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Measurement-induced dynamics for spin-chain quantum communication
and its application for optical lattices

Sima Pouyandeh,1 Farhad Shahbazi,1 and Abolfazl Bayat2
1Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran

2Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
(Received 21 March 2014; published 29 July 2014)

We present a protocol for quantum state transfer and remote state preparation across spin chains which operate
in their antiferromagnetic mode. The proposed mechanism harnesses the inherent entanglement of the ground
state of the strongly correlated many-body systems which naturally exists for free. The uniform Hamiltonian of
the system does not need any engineering and, during the whole process, remains intact while a single-qubit
measurement followed by a single-qubit rotation are employed for both encoding and inducing dynamics in the
system. This, in fact, has been inspired by recent progress in observing spin waves in optical lattice experiments,
in which manipulation of the Hamiltonian is hard and instead local rotations and measurements have become
viable. The attainable average fidelity stays above the classical threshold for chains up to length 50 and the system
shows very good robustness against various sources of imperfection.
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I. INTRODUCTION

Strongly correlated many-body systems often have highly
entangled nontrivial ground states. The dynamics of such
systems can be used for propagating information [1] across
distant sites and has been studied intensively in the past
decade [2,3]. Very recently, experimental realization of quan-
tum state transfer through the natural dynamics of many-body
systems has been achieved in NMR [4] and coupled optical
fibers in linear optics [5]. Most of the proposals so far (see [2,3]
and the references therein), with very few exceptions like [6],
are based on attaching an extra qubit, which encodes an
“unknown” quantum state, to a chain of strongly interacting
particles which is usually initialized to its ground state except
for certain engineered XX chains in which local end-chain
operations makes it work for any initialization [7]. This
mode of transmission does not seek to harness the intrinsic
entanglement of many-body systems and the symmetries of
the Hamiltonian seems to be more important [8]. Moreover,
attaching and detaching a single qubit to a many-body system
is practically hard and needs a very fine control over the
interaction of particles, which is missing in many physical
systems such as cold atoms. Although at the receiver site
taking the quantum state for further process ultimately may
need a swap operator or equivalently controlling some local
interactions, for encoding the quantum state at the sender site
not demanding such fine control will simplify the fabrication
significantly.

One can also think of sending a “known” quantum state
from the sender to receiver. This occurs in a few occasions
such as the remote quantum state preparation [9] in which
preparing the quantum state at some place is impossible due
to practical issues, like inaccessibility of certain sites. Thus
the quantum state has to be prepared at one location and then
transferred to the less accessible ones. There might be also
several users for whom the quantum states are prepared in
a single location (which needs simpler fabrication) and then
distributed between them (see Refs. [10,11] for more details
on information routers). In all these cases known quantum
states have to be transferred from one place to another. It may

be argued that by knowing the quantum state, the sender can
simply send the Bloch vector (nx,ny,nz) of the qubit to the
receiver via classical communication to prepare the state at the
receiver site and there is no need for quantum communication.
This possibility is indeed correct; however, the parameters of
the Bloch vector are real numbers and sending them may need
very long string of classical bits which may not be desired and
has to be compensated by losing precision in using a shorter
set of classical bits. A single quantum state, however, can take
all that information in a single shot. Hence sending known
quantum states, either considered as state transfer or remote
state preparation, has its own merit while it has hardly been
studied for spin-spin-chain communication [6].

Quantum measurement is one of the mysteries of physics
which has been hardly understood since the birth of quantum
mechanics. According to quantum theory, measuring any
observable results in a random output which is one of the
eigenvalues of a Hermitian operator that is associated to that
particular observable. The probability of such an outcome is
determined by the overlap of the initial wave function and
the corresponding eigenvector of the observable operator. In
fact, after the measurement the wave function of the system
goes under an abrupt change and collapses to that particular
eigenstate of the observable operator. So far, the quantum
measurement has been exploited for quantum communica-
tion via teleportation [12] and measurement-based quantum
computation [13]. In conventional spin-chain quantum com-
munications, however, the random nature of measurement has
been an obstacle for incorporating it in quantum state transfer
protocols. On the other hand, since in quantum measurement
the state of the system collapses instantaneously it can be used
to induce dynamics in the system by changing its state and thus
may be used as an alternative approach to attaching scenarios
for quantum communication in strongly correlated systems.

Cold atoms in an optical lattice are excellent test bed for
many-body experiments. Both bosons [14] and fermions [15]
have been realized in the Mott insulator phase, where there
is exactly one atom per site, and by properly controlling the
intensity of laser beams one can tune the interaction between
neutral atoms to behave as an effective spin Hamiltonian [16].
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Local addressability of atoms with the resolution of single
sites [17,18] has opened a window for exploring many-body
systems. Single-site unitary operations and measurements
[18–21] are in fact becoming viable and accessible with high
fidelities. Thanks to these advancements, the correlated
particle-hole pairs and string orders [22] together with
their time evolution [23] have been explored experimentally.
Furthermore, in recent experiments the propagation of a
single impurity spin [20] and magnon bound states [21] in
a ferromagnetic spin chain have been investigated. Different
cooling techniques [24] have enabled reaching the tempera-
tures required for observing quantum magnetic phases that
have emerged due to spin interactions. In view of these, it is
very timely to put forward proposals which are doable with
current achievements in cold atom experiments. In particular,
one may think of different ways for quantum communication
across strongly correlated many-body interacting systems.

