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Necessary condition for local quantum operations and classical communication
with extensive violation by separable operations
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We give a conceptually simple necessary condition such that a separable quantum operation can be implemented
by local operations on subsystems and classical communication between parties (LOCC), a condition which
follows from a novel approach to understanding LOCC. This necessary condition applies to all LOCC protocols
involving any number of parties and any finite number of rounds of communication. Furthermore, it demonstrates
an extremely strong difference between separable operations and LOCC, in that there exist examples of the
former for which the condition is extensively violated. More precisely, the violation by separable operations of
our necessary condition for LOCC grows without limit as the number of parties increases.
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I. INTRODUCTION

One of the most challenging goals of quantum informa-
tion theory is to understand what can be accomplished by
spatially separated parties, each performing local operations
on quantum subsystems and exchanging classical communi-
cation among themselves, a process known as LOCC [1–10].
Unfortunately, this class of operations is extremely difficult to
analyze, and while much progress has been made, we still lack
a deep intuition about its inner workings. Separable operations
(SEP, also known as separable channels) [11], of which LOCC
is a strict subset [12], has a much simpler mathematical
description, but while its study has provided powerful lessons
about LOCC, no simple picture has emerged that would
allow us to understand the difference between these two
important classes of quantum operations in the most general
terms.

The first work showing that SEP and LOCC differ [12]
considered a quantum system distributed to two parties who
know only that the full system is in one of a given set of
mutually orthogonal product states, commonly referred to as
domino states. Their task is to determine with certainty which
state the system was prepared in. While this task can be readily
achieved with SEP, it was shown in [12] that it is impossible
using LOCC, even if the parties are allowed an infinite
number of rounds of communication. More recent work on
a certain random distillation problem [13] has demonstrated
that the gap between LOCC and SEP can be quite significant
[14,15].

There has also been much interest in the structure of
LOCC itself. For example, several papers have looked at
the extent to which using more rounds of communication
may be advantageous. Early work [16] showed that for
the task of transforming from one bipartite pure state to
another, multiple rounds is not better than a single round.
In contrast, certain mixed-state purification scenarios require
at least two rounds of communication [17]. The question
of whether an infinite number of rounds can be helpful has
also been studied. In [18], it was shown that this is not
helpful for perfect state discrimination of complete product
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bases, but there are random distillation tasks for which infinite
rounds are required [19]. Random distillations were also used
to show the existence of sequences of LOCC maps that
converge to a map that cannot be implemented by LOCC
[14].

The foregoing results all arose from studies of specific
operational tasks. In this paper, we take a different approach,
seeking general conditions that can be applied to all LOCC
protocols. Our main result is proven only for the finite-round
case, but see our conclusions for why we believe it may hold
for infinite rounds as well. We uncover a conceptually simple
picture that distinguishes between LOCC and SEP, and then
show that it provides a very strong separation between these
two classes of quantum operations. We prove a necessary
condition for LOCC and then show that separable operations
violate this condition by an arbitrarily large amount, an amount
constrained only by the size of the system as measured by
the number of parties involved. Previous work showing a gap
between LOCC and SEP considered specific tasks that can be
accomplished by SEP but cannot be closely approximated by
LOCC [12–15,20,21]. The gap we show is of a different sort,
one which does not directly address the important question of
how closely a given separable operation can be approximated
by LOCC. In contrast, our necessary condition is of an abstract,
geometrical nature, which provides a more general (and one
may hope, ultimately deeper) understanding of the difference
between SEP and LOCC.

Before proceeding to our theorem, let us recall what LOCC
involves. We may assume the parties have agreed in advance
upon a protocol that they will follow. One of the parties, say
party 1, whose system is described by states in Hilbert space
H1, starts by locally performing a generalized measurement
[22] with outcomes corresponding to Kraus operators Ki1 .
That party broadcasts her outcome i1 to the other parties, who
according to the agreed-upon protocol, all know which of them
(call this party 2) is to measure next. Party 2 then performs
a measurement with outcome i2, described by K

(i1)
i2

acting on
H2 and conditioned on Alice’s outcome i1, after which he
broadcasts his outcome i2 to all the others. The next party to
measure will be α (which could be party 1 again), performing
K

(i1,i2)
i3

, and they may continue in this way for an arbitrary
(but we assume here, finite) number of rounds. From the fact
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that the probabilities of outcomes obtained at each stage must
always sum to unity, one has that for each and every n,

Iα =
∑
in

K
(Sα

n )†
in

K
(Sα

n )
in

, (1)

where Iα is the identity operator on Hα , and Sα
n is a

collection of indices Sα
n = {i1,i2, . . . ,in−1; β}, indicating all

outcomes obtained in earlier measurements. The last index
in the collection, β, indicates which party performed this
measurement, and we refer to the node as a “β node.” When
β �= α we define K

(Sα
n )

in
= Iα , reflecting the fact that party α

does nothing when party β is measuring. When this is the
case, the sum on the right has only this single term Iα , and (1)
becomes trivial.

