency that the usual
approaches to the study of the entanglement dynamics in
open systems lack. The most significant contribution of
our proposal, however, is its versatility, which stems from
essential dynamical consideration of the quantum trajectory
formalism: Different measurement schemes use to monitor
the environment account for different unravelings of the
system dynamics and, consequently, generate ensembles of
trajectories with distinct statistical properties. In particular,
the average concurrence in the system depends on the ways
in which the environment is being continuously monitored
and therefore, in this sense, can be controlled. We exploited
this flexibility to address two issues of relevance in quantum
information with our method: entanglement protection and
entanglement estimation.

Regarding the first point, for open two-qubit systems in
which the effects of the environments are described by local,
Hermitian Lindblad operators, we identified the existence
of a local unraveling leading to perfect protection of the
entanglement in the system. Notably, for this protective
unraveling not only does the average entanglement not change
with time, remaining equal to its initial value, but it does so

because the entanglement is protected on a single-trajectory
basis despite the stochastic evolution of the state along it.
As for the entanglement estimation, we demonstrated the
capability of our method to provide analytical tight bounds
for the concurrence and concurrence of assistance for the
unmonitored dynamics of the system in various relevant
cases, including coupling to dephasing and thermal noisy
channels. Our bounds work for all times and are efficiently
found without having to solve the unmonitored dynamics
for the system state. Finally, we have also discussed the
independence of our results from the choice of entanglement
measure and, in the course of this, showed the existence of
localized unravelings, that is, unravelings for which, along
single trajectories, the entanglement evolves smoothly with
time despite the stochastic evolution of the system conditional
state. Strikingly, in these cases, a single trajectory offers a
complete description of the entanglement dynamics in the
system [20].

To conclude, it is worth stressing that our method is not
restricted by the small size of the system we used to illustrate it
or by our choice of concurrence as the entanglement measure.
Throughout the paper we have made a conscious effort to
clearly lay the ground work that allows the extension of
our results to more general physical situations, comprising
systems of larger dimensions and numbers of parties, as well
as different entanglement measures [44]. Implementations of
our ideas to non-Markovian systems [26,27], where not even
a dynamical equation for the unconditional system state is
available, are pertinent. In the case of entanglement protection,
nonefficient detection is a relevant issue that must be addressed
in future work [42].
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APPENDIX A: ENTANGLEMENT INCREMENT

1. Concurrence increment

In this Appendix we calculate the concurrence increment
along a quantum trajectory given by (8). We start by noting
that for any complex function of the system conditional state,
g = g(ψc), the Itô form of the change of its norm can be written
in terms of the change dg∗ as

d|g| = 1

|g|Re (g dg∗) + 1

2|g|3 [Im(g dg∗)]2. (A1)

In particular, we consider the preconcurrence incre-
ment dc(ψc)∗ = d〈ψ̃c|ψc〉 = 〈dψ̃c|ψc〉 + 〈ψ̃c|dψc〉 +
〈dψ̃c|dψc〉, which is easily evaluated by means of the evolution
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equation (2) for the conditional state d|ψc〉,

dc(ψc)∗ =
(

2〈ψ̃c|v〉 +
∑
k,l

〈f̃k|fl〉u∗
kl

)
dt + 2dξ †〈ψ̃c|f〉 .

(A2)

To obtain the change in the concurrence we now use rela-
tion (A1) together with (A2), which, after some straightfor-
ward simplifications and the use of the noise properties (4),
yields

dC(ψc) = Re

{
c(ψc)

C(ψc)

[
(2〈ψ̃c|v〉 + 1

c(ψc)
|〈ψ̃c|f〉|2

− c(ψc)

C(ψc)2
〈ψ̃c|fT〉u∗〈ψ̃c|f〉 +

∑
kl

〈f̃k|fl〉u∗
kl

]
dt

+ 2dξ †〈ψ̃ |f〉
}

.

We arrive at the desired equation (8) after substituting in the
expression above the explicit forms (3a) and (3b) for the drift
and noise amplitudes of the state change, respectively.

The entanglement dynamical equation (8) simplifies for
local Lindblad operators. In this case the following relations
hold [21],

〈J̃k〉ψ = 1
2c(ψ)∗(TrC2Jk),

〈J̃k ψ |Jl ψ〉 = − 1
2c(ψ)∗ [TrC2 (JkJl) − TrC2 (Jk)TrC2 (Jl)] ,

for operators Jk and Jl acting on the same qubit, and the trace
is taken over a single qubit space. If, in addition, we impose
that only local measurements are done, i.e., ukl = 0 if Jk and
Jl are operators acting on different qubits, the deterministic
amplitude (9) can be recast as a product of a factor and the
system conditional concurrence,

V (ψc,u) = −k(u)C(ψc) ,

where k(u), given by Eq. (12), contains all the information
about the unraveling. Similarly, the noise amplitude reduces
to

F(ψc) = ( 1
2 TrC2 J − 〈J〉c

)
C(ψc),

becoming proportional to the concurrence too.

2. Entanglement of formation increment

The Itô form of the entanglement-of-formation change
along a quantum trajectory demands the evaluation of
dC(ψc)2. Expression (8) for dC(ψc) permits us to do this
quickly. Making use of the noise correlations (4) and keeping
terms up to first order in dt , we obtain

(dCψc
)2 = 2Re(FTu∗F + |F|2)dt.