In this paper, we introduce a mechanism for exploiting
the inherent entanglement of many-body systems for quantum
communication across a spin chain. The encoding of infor-
mation is done through a single-qubit measurement followed
by the operation of a unitary gate which is determined by
the random outcome of the measurement. The following
measurement-induced dynamics propagates the quantum state
through the chain till it reaches the other side in which
the information is captured by switching off the interaction
couplings. The proposed protocol, which has been inspired
by recent achievements for observing spin waves in ferro-
magnetic chains in optical lattices [20,21], exploits quantum
measurement in order to induce quench dynamics in the system
and can be seen as the first step for observing spin dynamics
in antiferromagnetic chains. The simplicity of the protocol,
with all its ingredients available in optical lattice experiments,
allows for the experimentation of the proof of principles for
measurement-induced dynamics along an antiferromagnetic
chain. Our protocol can also be interpreted as remote state
preparation [9], since a known quantum state is prepared on
one side of the chain and then is transferred to the other
side which might be inaccessible for some practical issues.
In addition, our measurement-induced transport can serve as
information router in which the quantum state is prepared at
one site of a network and then distributed between multiple
users to reduce the complexity of fabrication.

The structure of the paper is as follows. In Sec. II the model
is introduced, in Sec. III the unrestricted measurement-induced
dynamics is introduced, in Sec. IV the proposal for restricted
measurement is discussed, and in Sec. V entanglement
distribution is analyzed. Then in Sec. VI odd chains which do
not have SU(2) symmetry are investigated and imperfections
are studied in Sec. VII. In Sec. VIII the application of our
mechanism in optical lattices is explored. Finally, in Sec. IX
we summarize our results.

II. INTRODUCING THE MODEL

We assume a system of N spin-1/2 particles interacting via
an antiferromagnetic Heisenberg Hamiltonian,

H =
N−1∑
k=1

Jk
−→σ k.

−→σ k+1, (1)

FIG. 1. (Color online) (a) Arrays of interacting qubits for which
the interaction type is Heisenberg with the exchange coupling J . A
local control is available for the first qubit to operate a quantum gate
or perform a spin measurement. (b) A Bell measurement on the first
qubits of two noninteracting chains (note that labeling of the atoms
are reversed in each chain) is used for entanglement distribution along
the two spin chains.

where −→σk = (σx
k ,σ

y

k ,σ z
k ) is the vector of Pauli operators acting

on site k and Jk is the exchange coupling which is assumed
to be uniform (i.e., Jk = J > 0 for all k’s) unless it is stated.
A schematic picture of this system is shown in Fig. 1(a). The
system is cooled down to its ground state |G〉. For the moment
we consider even chains (i.e., even N ) in which due to the
SU(2) symmetry of the Hamiltonian the ground state is unique
and lies in the subspace that half of the spins are up. Moreover,
in even chains the SU(2) symmetry implies that the reduced
density matrix of each spin is maximally mixed. This allows
us to write the ground state |G〉 in a very generic form of

|G〉 = |↑k,⇓〉 − |↓k,⇑〉√
2

, (2)

where ↑k (↓k) means site k is in spin up (spin down) and ⇑
represents a quantum state for the rest of the system in which
there are N/2 spins up and N/2 − 1 spins down (similarly
for ⇓ there are N/2 spins down and N/2 − 1 spins up). The
detailed structure of |⇑〉 and |⇓〉 is very complex and due
to their different parities these two states are orthogonal. In
addition, due to the the SU(2) symmetry of the system the
generic form of the ground state in Eq. (2) remains valid for
any basis of spins.

By measuring a single spin at site k, in an arbitrary basis, the
quantum state of the whole system collapses according to the
outcome of the measurement. For instance, if the measurement
is in the σ z basis on site k, then with probability of 1/2 the
outcome of measurement is spin up and the quantum state of
the system collapses to |↑k,⇓〉. This new state still remains in
the subspace of the ground state but is no longer an eigenvector
of the Hamiltonian and as a result, the system evolves under
the action of the Hamiltonian H . However, the outcome of the
measurement is a random process and cannot be used directly
for quantum communication across the spin chain. In the rest of

012337-2



MEASUREMENT-INDUCED DYNAMICS FOR SPIN-CHAIN . . . PHYSICAL REVIEW A 90, 012337 (2014)

the paper we try to exploit the random measurement-induced
dynamics for the purpose of quantum communication.

III. QUANTUM STATE TRANSFER:
UNRESTRICTED BASIS

In this section we assume that a general projecting mea-
surement, in any arbitrary basis, is possible at the sender site,
which is taken to be site 1. This measurement followed by a
conditional unitary operation, which depends on the outcome
of the measurement, are used to initialize our desired quantum
state in the sender spin. The following unitary time evolution
of the system transfers this quantum state to the receiver site.

The most general pure quantum state can be written as

|ψ (+1)〉 = cos

(
θ

2

)
|↑〉 + eiφ sin

(
θ

2

)
|↓〉, (3)

where 0 � θ � π and 0 � φ � 2π are the two angles in
the spherical coordinates which determine a single point
on the surface of the Bloch sphere. This state is the
eigenvector of the Hermitian operator −→σ · −→n (with eigen-
value +1) where the unit vector −→n is defined as −→n =
[sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )]. The other eigenvector
corresponding to the negative eigenvalue (with eigenvalue −1)
is

|ψ (−1)〉 = cos

(
θ

2

)
|↓〉 − e−iφ sin

(
θ

2

)
|↑〉. (4)

One can transfer one of these eigenvectors to another by using
the following unitary operator:

Ru = |ψ (+1)〉〈ψ (−1)| + |ψ (−1)〉〈ψ (+1)|. (5)

