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Quantum simulation of superexchange magnetism in linear ion crystals
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We present a system for the simulation of Heisenberg models with spins s = 1/2 and s = 1 with a linear crystal
of trapped ions. We show that the laser-ion interaction induces a Jaynes-Cummings-Hubbard interaction between
the atomic V-type level structure and the two phonon species. In the strong-coupling regime the collective atom
and phonon excitations become localized at each lattice site and form an effective spin system with varying
length. We show that the quantum-mechanical superexchange interaction caused by the second-order phonon
hopping processes creates a Heisenberg-type coupling between the individual spins. Trapped ions allow control
of the superexchange interactions by adjusting the trapping frequencies, the laser intensity, and the detuning.
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I. INTRODUCTION

Quantum simulation is a promising tool to investigate com-
plex intriguing phenomena in condensed matter physics [1–3].
The current ion trap technology is among the most promis-
ing physical systems for the implementation of a quantum
simulator of many-body models [4,5], such as quantum
spin magnetism [6–8] and quantum structural phase transi-
tions [9,10], by means of spin-dependent forces. The recent
experimental realization of the quantum phase transition from
a localized Mott insulator state to a delocalized superfluid
state of polaritonic excitations in a system of trapped ions
opened fascinating prospects for exploring strongly correlated
spin-boson systems under controlled conditions [11]. Such a
quantum phase transition of hybrid light-matter excitations
is described by the celebrated Jaynes-Cummings-Hubbard
(JCH) model in which the elementary excitations are polariton
quasiparticles. Originally the JCH model was introduced
to describe a coupled array of electromagnetic resonators,
each coupled coherently to a two-level system [12,13]. The
strong coupling between the bosonic mode and the atomic
levels introduces a nonlinearity into the system, leading to
an effective repulsive photon-photon interaction [14]. With
trapped ions the bosonic mode is naturally provided by the
quantized radial ion oscillations, which we refer to as local
phonons, while the coupling between the phonons and the
two-state atom is provided by an external laser field [15].

In the strongly coupled regime, the on-site repulsion
dominates over the hopping processes and hence the system
is in the Mott phase, in which the polaritonic excitations
become localized in each lattice site [16–18]. It was shown
that in this phase a useful mapping to the spin- 1

2 XX model
is possible by considering the low-lying energy states of two
Mott-insulating lobes [12]. Because the Mott state of the JCH
model is not degenerate, the perturbative hopping processes
in the single Mott-insulating lobe do not introduce additional
spin dynamics. The situation is changed significantly when
the three-level atom is coupled to two bosonic species via the
Jaynes-Cummings (JC) interaction; see Fig. 1. In this case for
unit filling factor the ground state is doubly degenerate such
that the low-energy physics is described by an effective spin- 1

2
system. Moreover, due to the second-order hopping processes

the effective spins on different lattice sites become coupled by
the Heisenberg exchange interaction [19,20].

In this paper, we propose a quantum simulation of
anisotropic Heisenberg spin models with spins s = 1

2 and
s = 1 in a system of trapped ions. The underlying idea is based
on the mapping of the Jaynes-Cummings-Hubbard model in a
V-type three-level (JCHV) system to an effective Heisenberg
spin model using a linear ion crystal. The two bosonic
species in the JCHV model are represented by the two radial
local phonon modes, while the long-range phonon hopping
dynamics appears naturally due to the Coulomb interaction.
We shall show that the laser beams in two orthogonal directions
tuned near the respective red sideband transition can be
used to provide the JC couplings between the three internal
states of the ion and the two radial phonon species. Another
possible realization of the JCHV model is based on an
oscillating magnetic field gradient, where the JC couplings are
controlled by the magnetic gradient. When the phonon hopping
dynamics is suppressed the second-order virtual processes can
induce an effective Heisenberg exchange between the localized
polaritonic excitations in different lattice sites. The nature
of the conserved polariton quasiparticles can be transformed
into atomic or phononic excitations by controlling the laser
intensity and detuning. We will show that in the strongly
coupled regime the Heisenberg spin models with s = 1