Given any LOCC protocol, we can represent it as a tree,
each local measurement appearing as a branching to a set of
nodes, with each of these nodes representing one outcome
of that measurement. We will label each node by a positive
operator K(Sα

n )
in

, obtained as follows: starting from the ordered

product, K
(Sα

n )
in

K
(Sα

n−1)
in−1

. . . K
(Sα

2 )
i2

K
(Sα

1 )
i1

, of all Kraus operators
implemented by the party (α) whose outcome is represented
by the given node, multiply this by its Hermitian conjugate to
obtain

K(Sα
n )

in
= K

(Sα
1 )†

i1
K

(Sα
2 )†

i2
. . . K

(Sα
n−1)†

in−1
K

(Sα
n )†

in
K

(Sα
n )

in

×K
(Sα

n−1)
in−1

. . . K
(Sα

2 )
i2

K
(Sα

1 )
i1

. (2)

Note that in this product of Kraus operators, there is one for
each round leading up to this node, but many of these operators
will be the identity, as parties other than α will have measured
at that round along this branch of the tree. We will sometimes
refer to the operator K(Sα

n )
in

as an “outcome” of the associated
measurement by party α.

With this definition of the operators, it was observed in
[23,24] that ∑

in

K(Sα
n )

in
= K(Sα

n−1)
in−1

. (3)

This follows directly from (1) and (2), and will play an
important role in what follows.

For clarity and use in the remaining discussion, the
following is how we identify the SEP implemented by a
given LOCC protocol. When {Sα

n ,in} denotes a leaf of the
tree, it identifies a final outcome of the protocol. The operator
K̂(α)

j := K(Sα
n )

in
/Tr(K(Sα

n )
in

), with Sα
n = {i1,i2, . . . ,in−1; α} [case

β = α in the definition of Sα
n given just below (1)], is then

defined to be party α’s part of the j th outcome in the SEP
implemented by this LOCC protocol. The closest γ node that
is an ancestor to this leaf (ancestors are closer to the root,
descendants are further) identifies the operator implemented
by party γ for this final outcome of the LOCC, and is therefore
proportional to K̂(γ )

j of the SEP (this ancestral relationship
between operators will be important in what follows). By doing
this for each party, we may determine the product operator
K̂j = K̂(1)

j ⊗ · · · ⊗ K̂(P )
j associated with each leaf node. The

SEP implemented by this LOCC protocol is then defined by

the collection of distinct operators {K̂j }Nj=1.1 By Theorem
1 of [20] and the fact that we are restricting our discussion
to finite-round protocols, we may, without loss of generality,
assume N is finite.

The method of [23,24] constructs an LOCC protocol
for a SEP by finding intersections of convex cones formed
from subsets of the local operators K̂(α)

j for each party α.
Consideration of the extreme rays2 of convex cones generated
by these operators will lead us to our main result. The basic
idea underlying this result is that too many extreme rays means
that one cannot find enough intersections to piece together the
full puzzle into a single protocol that incorporates all of the
operators defining the given SEP.

Let us count the distinct extreme rays in the convex cone
generated by the set of local operators {K̂(α)

j }Nj=1 for each party
α, and define this number to be eα . Then we have the following
theorem:

Theorem 1: For any finite-round LOCC protocol of P

parties implementing a separable operation corresponding to
the N distinct positive product operators {K̂j = K̂(1)

j ⊗ · · · ⊗
K̂(P )

j }Nj=1, it must be that

P∑
α=1

eα � 2(N − 1), (4)

where eα is the number of distinct extreme rays in the convex
cone generated by operators {K̂(α)

j }Nj=1, and the sum includes
only those parties for which at least one of these local operators
is not proportional to the identity. The upper bound in (4) can
be achieved with equality when N � 2P .

In Sec. III, we give a proof of this theorem. Prior to that,
in Sec. II, we show that for proving necessary conditions for
LOCC, one can restrict consideration to a special class of
LOCC protocols, which we refer to as “canonical.” In Sec. IV,
we construct separable operations for every P � 2, each one
having a unique representation in terms of product Kraus
operators, and which satisfy

∑
α eα = PN , the maximum

possible value of this sum, showing that the bound in the
theorem is extensively violated by separable operations. The
uniqueness of the product representation for each of these
separable operations implies that any implementation by
LOCC must be in terms of the set of Kraus operators in
that specific representation, since nonproduct representations
cannot be implemented by LOCC. It therefore follows that in
the sense of this theorem, these separable operations are as far
from LOCC as possible. Finally, we offer our conclusions in
Sec. V.

1See Theorem 2 and the accompanying discussion in [23] for an
explanation of why all our results hold equally well when one’s
interest is in the Kraus operators implemented by the protocol, rather
than just the K̂j .