To initialize the quantum state |ψ (+1)〉 in the sender site
we measure the Hermitian operator −→σ · −→n at site 1. With
probability of 1/2 the outcome is +1 and the initialization
is done; otherwise, with probability of 1/2 the output is
−1 and thus the unitary operator R should act on site 1 to
convert its state into |ψ (+1)〉. As the result of this measurement
the quantum state of the whole system changes accordingly.
Depending on the outcome of the measurement the quantum
state of the system initialized to one of the following states:

|�+(0)〉 =
√

2P (+1)|G〉,
(6)

|�−(0)〉 =
√

2RuP
(−1)|G〉,

where P (±1) = |ψ (±1)〉〈ψ (±1)| are the projecting operators and√
2 is the normalization factor. Each of these states are obtained

by probability of 1/2 and it is clear the unitary operation Ru

acts only when the outcome of the measurement is |ψ (−1)〉.
Since neither of these states are the eigenvector of the

Hamiltonian they evolve as

|�±(t)〉 = e−iH t |�±(0)〉. (7)

By tracing out all spins except the receiver, which is taken
to be the last spin N , one can get the density matrix of the
received state,

ρ±
N (t) = TrN̂ |�±(t)〉〈�±(t)|. (8)
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FIG. 2. (Color online) (a) Two fidelities F +
u (t) and F −

u (t) in terms
of J t in a chain of length N = 20 for the unrestricted measurement
protocol. (b) The maximal fidelity F +

max as a function of N . (c) The
maximal fidelity F −

max as a function of N . (d) The optimal time J topt

versus length N .

To quantify the quality of state transfer one can compute the
fidelity as

F±
u (t) = 〈ψ (+1)|ρ±

N (t)|ψ (+1)〉. (9)

Thanks to the SU(2) symmetry of the system F±
u (t) is

independent of θ and φ, which means that all quantum states
are transferred by the same fidelity. A general proof for this
statement is given in Appendix.

In Fig. 2(a) the fidelity F+
u (t) and F−

u (t) are both plotted
as functions of time. As it is clear from the figures the fidelity
starts evolving after a certain time that information reaches the
last site. Then due to constructive quantum interferences at a
particular time t = topt the information reaches the receiver
site and fidelity peaks for the first time. Though the later
peaks might be larger it is physically unwise to wait for
such long times as in practical cases the interaction with
environment and its induced decoherence deteriorates the
quality of transmission. So we focus on the first peak at which
the fidelity takes its maximal value, i.e., F±

max = F±
u (topt).

In Figs. 2(b) and 2(c) the maximal fidelities F+
max and F−

max
are plotted versus length N . As it is clear from these figures
the fidelities are both high and go down almost linearly with
very small slopes. A linear fit to data shows that F+

max =
−0.007N + 1.024 and F−

max = −0.005N + 1.016. One can
use these linear fits to extrapolate the fidelities in longer chains,
which shows that for chains up to N ∼ 50 the fidelities are still
above the classical threshold 2/3. This indeed shows the very
high potential of this strategy for quantum state transfer across
a many-body system. In Fig. 2(d) the optimal time topt is plotted
versus N which also shows a linear dependence on N .

IV. QUANTUM STATE TRANSFER: RESTRICTED BASIS

Very often due to practical issues it is not possible to
accomplish quantum measurement in any arbitrary basis on
a single spin as needed in the encoding of the previous
section. Instead, quantum projecting measurement may be
possible only for a certain basis, say σz. The outcome of the
measurement is thus either |↑〉 or |↓〉 and the quantum state
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of the whole system collapses to |↑⇓〉 or |↓⇑〉, respectively.
To initialize the spin into a general superposition like Eq. (3) a
further unitary operation on the first site is needed. Depending
on the outcome of the measurement we apply one of the
following unitary operators to the first spin:

R↑ = |ψ (+1)〉〈↑| + |ψ (−1)〉〈↓|,
(10)

R↓ = |ψ (−1)〉〈↑| + |ψ (+1)〉〈↓|,
where R↑ (R↓) is applied if the outcome of the measurement
in the σz basis is |↑〉 (|↓〉) to rotate it to |ψ (+1)〉. The resulting
states are not eigenstates of the Hamiltonian H and thus the
system evolves accordingly. At any time t one can see that
the quantum state of the system is one of the following states
depending on the measurement result:

|�↑(t)〉 = e−iH tR↑ ⊗ I |↑⇓〉,
(11)

|�↓(t)〉 = e−iH tR↓ ⊗ I |↓⇑〉.
As before we compute the density matrix of the last spin by
tracing out the rest,

ρα
N (t) = TrN̂ |�α(t)〉〈�α(t)| for α = ↑,↓. (12)

To quantify the quality of the state transfer we compute the
fidelity as

Fα
r (t) = 〈ψ (+1)|ρα

N (t)|ψ (+1)〉. (13)

Unlike the fidelity F±
u (t) for the unrestricted measurement

basis the Fα
r (t) depends on input parameters θ and φ. To have

an input independent quantity one may compute the average
fidelity for all possible pure input states on the surface of the
Bloch sphere,

Fav(t) = 1

4π

∫
Fα

r (t) sin(θ )dθ dφ. (14)

Using a little bit of math one can show that

Fav(t) = 1
6 {〈↓⇓|e+iH t |↑N 〉〈↑N |e−iH t |↓⇓〉
+ 〈↑⇓|e+iH t |↓N 〉〈↓N |e−iH t |↑⇓〉}
+ 1

3 {〈↑⇓|e+iH t |↑N 〉〈↑N |e−iH t |↑⇓〉
+ 〈↓⇓|e+iH t |↓N 〉〈↓N |e−iH t |↓⇓〉}
+ 1

3 abs{〈↓⇓|e+iH t |↓N 〉〈↑N |e−iH t |↑⇓〉}, (15)

where in the above formula it is assumed that the outcome
of the measurement is spin up and to have the formula for
the outcome spin down one has to only replace ⇓ with ⇑ in
Eq. (15). In fact, due to the symmetries of the system Fav(t) is
identical for both α = ↑,↓ and thus we drop the index α.