2 and
s = 1 can be realized. As for the ultracold two-component
atoms in an optical lattice [21–24], we show that higher-order
virtual phonon hopping processes in both radial directions
mediate the spin-spin interactions. We calculate the respective
tunneling matrix elements in the case of anisotropic spin-
phonon couplings and detuned JC interaction. We consider
two cases. (i) In the case of one excitation per lattice site the
corresponding spin dynamics is described by the anisotropic
XXZ Heisenberg model in the presence of an external effective
magnetic field. We show that the anisotropy in the system can
be controlled by external parameters such as the laser intensity
and the detuning, which allows us to realize an easy-axis or
easy-plane ferromagnet. (ii) For two excitations per lattice
site, the underlying lowest-energy physics of the JCHV model
is described by an effective spin s = 1 system. We show
that the spin-spin interaction induced by the second-order
hopping events is governed by the highly anisotropic spin
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FIG. 1. (Color online) The V-type three-level system consists of
the ground state |g〉 and two metastable excited states |e1〉 and |e2〉.
Two laser beams with properly chosen frequencies and polarizations
create JC couplings between the V-type level structure and the two
radial x and y phonon species.

s = 1 Heisenberg model. Such a spin-1 model can serve as a
test bed to explore novel topological orders.

The paper is organized as follows. For the sake of the
reader’s convenience, in Sec. II we introduce the tight-binding
model which describes the dynamics of the local radial
phonons in the linear ion crystal. In Sec. III we provide a
scheme for the realization of the JCHV model with a laser-
driven linear ion crystal. In Sec. IV we discuss the relevant
energy scales of the JCHV Hamiltonian and the perturbative
approach that incorporates the effect of the phonon hopping.
In Sec. V we discuss the realization of the XXZ spin s = 1

2
Heisenberg model in the case of anisotropic spin-phonon
couplings. In Sec. VI we derive the effective spin s = 1
Heisenberg-like Hamiltonian. Finally, the conclusions are
presented in Sec. VII.

II. PHONON HAMILTONIAN

We consider a crystal of N identical ions with charge e

and mass m confined in a Paul trap along the z axis with trap
frequencies ωα (α = x,y,z). The potential energy V̂ of the
trapped ions is a sum of the effective harmonic potential and
the mutual Coulomb repulsion between the ions of the trap,

V̂ = m

2

∑
α

N∑
j=1

ωαr̂2
α,j +

N∑
j>k

e2

|�̂rj − �̂rk|
, (1)

where �̂rj is the position vector operator of ion j . For sufficiently
low temperature and strong radial confinement (ωx,y � ωz)
the ions are arranged in a linear configuration and occupy
equilibrium positions z0

i along the trapping z axis, which are
determined by the minimization of potential (1) [25]. The
position operator of ion j is

�̂rj = (
z0
j + δr̂z,j

)�ez + δr̂x,j �ex + δr̂y,j �ey, (2)

where δr̂α,j are the displacement operators around the equi-
librium positions. We expand the potential V̂ for small
displacement around the equilibrium positions and consider
the motion only in the radial x-y plane, which gives (β = x,y

and � = 1 from now on)

Ĥxy = 1

2m

∑
j

∑
β

p̂2
β,j + m

2

∑
j

∑
β

ω2
βδr̂2

β,j

−
∑

β

∑
j>k

e2

2
∣∣z0

j − z0
k

∣∣3 (δr̂β,k − δr̂β,j )2. (3)

In the following we treat each ion as an individual oscillator
by introducing creation â

†
β,j and annihilation âβ,j operators

of local phonons at site j and direction β, such that p̂β,j =
i
√

mωβ/2(â†
β,j − âβ,j ) and δr̂β,j = (â†

β,j + âβ,j )/
√

2mωβ , re-
spectively. Assuming that the radial trapping potential is much
larger than the Coulomb interaction we arrive at [15,26]

Ĥxy = Ĥ0 + Ĥb,

Ĥ0 =
∑

β

∑
j

ωβ,j â
†
β,j âβ,j , (4)

Ĥb =
∑
j>k

t
β

j,k(â†
β,j âβ,k + âβ,j â

†
β,k),

where the fast rotating terms â2
β,j and (â†

β,j )2 are neglected,

which is justified as long as ωβ � t
β

j,k . Here Ĥ0 is the free
bosonic term with renormalized phonon frequency ωβ,j =
ωβ + δωβ,j ,

δωβ,j = −
∑
k �=j

e2

2mωβ

∣∣z0
j − z0

k

∣∣3 , (5)

which is caused by the interaction of ion j with the rest of
the ion crystal. The term Ĥb describes the Coulomb-mediated
long-range phonon hopping dynamics with hopping strength

t
β

j,k = e2

2mωβ

∣∣z0
j − z0

k

∣∣3 . (6)