2A ray is a half-line of the form {λK̂(α)
j |λ � 0}, and we will

sometimes refer to K̂(α)
j as a “ray,” by which we will mean that this

operator generates the ray through multiplication by non-negative
scalars λ. An extreme ray of a convex cone is a ray that lies in the
cone but cannot be written as a positive linear combination of other
rays in that cone.

012336-2



NECESSARY CONDITION FOR LOCAL QUANTUM . . . PHYSICAL REVIEW A 90, 012336 (2014)

II. CANONICAL LOCC PROTOCOLS

Before proceeding to the proof of our main result, we
show that in proving a necessary condition for LOCC, we
can restrict consideration to the special class of “canonical”
LOCC protocols, defined below. We begin by arguing that one
need only consider SEPs having operators K̂j such that each
of the P parties has at least one local operator K̂(α)

j that is
not the identity. Consider any LOCC protocol involving P̃

parties, with the collection of final outcomes corresponding to
the set of positive operators {K̂j }Nj=1. If for each j = 1, . . . ,N

a given party only does an isometry, so that for this party
K̂(α)

j ∝ Iα∀j , then that party can simply do those isometries
at the end of the protocol. Then it is immediate that an LOCC
exists for this SEP on P̃ parties if and only if one exists for
the SEP on P̃ − 1 parties obtained by simply deleting that
one party’s local operators from the K̂j . Hence, in proving a
necessary condition for LOCC, we need only consider SEPs
having operators K̂j such that each of the P parties has at least
one local operator K̂(α)

j that is not the identity.
We next recall the following fairly straightforward result,

which is Lemma 4 in [23].
Lemma 2: For any LOCC protocol involving local mea-

surements having two or more proportional outcomes, there
is a corresponding LOCC protocol with no two outcomes
of any measurement proportional to each other, but which
implements the exact same separable operation as the original
protocol, including reproducing the same weights for each
positive operator K̂j defining the separable operation.

In addition, if a party performs an isometry (“measurement”
with only one outcome) at any stage of an LOCC protocol,
they could just as well have absorbed that isometry into their
subsequent measurement, omitting the round in which they
had implemented the isometry (see the paragraph following
Lemma 1 in [23] for details). Therefore, we can restrict
consideration to LOCC protocols for which every round
involves a measurement having at least two outcomes.

It is then a simple matter to revise any such LOCC
protocol into another for which every measurement has exactly
two outcomes, with the latter implementing the exact same
separable operation as the former. This can be done with
a replacement of each measurement having more than two
outcomes by a sequence of measurements having exactly two
outcomes each. It is also readily demonstrated that if the
original protocol has no two proportional outcomes in any
individual measurement, then one can choose each replace-
ment sequence of two-outcome measurements such that none
of these measurements has its two outcomes proportional to
each other.

These observations tell us that in proving necessary
conditions for LOCC, we can (and will, in what follows)
restrict consideration to the following special class of LOCC
protocols, which we refer to as canonical LOCC protocols.

Definition 3: A “canonical” LOCC protocol is one where
every local measurement has exactly two outcomes, and
in each of these measurements, the two outcomes are not
proportional to each other. Every such protocol can therefore
be represented by a tree with every nonleaf node having exactly
two child nodes (these are commonly known as full binary

trees). Each node is labeled by a positive operator as defined in
(2), and for any given node, the positive operators representing
its two child nodes are not proportional to each other. We will
refer to such trees as canonical LOCC trees.

We now turn to the proof of our theorem.

III. PROOF OF THEOREM 1

As we will be dealing with full binary trees, the following
well-known theorem will be useful.

Theorem 4: For a full binary tree, the number of leaf nodes
exceeds the number of nonleaf nodes by exactly 1 [25].

We will also need the following lemma, proved in
Appendix A, concerning the location of nodes in a canonical
LOCC tree that may be extreme rays.

Lemma 5: In a canonical LOCC tree, a node n representing
an outcome of a measurement by party α cannot be an
extreme ray if there is an α node that is a descendant of
node n.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Consider first the special case where,

in a finite canonical LOCC tree, each distinct outcome (each
K̂j ) appears once and only once as a leaf of the tree. Then,
the number of leaves on the tree is equal to the number of
outcomes, N . Since the protocol begins with all parties having
yet to make a measurement, we may label the root of the tree
as Iα for some α (it is immaterial for our purposes which α is
chosen). Now, Iα is not an extreme ray except when it is the
only ray in the cone, which cannot happen for the canonical
protocols we are considering. Therefore, since the root node
is not extreme, and since every extreme ray (indeed, every
local operator K̂(α)

j ) in the corresponding SEP is represented
by a node in the tree,

∑
α eα cannot exceed one less than the

number of nodes. Since the total number of nodes is 2N − 1
by Theorem 4, we find that

∑
α eα � 2(N − 1) as claimed.