In Fig. 3(a) we plot Fav(t) as a function of time. At t = topt

the average fidelity peaks for the first time. In Fig. 3(b) the max-
imum of average fidelity is depicted in terms of N which can
be well fitted by a linear function as Fav(topt) = −0.006N +
1.020. This shows that for chains up to length N ≈ 60 the
average fidelity is above the classical threshold 2/3.

For the sake of completeness we compare the attainable
average fidelity of our proposed mechanism for the restricted
basis with the widely studied attaching procedures, in which
one extra qubit that carries our desired quantum state is
attached to a spin chain initialized in its ground state just
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FIG. 3. (Color online) (a) Average fidelity Fav(t) as a function of
J t for a chain of length N = 20 in a restricted basis protocol. (b) The
maximal average fidelity Fav(topt) in terms of length N .

as Ref. [8]. The results have been given in Table I and as it
is clear from the data the projective mechanism gives higher
fidelity in comparison to the attaching scenarios. The same
sort of improvement is observed for the unrestricted projective
measurement (not shown in Table I).

V. ENTANGLEMENT DISTRIBUTION

The proposed measurement-induced dynamics for state
transfer can also be used for entanglement distribution. To
fulfill such a task we consider two independent chains which
do not interact with each other as shown in Fig. 1(b). Initially
both chains are prepared in their ground states and hence
the quantum state of the system is |G〉L ⊗ |G〉R . A Bell
measurement is performed on the first spins of both chains
which projects them on one of the following four possible
maximally entangled Bell states:

|B0〉 = |↑↓〉 − |↓↑〉√
2

,

|B1〉 = |↑↓〉 + |↓↑〉√
2

,

(16)

|B2〉 = |↑↑〉 − |↓↓〉√
2

,

|B3〉 = |↑↑〉 + |↓↓〉√
2

.

Since the two chains do not interact any of these four possible
outcomes will occur with the probability of 1/4. The symmetry
of the system implies that the final entanglement is the same
for all of them and thus we assume that the outcome of the
measurement is the singlet |B0〉. After measurement the first
sites of the two chains get entangled and hence at any time t

the quantum state of the system can be written as

|ψ(t)〉 = 2e−iHT tP
B0
1L,1R

|G〉L ⊗ |G〉R, (17)

where P
B0
1L,1R

= |B0〉〈B0| projects the first sites of the two
chains [i.e., spins at sites 1L and 1R as depicted in Fig. 2(b)]
into a singlet state |B0〉, the factor 2 at the beginning of the
formula is for normalization, and HT = H ⊗ I + I ⊗ H is the
total Hamiltonian of the system. One can compute the reduced
density matrix of the last two sites by tracing out all the rest.
The special symmetries of the system and conservation of
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TABLE I. Comparison between the attainable average fidelity from our proposed projection mechanism (in the restricted basis) and the
widely studied attaching scenarios for different lengths.

N 4 6 8 10 12 14 16 18 20

Fav(projection) 0.9991 0.9867 0.9735 0.9604 0.9482 0.9368 0.9264 0.9171 0.9082
Fav(attaching) 0.9554 0.9212 0.8986 0.8826 0.8693 0.8584 0.8496 0.8425 0.8365

parity during the evolution imply that

ρNL,NR
(t) = 1

2

⎛
⎜⎝

a(t) 0 0 0
0 1 − a(t) b(t) 0
0 b(t) 1 − a(t) 0
0 0 0 a(t)

⎞
⎟⎠, (18)

where both a and b are real numbers and can be written as

a(t) = 1
2 {〈↑⇓|e+iH t |↑N 〉〈↑N |e−iH t |↑⇓〉 × 〈↓⇑|e+iH t |↑N 〉〈↑N |e−iH t |↓⇑〉
+ 〈↑⇓|e+iH t |↑N 〉〈↑N |e−iH t |↓⇑〉 × 〈↓⇑|e+iH t |↑N 〉〈↑N |e−iH t |↑⇓〉
+ 〈↓⇓|e+iH t |↑N 〉〈↑N |e−iH t |↓⇓〉 × 〈↑⇑|e+iH t |↑N 〉〈↑N |e−iH t |↑⇑〉
+ 〈↑⇑|e+iH t |↑N 〉〈↑N |e−iH t |↑⇑〉 × 〈↓⇓|e+iH t |↑N 〉〈↑N |e−iH t |↓⇓〉
+ 〈↓⇑|e+iH t |↑N 〉〈↑N |e−iH t |↑⇓〉 × 〈↑⇓|e+iH t |↑N 〉〈↑N |e−iH t |↓⇑〉
+ 〈↓⇑|e+iH t |↑N 〉〈↑N |e−iH t |↓⇑〉 × 〈↑⇓|e+iH t |↑N 〉〈↑N |e−iH t |↑⇓〉}, (19)

b(t) = −1
2 {〈↑⇓|e+iH t |↓N 〉〈↑N |e−iH t |↑⇑〉 × 〈↓⇑|e+iH t |↑N 〉〈↓N |e−iH t |↓⇓〉

+ 〈↓⇓|e+iH t |↓N 〉〈↑N |e−iH t |↑⇓〉 × 〈↑⇑|e+iH t |↑N 〉〈↓N |e−iH t |↓⇑〉
+ 〈↓⇓|e+iH t |↓N 〉〈↑N |e−iH t |↓⇑〉 × 〈↑⇑|e+iH t |↑N 〉〈↓N |e−iH t |↑⇓〉
+ 〈↓⇑|e+iH t |↓N 〉〈↑N |e−iH t |↑⇑〉 × 〈↑⇓|e+iH t |↑N 〉〈↓N |e−iH t |↓⇓〉}. (20)