The distribution of the hopping values and the local phonon
frequencies are shown in Fig. 2 for a chain of 21 ions. We note
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FIG. 2. (Color online) (a) The on-site phonon frequencies δωβ,j

and (b) Coulomb-mediated long-range hopping amplitudes t
β

11,j in
the radial x and y directions in units of ωz for a linear ion crystal with
N = 21 ions as a function of the ion positions. The aspect ratios are
ωx/ωz = 50 and ωy/ωz = 100.
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that the phonon hopping dynamics subject to the tight-binding
Hamiltonian (4) was experimentally observed recently in a
linear Paul trap [27] as well as with trapped ions in a double-
well potential [28,29].

In the following section we show that the laser-ion interac-
tion induces a coupling between the V-type internal ion states
and the two radial local phonon species.

III. JAYNES-CUMMINGS-HUBBARD MODEL
IN A V-SHAPE SYSTEM

Trapped ions are a suitable system to implement the JC
interaction in a two-level system by driving a red-sideband
transition with an external laser [30,31] or a magnetic field
gradient [32,33]. The two-level system typically consists of
two metastable levels. The JC interaction can be created by a
direct two-photon optical transition, as in the 4s 2S1/2–3d 2D5/2

transition in 40Ca+ ions, or alternatively one can use radio-
frequency, or hyperfine levels where the JC coupling is driven
by a Raman-type interaction. Here we consider an atomic
V-type system, which consists of a ground state |g〉 and two
metastable levels |e1〉 and |e2〉 with transition frequencies ωe,1

and ωe,2, which are depicted in Fig. 1. For example, such a
level structure occurs in the 40Ca+ ion with ground state |g〉 =
|S1/2,mJ = −1/2〉 and two excited levels |e1〉 = |D5/2,mJ =
−5/2〉 and |e2〉 = |D5/2,mJ = −3/2〉 [34]. We assume that
the linear ion crystal interacts with two laser beams along the
two orthogonal radial directions with laser frequencies ωL,x

and ωL,y . The Hamiltonian describing the laser-ion interaction,
after making the optical rotating-wave approximation, is given
by [5,30,31]

Ĥ = Ĥxy + �x

∑
j

{|e1,j 〉〈gj |eiηx (â†
x,j +âx,j )−iδx t + H.c.}

+�y

∑
j

{|e2,j 〉〈gj |eiηy (â†
y,j +ây,j )−iδy t + H.c.}. (7)

Here �β is the Rabi frequency and ηβ = |�kβ |/√2mωβ is the
Lamb-Dicke parameter along the β axis, with �kβ being the laser
wave vector. δx = ωL,x − ωe,1 and δy = ωL,y − ωe,2 are the
laser detunings. We assume that the laser frequencies are tuned
near the motional red sideband along the two radial directions,

ωL,x = ωe,1 − ω0 − (ωx − �x), (8a)

ωL,y = ωe,2 − ω0 − (ωy − �y), (8b)

where the conditions �β,ω0 � ωβ,ωe,1(2) are satisfied. The
detunings �β = � − δωβ introduce effective trapping fre-
quencies along the two orthogonal directions, while the
detuning ω0 introduces an effective spin frequency. The
Hamiltonian (7) after transformation into a rotating frame with
respect to

Û (t) = exp

⎡
⎣i

∑
j

{
2∑

a=1

ω0|ea,j 〉〈ea,j |

−
∑

β

(ωβ − �β)â†
β,j âβ,j

⎫⎬
⎭ t

⎤
⎦ , (9)

in the Lamb-Dicke limit and the vibrational rotating-wave
approximation reads

ĤJCHV = ĤJC + Ĥb, (10a)

ĤJC =
∑

j

[ ∑
β

�β,j â
†
β,j âβ,j + ω0(|e1,j 〉〈e1,j |

+ |e2,j 〉〈e2,j |) + gx(âx,j |e1,j 〉〈gj | + H.c.)

+ gy(ây,j |e2,j 〉〈gj | + H.c.)