In general, however, there will be repeated outcomes:
multiple leafs will correspond to the same outcome of the SEP
(the same K̂j ). Therefore, we need a way to count extreme
rays without counting repetitions of those already counted.
We will do this by removing nodes in a way in which the tree
remains a full binary tree at every stage of the process, and
which leaves at least one instance of each extreme ray. Note
that by removing nodes, the remaining tree will no longer
correspond to an LOCC protocol, but this is unimportant as
our only purpose is to count everything in an appropriate
manner.

Depict the tree with the root at the top and branches
extending downward to the right and left. Each nonleaf node is
parent to two child nodes, each of which is, in turn, the root of
what we may refer to as a child subtree of that parent. Notice
that every pair of nodes has a closest common ancestor. If that
ancestor is not one of the pair, the node that is in the right
child subtree of this common ancestor is “to the right” of the
other, which is necessarily in the left child subtree (according
to this definition, a node that is an ancestor to another node
is neither to the right nor to the left of that other one). For
each j , there is therefore a rightmost K̂j leaf (a leaf is never
ancestor to another leaf), which we choose as the “keeper” K̂j

leaf. In this way we obtain N keeper leafs, where for each j
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any nonkeeper K̂j leaf is to the left of its respective keeper
leaf. All nonkeeper leafs will be removed in a way that leaves
a full binary tree with N leaf nodes.

As discussed in the next paragraph, nonkeeper leafs will be
removed as part of a subtree, and this is done in two different
ways, which we now describe. Consider a subtree T of the
full tree, where T has no keeper leafs in it. Denote the parent
of (the root of) T as np, the other child of this parent as
nc. Of the collection of K̂j leafs in T (with j ranging over
all values present in T ), if at least one of the corresponding
keeper K̂j leafs is not a descendant of np, then remove np

along with the entire subtree, T . The tree is kept as a full
binary tree by adding an edge from the parent of np to the
remaining child node nc. We will refer to this as a “type-1”
removal. “Type-2” removals will be used when every leaf in
T has its corresponding keeper leaf as a descendant of np, and
thus of nc, in which case we will remove nc along with T ,
reattaching the children of nc as children, still siblings, of np,
and taking care to preserve the right-left relationship between
these children. (Under these circumstances, it turns out that nc

cannot be a leaf; see Appendix B for a proof.) Again, the tree
remains full binary. See Fig. 1 for an illustration of these two
types of removals.3 They are chosen to guarantee that there is
at least one instance of every extreme ray still present in the
fully pruned tree; this will be proved below.

The following is how we will prune the tree. At every
stage including the first, consider the leftmost nonkeeper leaf.
If the sibling subtree of this nonkeeper leaf has no keepers,
consider instead the entire subtree for which the parent of
these subtrees is the root (that is, consider both sibling subtrees
and their parent as a single subtree). Then, if the sibling
subtree of this larger subtree has no keepers, combine these
two subtrees with their parent, and consider this larger subtree.
Continue in this fashion until a keeper leaf is encountered in
the sibling subtree, having thus found a “maximal” keeperless
subtree. Remove this entire maximal subtree as either type 1 or
type 2, whichever is appropriate. Then, find the leftmost
nonkeeper leaf in the tree that remains, and repeat this process
until all nonkeeper leafs have been removed.

Having removed all nonkeeper leafs, the N keepers are
the only leafs remaining in the fully pruned tree, as desired.
Furthermore, a nonleaf node is only removed if it is within
a subtree that has no keeper leaf in it, or if it is that extra
nonleaf node that is removed along with one of those subtrees.
This implies that the root of the entire original tree is never
removed: the only subtree it is within is the full original tree,
which obviously has a keeper; and if either child subtree of the
root has no keeper leaf, then the other subtree has in it every
keeper corresponding to the nonkeepers in that first subtree,

3Notice that the tree structure induces a partial order among the
nodes, having to do with whether or not two nodes are an ancestor
descendant of one another. As should be clear from Fig. 1, if a pair
of nodes are (are not) an ancestor (descendant) of one another after a
removal, then they were (were not) an ancestor (descendant) before
the removal.

FIG. 1. Illustration of the two types of removals used in pruning
a canonical LOCC tree. (a) A type-1 removal, where the parent np

is removed along with the maximal keeperless subtree T . This type
of removal is used when there is at least one K̂j leaf in T whose
corresponding keeper is not in T ’s sibling subtree, T ′. The root of T ′

is nc, which may be the only node in T ′, in which case it turns out
that nc is itself a keeper leaf. (b) A type-2 removal where nc, which
is the root of the sibling subtree of T , is removed with T . This type
of removal is used when every leaf in T has its corresponding keeper
leaf in either T1 or T2. Under these circumstances, nc cannot be a
leaf.

so the first subtree is removed as type 2, in which case it is the
root of the other subtree that is removed as the extra nonleaf,
rather than the root of the entire tree. Hence, the root of the
entire original tree is still present as the root of the entire fully
pruned tree.