One can compute the entanglement, quantified by concur-
rence [25], between the two qubits which becomes

E(t) = max{0,b(t) − a(t)}. (21)

In Fig. 4(a) the entanglement E(t) is plotted as a function of
time. It is worth mentioning that as entanglement propagates
in two disconnected chains the distance over which the entan-
glement is generated at t = topt is double the distance of state
transfer. In Fig. 4(b) the maximum attainable entanglement
Emax = E(topt) is plotted versus distance N . As is clear from
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FIG. 4. (Color online) (a) Entanglement E(t) as a function of J t

for a chain of length N = 40 (i.e., NL = NR = 20). (b) The maximal
entanglement Emax versus length N .

the figure entanglement decays almost linearly by increasing
N with a small slope such that it reaches Emax = 0.49 for a
large distance of N = 40.

VI. ODD CHAINS

So far we have only considered even chains for which
the ground state is unique and supports the SU(2) symmetry
with total excitation of zero. In contrast, the odd chains have
doubly degenerate ground states |G↑〉 and |G↓〉 that each can
be converted to another by applying

∏
k σ x

k . In a chain of
length N , the ground state |G↑〉 (|G↓〉) lies in the manifold
of parity +1 (−1) in which (N + 1)/2 number of spins are
up (down) and the rest are down (up). In such states there
is no SU(2) symmetry and one can split their degeneracy by
applying a small magnetic field in the z direction to choose one
the ground states. Due to the absence of the SU(2) symmetry
the fidelity of state transfer in both restricted and unrestricted
bases depends on input parameter θ . So, to quantify the quality
of state transfer we consider a system of length N initially
prepared in one of its ground states, say |G↑〉. Then a restricted
measurement in σ z basis is performed on the first spin of the
chain which projects the first qubit on either spin ↑ or spin
↓. Depending on the outcome of the measurement a further
application of R↑ or R↓ rotates the first spin into |ψ (+1)〉 and
initialization process is accomplished. A further time evolution
of the system transfers this quantum state through out the
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chain. Just as before one can trace out the state of all spins
but the last one and get the reduced density matrix of the
last site ρN (t) from which the fidelity is computed just as in
Eq. (13). To have an input independent quantity one can also
average over all possible input states on the surface of the Bloch
sphere just as the one in Eq. (14) to get the average fidelity
F odd

av (t).
Just as before we consider the first peak of the average

fidelity at the optimal time topt. In Table II we give a
comparison for the average fidelity of even and odd chains
versus length N when the outcome of the measurement
is spin up. By comparing the values one can realize that
the quality of transfer is slightly lower for odd chains. For
instance, the average fidelity in the odd chain of length
N = 19 is 0.88, while for a longer even chain of N = 20
is 0.91. This means that the SU(2) symmetry of the ground
state in the even chains makes the quality of transfer even
higher than the slightly shorter chains but with an odd
length.

VII. IMPERFECTIONS

Preparing the system in its antiferromagnetic ground state
needs cooling to zero temperature, which in reality cannot be
achieved. Hence the initial state of the system is inevitably a
thermal state of the form ρth = e−βH

Z
, where β = 1/KBT in

which T is temperature, KB is the Boltzmann constant, and
Z is the partition function. The transport mechanism is just
the same as before. The projective measurement on the first
qubit and the following unitary dynamics transfers information
across the chain just as in the case that the system has been
initialized in its ground state. In fact, the assumption of a
unitary evolution is valid only when the thermalization time
is much longer than our optimal time topt. In Fig. 5(a), the
maximal attainable fidelity Fmax is plotted in terms of KBT/J

for a chain of length N = 10. As SU(2) symmetry remains
valid in the thermal initial state, the fidelity is independent of
the basis of measurement. As is evident from the figure, there
is a plateau for Fmax at low temperatures, the width of which
is determined by the finite-size energy gap of the system. It is
worth mentioning that the optimal time at which the fidelity
peaks does not change with temperature which is consistent
with the results of [26].

In practical situations, it is impossible to isolate the system
from its environment. To study such effects, we assume that
the system is initialized in its ground state and the projective
measurement is performed on the first spin just as before.
However, we replace the unitary time evolution of the system

with a Lindblad type master equation as

ρ̇(t) = −i[H,ρ(t)] + γ

N∑
k=1

2∑
μ=1

[
L

μ

k ρ(t)Lμ†
k

− 1

2
{Lμ

k L
μ†
k ,ρ(t)}

]
, (22)

where L1
k = σ+

k and L2
k = σ−

k are the Lindblad operators
which add and subtract spin excitations into the system
respectively and the coefficient γ represents the coupling with
the environment. By tracing out all spins but the last one can
compute the fidelity which peaks at t = topt no matter how
strong the coupling γ . In Fig. 5(b) we plot Fmax as a function
of γ for chain of length N = 10 when the first spin is projected
to |+〉 = (|↑〉 + |↓〉)/√2. As is clear, the fidelity goes down
by increasing γ and stays above 0.75 even for γ  0.1J .