The sought equation of motion is reached after substitution
of the explicit expressions (8) for dC(ψc), and the above

expression for its square, into (32):

dEoF (ψc) =
{[

dh

dC

∣∣∣∣
ψc

V (ψc,u)

+ 2
d2h

dC2

∣∣∣∣
ψc

Re(FT(ψc)u∗F(ψc) + |F(ψc)|2)

]}
dt

+ 2
dh

dC

∣∣∣∣
ψc

Re[dξ †F(ψc)]. (A3)

APPENDIX B: STOCHASTIC INCREMENTS FOR
AUXILIARY QUANTITIES

1. Dephasing channel

Here we derive the equation of motion for the ensemble-
averaged function E[Xψ ] = 2E[|(ψ01ψ10)| + |(ψ00ψ11)|]
in the system of two qubits described in Sec. V C. The
stochastic changes d|(ψ01ψ10)| and d|(ψ00ψ11)| are evaluated
using relation (A1). The needed increments d(ψ01ψ10) =
〈01|dψ〉〈10|ψ〉 + 〈01|ψ〉〈10|dψ〉 + 〈01|dψ〉〈10|dψ〉 and
d(ψ00ψ11) = 〈00|dψ〉〈11|ψ〉 + 〈00|ψ〉〈11|dψ〉 + 〈00|dψ〉
〈11|dψ〉 are obtained after explicit substitution of the state
increment (2):

d|(ψ01ψ10)| = −γ

4
|(ψ01ψ10)|[2 − Re(u∗

11 + u∗
22 − 2u∗

12)]

+√
γ [1 − 2(|ψ00|2 − |ψ01|2)]dξ ∗

1

+√
γ [1 − 2(|ψ00|2 − |ψ10|2)]dξ ∗

2 ,

d|(ψ00ψ11)| = −γ

4
|(ψ00ψ11)|[2 − Re(u∗

11 + u∗
22 + 2u∗

12)]

+√
γ [1 − 2(|ψ00|2 − |ψ01|2)]dξ ∗

1

+√
γ [1 − 2(|ψ00|2 − |ψ10|2)]dξ ∗

2 .

Upon addition, and after evaluation of the ensemble average,
the unraveling-dependent equation of motion for E[X(ψc)] is

d

dt
E[X(ψc)] = −γ

2
E[X(ψc)]

− γ

2
Re{E[|ψc01ψc10|(u∗

11 + u∗
22 − 2u∗

12)

+ |ψc00ψc11|(u∗
11 + u∗

22 + 2u∗
12)]} .

Equation (20) follows after substitution of the choice (19) for
the unraveling.

2. Infinite-temperature bath channel

In this section we derive the equation of motion (30) for Cu+

starting from Eq. (29) and accounting for nonlocal unravelings
only. An inspection of (29) shows that, for a minimization of
its right-hand side, the matrix u must be of the form

u=eiθc

⎛⎜⎜⎝
0 −α12 e2iθ11 0 α14 e2iθ10

−α12 e2iθ11 0 α23 e2iθ01 0
0 α23 e2iθ01 0 −α34 e2iθ00

α14 e2iθ10 0 −α34 e2iθ00 0

⎞⎟⎟⎠,

with θ11 = arg(ψc11), θ10 = arg(ψc10), θ01 = arg(ψc01),
θ00 = arg(ψc00), and parameters α11, α10, α01, and α11 to
be determined under the constraint that u remains physical
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[cf. Eq. (5)]. The equation of motion then simplifies to
dCu

dt
= −2	Cu − 2	Re(E[α11|ψc11|2 + α00|ψc00|2

+α10|ψc10|2 + α01|ψc01|2]).

To complete the above dynamics we note that the evolutions
of the populations are unraveling independently and their
averages are straightforward to integrate. With the initial
conditions given by the states |
±〉, they are

E[|ψc11|2](t) = E[|ψc00|2](t) = 1
4 (1 + e−4	t ),

E[|ψc10|2](t) = E[|ψc01|2](t) = 1
4 (1 − e−4	t ).

After substitution, the equation of motion for the average
concurrence reads

dCu

dt
= −2	Cu − 1

2
	Re{E[(α11 + α00)(1 + e−4	t )

+ (α10 + α01)(1 − e−4	t )]}.
A minimizing dynamics is obtained with the choices α11 =
α00 = 1 and α10 = α10 = 0, settling unraveling u+ and yield-
ing Eq. (30) for the upper bound Cu+ .

APPENDIX C: UNCONDITIONAL-STATE CONCURRENCE
AND CONCURRENCE OF ASSISTANCE

In this section, for the purpose of reference, we list
exact expressions for the evolution of concurrence and

concurrence of assistance of the unconditional system state in
the systems considered in Sec. V of the main text, valid when
initial pure states are considered.

In a two-qubit system in which each subsystem couples
independently to a dephasing channel the concurrence [56]
and concurrence of assistance are, respectively,

C(ρ(t)) = 1
2

(−(1 − e−γ t )X0

+
√

(1 − e−γ t )2W 2
0 + 4e−γ tC2

0

)
,

CA(ρ(t)) = 1
2

(
(1 − e−γ t )X0

+
√

(1 − e−γ t )2X2
0 + 4e−γ tC2

0

)
,

where we have introduced the state function W (ψc) =
2(|ψc01ψc10| − |ψc00ψc11|) and W0 = W (ψ(0)).

The concurrence [20] and concurrence of assistance in a
two-qubit system in which each subsystem couples indepen-
dently to a zero temperature bath are

C(ρ(t)) = e−γ t [C0 − 2|ψ11(0)|2(1 − e−γ t )],

CA(ρ(t)) = e−γ t
[
2|ψ11(0)|2(1 − e−γ t )

+
√

4|ψ11(0)|4(1 − e−γ t )2 + C2
0

]
,

respectively.
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