We now prove that at least one instance of each extreme
ray always remains in the fully pruned tree. Suppose, by
contradiction, that for some fixed α and each j ∈ J with
index set J ⊆ {1,2, . . . ,N}, K̂(α)

j =: K̂(α)
∗ is a (single) extreme

ray whose every appearance is removed in our procedure for
pruning the tree. This means that no keeper leaf can be K̂(α)

∗ ,
since keeper leafs are never removed. Therefore, each K̂j

keeper leaf with j ∈ J has a K̂(α)
∗ node as its closest α-node

ancestor in the original tree. Indeed, since by Lemma 5 each
K̂(α)

∗ node has no α-node ancestors itself, it is also the case that
each K̂(α)

∗ node is a closest α-node ancestor to at least one K̂j

leaf, j ∈ J (at least two such leafs, actually, in this canonical
tree). Recall that each nonkeeper is to the left of its respective
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keeper leaf and consider the rightmost appearance of K̂(α)
∗ in

the original tree.4 This rightmost appearance will be ancestor
to a keeper K̂j leaf with j ∈ J , since otherwise the nonkeeper
it is ancestor to would be to the right of its respective keeper.
Since this K̂(α)

∗ node is ancestor to a keeper, it is not removed
as part of an entire subtree T (T is only removed if it has
no keepers), so it must be removed as the extra nonleaf that
is removed along with T . For type-2 removals, it turns out
that the extra nonleaf nc is not extreme (see Appendix B for a
proof), so this K̂(α)

∗ node must be removed as type 1, that is,
as parent np of T . For the (generally, partially pruned) tree to
which this type-1 removal is applied, then according to how
we decide which type of removal to use, there exists a K̂i

leaf in T , which is a descendant of np, whose corresponding
keeper is not a descendant of np. Since ancestral relationships
are not altered during pruning3 (for those nodes that remain in
the tree), this means that in the original tree, this nonkeeper K̂i

leaf in T is a descendant of np and its corresponding keeper is
not. Thus, the keeper K̂i leaf is to the right of np in the original
tree, since that keeper is to the right of a descendant of np

(that nonkeeper) and is not itself a descendant of np, implying
that keeper is in the right child subtree of its closest common
ancestor with np, and np is not that closest common ancestor.
Also in the original tree, this keeper K̂i leaf is either K̂(α)

i or
else has a K̂(α)

i ancestor, and in either case this K̂(α)
i node cannot

be a descendant of np (or else the keeper K̂i leaf would be a
descendant of np), so is either ancestor to np or is to the right
of np. If it is ancestor to np, K̂(α)

i �= K̂(α)
∗ , because K̂(α)

i has np

as an α-node descendant, so by Lemma 5 cannot be extreme,
which K̂(α)

∗ is, by assumption. If, on the other hand, this K̂(α)
i

is to the right of np, we also have that K̂(α)
i �= K̂(α)

∗ , because
np is the rightmost K̂(α)

∗ node. In either case, the nearest α

node to that nonkeeper K̂i leaf in the child subtree T of np

is also K̂(α)
i �= K̂(α)

∗ , so is not np, implying T must have an α

node in it, which is thus a descendant of np. Since np is K̂(α)
∗ ,

Lemma 5 then tells us that K̂(α)
∗ is not extreme, a contradiction,

proving that every extreme ray is present at least once in the
fully pruned tree.

The fully pruned tree is a full binary tree, so has N leaf nodes
and 2N − 1 nodes in all. Since every extreme ray is present as
one of its nodes, and since the root of the original tree is not
extreme and is never removed, there can therefore be no more
than 2(N − 1) extreme rays. It is shown in Appendix C that
this bound can be saturated when N � 2P , which completes
the proof. �

Having proved the bound of Theorem 1, we now pro-
ceed to the next section, where we demonstrate the ex-
istence of separable channels that maximally violate this
bound.

4With K̂(α)
∗ assumed to be extreme, no K̂(α)

∗ node can have an α-node
descendant, according to Lemma 5. Therefore, no one of these nodes
can be ancestor to another one, implying that each K̂(α)

∗ node is either
to the right or left of every other one, so there is one of them that is
furthest to the right.

IV. SEPARABLE CHANNELS ON P PARTIES
WITH

∑
α eα = P N

Here, we construct SEPs as sets of positive operators {K̂j }
for every P and for which Theorem 1 is violated maximally,
having

∑
α eα = PN . Define operators K̂j = |�j 〉〈�j |,j =

1, . . . ,N , where |�j 〉 = (D/N )1/2|ψ (1)
j 〉 ⊗ · · · ⊗ |ψ (P )

j 〉, D =
d1d2 . . . dP , dα is the dimension of Hilbert space Hα with
parties ordered such that d1 � d2 � · · · � dP , and the state on
party α’s subsystem is

∣∣ψ (α)
j

〉 = 1√
dα

dα∑
mα=1

e2πijpαmα/N |mα〉. (5)

Here, p1 = 1 and for α � 2, pα = d1d2 . . . dα−1, |mα〉 is the
standard basis for party α, and N is chosen as any prime
number exceeding D. Since for each positive operator K̂j ,
the local parts are the rank-1 projectors K̂(α)

j = |ψ (α)
j 〉〈ψ (α)

j |,
each K̂(α)

j is thus an extreme ray of its respective convex cone.
This means that eα = N∀α and

∑
α eα = PN , an extensive

violation of Theorem 1 and the maximal possible value of this
sum.