Another imperfection is randomness in the coupling of
the Hamiltonian, as making a uniform chain might be very
challenging in some physical realizations. This means that in
the Hamiltonian of Eq. (1) we have Jk = J (1 + δk), where δk

is a dimensionless random number with a uniform distribution
in the interval [−ε,ε]. In fact, ε determines the strength of
randomness in the couplings. We fix the optimal time to be
topt, determined from the uniform chain (i.e., ε = 0), as the
real time at which fidelity peaks depends on all couplings
Jk . We then average the fidelity F (topt) over several different
realizations (we did for 100) of the system for a fixed ε. In
Fig. 5(c) we depict the fidelity 〈F (topt)〉 averaged over 100
different realization as a function of ε when the first qubit
is projected into the state |+〉. It is seen that although the
average fidelity decreases by increasing the randomness the
mechanism shows a relatively high resistance against this
destructive effect as fidelity remains above 0.85 even for 20%
of randomness (i.e., ε = 0.2).

VIII. APPLICATION FOR OPTICAL LATTICES

The proposed mechanism is most suitable for realization
in optical lattices in which an array of cold atoms in their
Mott insulator phase sit in the minimums of a periodic
potential, formed by counterpropagating laser beams, as shown
in Fig. 6(a). In the limit of high on-site energy the double
occupancy is prohibited and the interaction between atoms is
effectively explained by a spin Hamiltonian [16]. Changing
the intensity of the laser beams tunes the tunneling rate of
the atoms and thus controls the exchange coupling of the
spin chain globally. In two or three dimensional lattices by
tuning the intensity of the corresponding laser beams one
can independently control the coupling of the atoms in each
dimension globally. Recently, local addressability of the atoms

TABLE II. Comparison between the attainable average fidelity at the optimal time, i.e., Fav(topt) between the even and odd chains for the
case that the outcome of the measurement is spin up. As the number shows the even chains, with SU(2) symmetry, produce higher fidelity even
for slightly longer chains.

N (even) 4 6 8 10 12 14 16 18 20
Fav(even) 0.9991 0.9867 0.9735 0.9604 0.9482 0.9368 0.9264 0.9171 0.9082
N (odd) 3 5 7 9 11 13 15 17 19
Fav(odd) 0.9715 0.9526 0.9367 0.9236 0.9118 0.9013 0.8915 0.8834 0.8761
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FIG. 5. (Color online) Imperfection effects over a chain of length N = 10: (a) the fidelity Fmax as a function of dimensionless temperature
KBT/J . Thanks to the SU(2) symmetry of the thermal initial state, all projection bases give the same fidelity. (b) The fidelity Fmax as a function
of decoherence coupling γ /J when the first qubit is projected into |+〉. (c) The fidelity 〈F (topt)〉, averaged over 100 different realizations, in
terms of randomness strength ε when the first qubit is projected into |+〉.

has also been possible in optical lattices [17,18], making local
measurements and spin rotations, the two essential ingredients
of our proposal, accessible. Using such local operations the
propagation of a single [20] and double [21] spin flips in a
ferromagnetic chain have been experimentally observed.

To perform spin measurement on a single site one can use
the techniques developed in Ref. [19]. In that methodology an
intense perpendicular laser beam is focused to the target atom
and couples one of the atomic levels which represents |↓〉 to
one of the excited states. This generates a strong radiation
pressure which pushes the atom out of the lattice only when
the atom is in state |↓〉 and does not affect it otherwise. This

FIG. 6. (Color online) (a) Cold atoms in an optical lattice pre-
pared in a Mott insulator phase with exactly one atom per site realizes
the Heisenberg Hamiltonian of Eq. (1). A local focused laser beam is
used to manipulate the first qubit for both the gate operation and spin
measurement. (b) The single-qubit measurement is accomplished by
a perpendicular focused laser beam which applies a strong radiation
pressure to the state |↓〉 and leaves the atom unaffected if its quantum
state is |↑〉. (c) Two parallel arrays in a two-dimensional optical lattice
are used for entanglement distribution in which a Bell measurement is
needed. (d) Bell measurement is fulfilled by tilting the optical lattice
such that the singlets tend to occupy a single site and triple pairs
remain separated.

leaves the site empty if its atom is in state |↓〉 and full if the
atom is in state |↑〉 as it is shown schematically in Fig. 6(b). So,
the result of the measurement is revealed through the following
fluorescent picture to see whether the atom is still sitting in its
initial position (projecting to |↑〉) or has gone (projecting to
|↓〉). Notice that in this technique by probability of 1/2, for
which the atom is in the state |↓〉 and thus leaves the lattice, the
protocol fails which reduces the rate of communication by half.
This means that if a two-dimensional optical lattice is used to
provide several equivalent parallel noninteracting spin chains
(just as the one for the ferromagnetic case in Refs. [20,21])
and the measurement is performed instantaneously on all the
first qubits of parallel chains, only half of them can be used
to extract final information as there will be no hole in those
chains and the rest should be discarded.

Apart from single-qubit measurements we also need to
perform unitary operations [such as R↑ and R↓ in Eq. (10)]
to accomplish the initialization and encoding information.
To apply such unitary operators on the target atom (i.e.,
site 1) a focused laser beam is exploited to generate Rabi
oscillation between the qubit levels as shown in Fig. 6(a).
This local operation is much quicker (∼10 μs) [19] than the
time evolution of the system (∼1–10 ms) [20,21] and can
be considered as a sudden action. To have a pure local gate
operation and avoid affecting the neighboring qubits one may
apply a weak magnetic-field gradient [19], which splits the
hyperfine levels of all qubits position dependently, or use a
tightly focused laser beam [18] to only split the hyperfine
levels of the target atom. So then a microwave pulse, tuned
only for the target qubit, operates the gate locally as has been
realized in Refs. [18,19]. For instance, a weak magnetic-field
gradient of 27.4 G cm−1 is enough for applying σx on a target
qubit with a pulse of duration 10 μs without affecting the
neighboring sites [19].

According to the proposed mechanism for entanglement
distribution, a Bell measurement on the first qubits of the two
chains is essential for initializing the system. We consider
a geometry, shown in Fig. 6(c), in which two arrays of
atoms sit in two parallel rows with the first atoms recite in
the neighboring sites. To perform the Bell measurement we
first raise the barriers between the atoms to switch off the
interactions along the chains (i.e., J = 0 in both spin chains).
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We use the fact that the energy levels for the singlet and triple
pairs are different in a single well such that the singlet state
is lower in energy. To operate the Bell measurement one has
to tilt the lattice adiabatically such that the atoms in the right
chain tunnel into the next row and sit along the left chain,
though the atom in the first site of the right chain has to
compensate an extra on -site energy U for its tunneling as
its target site is already occupied by the first atom of the left
chain. If the amount of tilting is tuned to be resonant only
with the singlet state of two atoms in the doubly occupied site,
then the double occupancy occurs only for the singlet state as
shown in Fig. 6(d). As the other Bell states are off resonant and
energetically inaccessible, the double occupancy never occurs
for such states. A further florescent picture of the system,
which can be done without disturbing the internal states [27],
will determine the number of atoms in the first site and reveal if
the two atoms are in a singlet state or not. A backward adiabatic
evolution (i.e., returning the lattice back to its normal) restores
all the atoms into their initial position, while the first spins are
either projected to singlet |B0〉 or one of the three other Bell
states. If the output of the projecting measurement is singlet
|B0〉 (its probability is 1/4), then initialization is complete
and by decreasing the horizontal barriers along the chains the
propagation begins. On the other hand, if the result is not |B0〉
then the density matrix of the two qubits is an equal mixture of
all other Bell states (its probability is 3/4). One then can apply
σz to the atoms in site 1L (or 1R) in order to convert the |B1〉 part
of the mixture into |B0〉 and repeat the adiabatic tilting to see if
the projection to singlet is accomplished or not. This time the
probability of success increases to 1/3. In the case of failure
the state of the two atoms becomes a mixture of |B2〉 and |B3〉,
which a local unitary operation σy transforms into |B0〉 and
|B1〉, respectively. An extra repeating of the adiabatic tilting
either directly gives a singlet state |B0〉 (with the probability
of 1/2) for the pair or projects them into |B1〉 (again with
probability of 1/2) which then can be transformed to |B0〉
locally. Hence, at the worst case, the adiabatic tilting of the
lattice has to be done three times for the initialization. Then
by letting the system evolve one can generate entanglement
between the distant atoms at both sides of the system.

IX. CONCLUSION

In this paper we put forward a timely proposal for
quantum communication in an antiferromagnetic Heisenberg
Hamiltonian using only local operations for encoding the
information. This harnesses the intrinsic entanglement of
the system for inducing dynamics via a single-site quantum
measurement. As the outcome of measurement is ultimately
random a following unitary operation which is determined by
the outcome of the measurement is essential for encoding the
information within the intrinsically entangled ground state of
the system. By finishing the encoding procedure system is left
to evolve freely and after a certain time (set by the length
N and the strength of the exchange coupling J ) information
reaches the receiver site which can be taken for further
computational process. The quality of state transfer remains
above the threshold limit for chains up to length N ∼ 50, while
the system is not engineered and no extra modulation is needed.
In comparison with the widely studied attaching scenarios, our

proposed mechanism not only introduces a different encoding
of quantum states into a many-body system which harnesses
the intrinsic entanglement of the ground state but also
provides another way for inducing quantum quench in such
systems. From the perspective of quantum communication our
measurement-induced transport gives higher average fidelity
and does not need local control over interaction at least on
the sender site. One application of our proposal can be an
information router in which the quantum state is prepared at a
particular site to simplify the fabrication and then is distributed
among multiple users. In fact, an immediate generalization
of our idea is to design an information router based on the
proposed measurement-induced transport which has to be
pursued in a separate project. Alternatively, one may see our
protocol as remote quantum state preparation [9] in which
a known quantum state is generated remotely at the output
via the free evolution of a many-body strongly correlated
system. In addition, we considered several imperfections
which may arise in different realizations including thermal
fluctuations, interaction with environment, and the effect of
random couplings.