We need to show that the set {K̂j } satisfies closure,∑
j K̂j = I . We have

N∑
j=1

K̂j = 1

N

d1∑
m1,n1=1

· · ·
dP∑

mP ,nP =1

⎛⎝ N∑
j=1

e2πij
∑

α pα (mα−nα )/N

⎞⎠
× |m1 . . . mP 〉〈n1 . . . nP |

=
d1∑

m1,n1=1

· · ·
dP∑

mP ,nP =1

δ

(
P∑

α=1

pαmα,

P∑
α=1

pαnα

)
× |m1 . . . mP 〉〈n1 . . . nP |, (6)

where δ(·,·) is the Kronecker delta, vanishing unless its
two arguments are equal, in which case it is equal to
unity. Recall that p1 = 1 and pα = d1d2 . . . dα−1, α � 2. Sup-
pose mP �= nP . Then, pP |mP − nP | � pP = d1d2 . . . dP−1 >∑P−1

α=1 pα|mα − nα|, since the right-hand side of this inequal-
ity is no greater than d1 − 1 + d1(d2 − 1) + d1d2(d3 − 1) +
· · · + d1d2 . . . dP−2(dP−1 − 1) = d1d2 . . . dP−1 − 1. We con-
clude that equality of the two arguments in the Kronecker delta
in the last line of (6) requires mP = nP . Similar arguments,
proceeding sequentially with decreasing α starting next from
α = P − 1, shows that mα = nα∀α. Thus, the right-hand side
of (6) is equal to I , the identity on the full input Hilbert space,
as desired.

Finally, for each P , we show the existence of sets of Kraus
operators corresponding to the positive operators given in
the previous paragraph, which are the unique product Kraus
representation for their associated quantum channel. Define
Kraus operators K̂j = |
j 〉〈�j |, with |�j 〉 defined above (5).
Define normalized states |
j 〉 = |φ(1)

j 〉 ⊗ |
′
j 〉 with {|
′

j 〉}Nj=1
a set of linearly independent product states on the P − 1
parties excluding party 1. (This requires that at least one output
dimension of those last P − 1 parties exceeds its input, in order
that the overall output dimension is not less than N , the number
of these independent states.) Then, since no two of the |ψ (1)

j 〉
are proportional to each other, the conditions of Theorem 2 of
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[26] are met for this set of Kraus operators (with a bipartite split
between party 1 and all the rest), which implies that no linear
combination of the K̂j is a product operator (apart from the
K̂j ’s themselves). This, in turn, implies that the set {K̂j }Nj=1
is the unique product representation for the given channel.
Therefore, there is no other Kraus representation that could
possibly be LOCC, and these channels are as far from LOCC
as possible, in the sense of Theorem 1, as claimed.

V. CONCLUSIONS

In summary, we have proved a necessary condition for any
finite-round LOCC protocol, stated in Theorem 1. We have
also demonstrated that this necessary condition is violated
extensively by separable operations, this violation growing
without bound as the number of parties increases. Considering
any given product Kraus representation of a separable channel,
violating our bound becomes a sufficient condition that this
representation cannot be exactly implemented by LOCC.

One direction for future work is to take a more detailed
look at extreme rays. As an example, suppose K̂(1)

1 and K̂(2)
1 are

each extreme and are not proportional to any of the other local
operators, K̂(α)

j ,j �= 1,α = 1,2, respectively. We may say that

K̂1 contains two “singly extreme” rays. Then by Corollary 1
of [23], this SEP cannot be exactly implemented by any finite-
round LOCC protocol. The reason is that in order for K̂1 to be
part of an LOCC tree involving the other K̂j , either the ray K̂(1)

1

must intersect the cone of the other K̂(1)
j or the ray K̂(2)

1 must

intersect the cone of the other K̂(2)
j , neither of which is the case.

Although we have no proof, we suspect that this SEP cannot be
implemented even with the use of an infinite number of rounds,
because if it could, then the SEP could be approximated as
closely as desired by using a large enough (but finite) number
of rounds. However, if the approximation is close enough, one
expects that the K̂′(α)

j of this approximation will partition into

two sets—one close to the extreme ray K̂(α)
1 , the other close

to the other K̂(α)
j ,j �= 1—such that there will be no nontrivial

intersection of the cones from these two sets, and this will be
so for each of the parties α = 1,2. By an argument similar to
that just used for the K̂j , one could then conclude that this
approximation cannot be implemented by finite-round LOCC,
a contradiction. Therefore, we conjecture that SEPs of this sort
cannot be approximated arbitrarily closely by LOCC. This is
especially interesting in the bipartite case, for which a violation
of the conditions of our Theorem 1 necessarily implies that
at least one K̂j contains two singly extreme rays. Hence, a
proof of this conjecture would also extend our Theorem 1 to
infinite-round LOCC, in the case of two parties. While the same
conclusion does not immediately follow for P > 2, it would
certainly be suggestive that our theorem may well apply to
infinite-round LOCC for any number of parties.