Since the encoding of information and performing the
quantum quench in the system is done by only local operations
the proposed mechanism is most suitable to be realized
in optical lattices. The recent experiments for spin-wave
propagation [20] and transferring magnon bound states [21]
show that all the ingredients we need are already available in
the laboratory. Based on these achievements, our proposal is
just timely for being pursued in experiments and indeed can
be realized with current technology.
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APPENDIX: SU(2) SYMMETRY OF THE
HEISENBERG HAMILTONIAN

The SU(2) group and its corresponding SU(2) Lie algebra
are fully determined by the Pauli operators as the generators
of the algebra. Any element of the SU(2) group in its 2 × 2
representation can be written as

U(α,̂n) = eiα−→σ ·̂n, (A1)

where α is a real number and n̂ is a unit vector in the three-
dimensional space. The SU(2) symmetry of the Heisenberg
Hamiltonian of Eq. (1) means

U(α,̂n)⊗NHU†(α,̂n)⊗N = H. (A2)

Being a spin singlet, the ground state of the Hamiltonian for
even N is also invariant, up to an irrelevant global phase, under
the action of U(α,̂n)⊗N , such that

U(α,̂n)⊗N |G〉 = eiβ |G〉, (A3)

where β is a global phase. One can show that the R↑ operator,
defined in Eq. (10), is an element of SU(2) group as R↑ =
U(α∗ ,̂n∗) for a particular choice of

α∗ = θ/2, n̂∗ = ( sin(φ), cos(φ),0), (A4)
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where θ and φ are the qubit parameters in Eq. (3). Following
Eqs. (A2) and (A3), this implies that

R
†⊗N

↑ |G〉 = eiβ |G〉, R
†⊗N

↑ HR⊗N
↑ = H. (A5)

We now have all the ingredients to prove that the fidelity
of the unrestricted basis strategy is independent of the qubit
parameters θ and φ. Let’s assume that the projection is made in
the basis of {|↑〉,|↓〉} (which corresponds to θ = 0 while φ is
arbitrary) and the outcome of the measurement is |↑〉 (namely
the +1 solution). We show that the fidelity is in fact the same
for all other values of θ and φ provided that the measurement
outcome is +1. The time evolution of the system can be
written as

|�(t)〉 =
√

2e−iH tP
↑
1 |G〉, (A6)

where P
↑
1 = |↑1〉〈↑1| is the projection on the first qubit. The

fidelity then can be written as

F+
u (θ = 0,φ) = 〈�(t)|P ↑

N |�(t)〉
= 2〈G|P ↑

1 e+iH tP
↑
Ne−iH tP

↑
1 |G〉.

Using the equalities in Eq. (A5) one can insert R⊗N
↑ and

its Hermitian conjugate on both sides of the time evolution
operators and apply it to the ground state |G〉 without changing
the fidelity. With a straightforward calculation one gets

F+
u (θ = 0,φ) = 2〈G|P (+1)

1 e+iH tP
(+1)
N e−iH tP

(+1)
1 |G〉

= F+
u (θ,φ), (A7)

where we have used the fact that

P
(+1)
k = R↑P

↑
k R

†
↑, k = 1,N. (A8)

By arriving at Eq. (A7), the proof is complete.
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[15] R. Jördens et al., Nature (London) 455, 204 (2008); U. Schneider
et al., Science 322, 1520 (2008).

[16] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[17] J. F. Sherson et al., Nature (London) 467, 68 (2010).
[18] C. Weitenberg et al., Nature (London) 471, 319 (2011).
[19] M. Karski et al., New J. Phys. 12, 065027 (2010).
[20] T. Fukuhara et al., Nature Phys. 9, 235 (2013).
[21] T. Fukuhara et al., Nature (London) 502, 76 (2013).
[22] M. Endres et al., Science 334, 200 (2011).
[23] M. Cheneau et al., Nature (London) 481, 484 (2012).
[24] P. Medley, D. M. Weld, H. Miyake, D. E. Pritchard, and

W. Ketterle, Phys. Rev. Lett. 106, 195301 (2011).
[25] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[26] A. Bayat and V. Karimipour, Phys. Rev. A 71, 042330 (2005).
[27] M. J. Gibbons, C. D. Hamley, C. Y. Shih, and M. S. Chapman,

Phys. Rev. Lett. 106, 133002 (2011).

012337-9

http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1080/00107510701342313
http://arxiv.org/abs/arXiv:1307.5220
http://dx.doi.org/10.1103/PhysRevA.87.012309
http://dx.doi.org/10.1103/PhysRevA.87.012309
http://dx.doi.org/10.1103/PhysRevA.87.012309
http://dx.doi.org/10.1103/PhysRevA.87.012309
http://dx.doi.org/10.1103/PhysRevA.84.020302
http://dx.doi.org/10.1103/PhysRevA.84.020302
http://dx.doi.org/10.1103/PhysRevA.84.020302
http://dx.doi.org/10.1103/PhysRevA.84.020302
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevLett.101.230502
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1103/PhysRevLett.87.077902
http://dx.doi.org/10.1103/PhysRevLett.87.077902
http://dx.doi.org/10.1103/PhysRevLett.87.077902
http://dx.doi.org/10.1103/PhysRevLett.87.077902
http://dx.doi.org/10.1103/PhysRevLett.105.187204
http://dx.doi.org/10.1103/PhysRevLett.105.187204
http://dx.doi.org/10.1103/PhysRevLett.105.187204
http://dx.doi.org/10.1103/PhysRevLett.105.187204
http://dx.doi.org/10.1103/PhysRevLett.106.020503
http://dx.doi.org/10.1103/PhysRevLett.106.020503
http://dx.doi.org/10.1103/PhysRevLett.106.020503
http://dx.doi.org/10.1103/PhysRevLett.106.020503
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1088/1367-2630/12/6/065027
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1103/PhysRevLett.106.195301
http://dx.doi.org/10.1103/PhysRevLett.106.195301
http://dx.doi.org/10.1103/PhysRevLett.106.195301
http://dx.doi.org/10.1103/PhysRevLett.106.195301
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.71.042330
http://dx.doi.org/10.1103/PhysRevA.71.042330
http://dx.doi.org/10.1103/PhysRevA.71.042330
http://dx.doi.org/10.1103/PhysRevA.71.042330
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002