Another avenue we are pursuing is to look at the number
of distinct rays Dα in the cones of the various parties, rather
than just counting those rays that are extreme. For two parties,
it is not difficult to see from the results of [24] that a necessary
condition for finite-round LOCC is

∑
α Dα � 2N − 1. This

bound, which one can show is tight for any N > 1, provides the
first general way of distinguishing between finite- and infinite-

round LOCC, as demonstrated by the fact we have succeeded
in constructing bipartite SEPs that can be exactly implemented
using an infinite number of rounds, but which satisfy

∑
α Dα =

2N . For P = 3, we have proved that
∑

α Dα � 3N − 5 with
finite-round LOCC, a tight bound that applies if (and only if)
N � 6. We suspect that this upper bound can also be exceeded
using infinite rounds, a question we are presently studying,
and we are attempting to extend these results to larger P , as
well.
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APPENDIX A: PROOF OF LEMMA 5

If α-node n has another α node that is its descendant,
then party α made a measurement after the measurement
that produced node n. Then, by (3) of the main text, the
positive operator labeling node n is a sum of those positive
operators labeling the descendant α nodes produced by the
later measurement. In turn, some of those descendants may
themselves have other descendant α nodes produced by a
subsequent measurement, and so are sums of those operators
corresponding to the latter nodes. Eventually, if we continue
toward the leaves, we end up with nodes that are labeled by the
K̂(α)

j defining the separable operation, so that node n is seen to

be labeled by a sum of those K̂(α)
j . This means node n cannot

be an extreme ray in the convex hull of the K̂(α)
j unless all the

K̂(α)
j entering this sum are proportional to each other, which is

impossible in the canonical LOCC trees we are considering.�

APPENDIX B: PROOF THAT nc IS A NONLEAF THAT IS
NOT EXTREME FOR ALL TYPE-2 REMOVALS

For type-2 removals (of subtree T and its present sibling
nc), we need to show that nc is a nonleaf that is not extreme.
Our argument will utilize the fact that nc and the root of
T were siblings in the original tree, so we need to be sure
this is always the case, even following earlier removals. The
only way siblings change during the pruning process is via
type-1 removals, since type-2 removals do not change sibling
relationships. Suppose there was a type-1 removal of T̃ , child
subtree of ñp, where the other child subtree of ñp was T̃ ′ and
the sibling of ñp before this removal was ñ′

p. This removal
only changes sibling relationships by changing the sibling of
ñ′

p from ñp to the root of T̃ ′, which we denote as ñ′
c (see Fig. 2).

We now argue that there will never be a type-2 removal
involving nodes at the positions of this newly created sibling
pair, even if their identities change further through subsequent
pruning. Since T̃ ′ presently has a keeper leaf (because other-
wise the removed T̃ was not a maximal keeperless subtree,
which are the only ones we remove), it will always have
a keeper no matter how much further pruning occurs, since
keepers are never removed. Hence, a type-2 removal involving
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FIG. 2. A type-1 removal creates a new sibling pair, ñ′
c and ñ′

p ,
but this pair will never be involved in a subsequent type-2 removal,
showing that type-2 removals always involve siblings that were
siblings in the original tree.

these nodes can only occur if the new sibling sub-tree of T̃ ′ (call
this sub-tree T̃ ′′) is keeperless, which means it was keeperless
to begin with, even before the previous type-1 removal that
changed the sibling pair. This means that T̃ ′′ is to the right of T̃ ′,
because otherwise T̃ ′′ would have been a maximal keeperless
subtree, removed before that previous type-1 removal, since
the pruning proceeds from left to right. However, if it is to the
right, then the keeper leafs corresponding to the nonkeepers in
T̃ ′′ are further to the right and therefore not in T̃ ′, so removal of
T̃ ′′ will be via a type-1 removal, not type 2. This conclusion is
true no matter what pruning takes place between the previous
type-1 removal and this one, because no pruning can change
the fact that the keepers corresponding to the nonkeepers in
T̃ ′′ are to the right of T̃ ′′ and not in T̃ ′. Therefore, all type-2
removals involve siblings that were siblings in the original
tree.

Consider a type-2 removal of T , a child subtree of np, with
np’s other child nc removed along with T . We can now prove
that nc is not extreme. From the discussion above, we know
that the root of T was sibling to nc in the original (canonical)
tree, so these two are not proportional and are both α nodes
for the same α. Assume, by contradiction, nc is extreme. Then
by Lemma 5, nc is an α node with no α-node descendants, so
nc must be proportional to K̂(α)

j for every j such that K̂j is
one of the keeper leafs that are descendants of nc. Since every
leaf in T has its corresponding keeper leaf as a descendant of
nc, the closest α node to each and every leaf in T must also
be proportional to this same K̂(α)

j (since the root of T is an
α node, there is at least one such node in T ). Therefore, by (3)
of the main text, every α node in T , including its root node,
is proportional to this same K̂(α)

j . In other words, the root of
T is proportional to nc, a contradiction, proving that nc is not
extreme. Repeating the exact same argument starting from the
assumption nc is a leaf leads to the same contradiction, thus
proving nc is a nonleaf, and we are done.

APPENDIX C: SATURATING THE BOUND IN THEOREM 1

We will now show that any LOCC protocol satisfying the
following two conditions saturates the bound in Theorem 1,∑

α eα = 2(N − 1):
(1) Each party measures once and only once with the

same ordering of the parties no matter which outcomes were
obtained by the preceding parties. In addition, each of these
measurements has exactly two outcomes.

Along any branch of the associated LOCC tree, party 1 starts
with a two-outcome measurement, followed by a two-outcome
measurement by party 2, which is followed by a two-outcome
measurement by party 3, and so on until each party has mea-
sured once, party P always making the final measurement. For
the entire protocol, party α has 2α−1 different measurements,
which measurement that party makes being determined by the
outcomes of all previous parties’ measurements. Party α has a
total of 2 × 2α−1 = 2α measurement outcomes.

(2) Each of the 2α outcomes for party α is a distinct extreme
ray in the cone generated by the collection of these outcomes.
Note that for a protocol satisfying the preceding condition 1,
many of the K̂(α)

j (fixed α but different j ) will be equal to each
other, which explains why party α �= P has only 2α extreme
rays, rather than the maximum possible number, N = 2P .

Here is one specific example that does the trick. For each
of party α’s measurements, indexed by m = 1, . . . ,2α−1, let
one Kraus operator be a projector onto (normalized) pure state
|ξ (α)

m 〉, with the other outcome Iα − |ξ (α)
m 〉〈ξ (α)

m |. As these are
both projectors, the K̂(α)

j are equal to these Kraus operators:

K̂(α)
2m−1 = ∣∣ξ (α)

m

〉〈
ξ (α)
m

∣∣,
(C1)

K̂(α)
2m = Iα − ∣∣ξ (α)

m

〉〈
ξ (α)
m

∣∣.
Choose the set of pure states |ξ (α)

m 〉 in each Hα such that no two
are the same and no two are orthogonal to each other. Then
the following argument shows that each and every K̂(α)

j is an
extreme ray in the convex cone generated by the collection
of all of them (many are repeated, as explained above): The
pure state projectors K̂(α)

2m−1 are each an extreme ray in the
cone of the full set of positive operators acting on Hα , so
are necessarily also extreme in the cone of the collection
of K̂(α)

j . If Hα is two-dimensional, then K̂(α)
2m is also extreme

for each m, by the same argument. Otherwise, K̂(α)
2m has rank

exceeding unity so is not extreme in the cone of all positive
operators, but is nonetheless on the boundary of that set, since
K̂(α)

2m|ξ (α)
m 〉 = 0. Note also that pj := 〈ξ (α)

m |K̂(α)
j |ξ (α)

m 〉 > 0 for

every j �= 2m. Suppose K̂(α)
2m = ∑

j �=2m cj K̂j , with cj � 0.
Taking the diagonal element, 〈ξ (α)

m | · · · |ξ (α)
m 〉, of this equation

leads to 0 = ∑
j �=2m cjpj , or cj = 0∀j �= 2m, a contradiction

since K̂(α)
2m �= 0. Therefore, K̂(α)

2m cannot be written as a positive
linear combination of all the others and so is an extreme ray in
the cone of their collection. We conclude that each and every
K(α)

j is an extreme ray, eα = 2α∀α, and
∑

α eα = 2 + 22 +
· · · + 2P = 2(2P − 1) = 2(N − 1), saturating the bound.

If the last party omits his measurement for one of the
outcomes of the next-to-last party, this removes a pair of leaf
nodes, replacing it with a single leaf. Therefore, this reduces
N by unity to 2P − 1. The number of extreme rays is reduced
by two, since the new leaf was counted as extreme before the
pair of leafs was removed, so the bound is still saturated. By
continually omitting single measurements by the last party to
measure along a given branch, N is reduced by unity for each
omission, and the number of extreme rays is reduced by two.
In this way, we can obtain examples saturating the bound for
any N satisfying P + 1 � N � 2P [N cannot be less than
P + 1, since all P parties perform a nontrivial measurement
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at least once in the full protocol; alternatively, one may note
that according to the way we count parties, eα � 2∀α, so

2P �
∑

eα � 2(N − 1), which also shows N � P + 1]. This
completes the proof of Theorem 1.
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