]
, (10b)

where ĤJCHV = Û †Ĥ Û − iÛ †∂t Û . Here gβ = ηβ�β are the
spin-phonon couplings and �β,j = � + δωβ,j − δωβ . The
term ĤJC describes the JC model in a V-type atomic system,
where the first two terms correspond to the effective energies
of the local phonons and ions, while the last two terms describe
the couplings between the internal levels and the x and y local
phonons. The term Ĥb describes the nonlocal hopping of the
two-phonon species between different lattice sites and allow us
a direct comparison with the case of a two-component ultracold
atom gas in an optical lattice [21–24]. Finally we note that the
continuous U(1) symmetry of the Hamiltonian (10) associated
with the conservation of the total number of excitations is
generated by the excitation operator N̂ = ∑

j N̂j with N̂j =∑
β â

†
β,j âβ,j + ∑

a=1,2 |ea,j 〉〈ea,j |.
Alternatively, the JCHV model can be implemented by

using an oscillating magnetic field gradient. Consider for
example the V-type level structure of the 171Yb+ ion, which
consists of the ground state |g〉 = |F = 0〉 and the two
metastable excited levels |e1〉 = |F = 1,mF = 1〉 and |e2〉 =
|F = 1,mF = −1〉. In that case an oscillating magnetic field
gradient along the two orthogonal directions can be used to
create the desired JC couplings [33,35]. In Appendix A we
provide the scheme for the realization of the JCHV model
using a magnetic field gradient.

The physical implementations of the desired JC coupling by
using laser radiation or an oscillating magnetic field gradient
have respective experimental limitations. The laser-ion-based
scheme has the advantage that it does not require magnetically
sensitive states, which makes the system less sensitive to
magnetic field noise. However, the coherent control of spin-
motional coupling currently is limited by fluctuations in the
laser intensity at the ion position and unwanted cross-talk
with neighboring ions. On the other hand, the magnetic field
generated by oscillating microwave currents has the potential
for better control of the field amplitudes and avoids the need
for sophisticated laser control.

IV. ENERGY SCALES

Like the two-level JCH model, the three-level JCHV model
is not generally amenable to an exact solution. The particular
limit which we study in the present paper is the strong-coupling
regime gβ � t

β

i,j , which allows us to diagonalize the term ĤJC

in (10) and then treat the hopping term Ĥb as a perturbation.
Because the number of excitations N̂j in each site j is a
constant of motion, the Hilbert space is decomposed into
subspaces with well-defined numbers of excitations. In the
following we consider the homogeneous limit �β,j ≈ �
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(� � δωβ,j − δωβ) but in the numerical simulations we take
into account the finite-size effects. For null excitations the
ground state of ĤJC is nondegenerate and given by |g,0x,0y〉
with E0 = 0. Here the state |l,nx,ny〉 (l = g,e1,e2) describes
an ion in the internal state |l〉 together with nx and ny local
phonons. For one excitation per lattice site (unit filling factor)
the energy spectrum is

E±,β = � + δ

2
±

√
δ2

4
+ g2

β, (11)

with δ = ω0 − �. The dressed eigenstates corresponding to
the two lowest eigenfrequencies are

|↑〉 = |−〉x = cos θx |g,1x,0y〉 − sin θx |e1,0x,0y〉, (12a)

|↓〉 = |−〉y = cos θy |g,0x,1y〉 − sin θy |e2,0x,0y〉, (12b)

where the mixing angle is defined by

θβ = tan−1 2gβ

δ +
√

δ2 + 4g2
β

. (13)

In the strong-coupling regime the energy splitting E+,β −
E−,β is large compared to any other energy scale in the system;
hence the two low-energy states (12) can be treated as an
s = 1

2 effective spin system with the energy difference shown
in Fig. 3(a). The two states become degenerate for gx = gy ,
while for unequal couplings there is a finite energy difference,
which tends to zero for large detuning δ. The eigenstates (12)
describe the polaritonic excitation in the system caused by the
strong spin-phonon coupling. The nature of the polaritonic
excitations can be controlled by external parameters, such
as the laser intensity and detuning. For instance, in the
limit of large negative detuning (|δ| � gβ) the polaritons
are transformed into atomic excitations, |↑〉 ≈ |e1,0x,0y〉 and
|↓〉 ≈ |e2,0x,0y〉, while for large positive detuning (δ � gβ)
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FIG. 3. (Color online) (a) The energy splitting E−,x − E−,y ver-
sus δ. The spin-phonon couplings satisfy gy = √

2.5gx . (b) The
energy difference U = Eexc − 2E−,y versus the detuning δ. Here Eexc

is the energy for the state with two excitations in one site and none in
another. The three curves are the energy differences with respect to
the three low-energy states.

the excitations become purely phononic, |↑〉 ≈ |g,1x,0y〉 and
|↓〉 ≈ |g,0x,1y〉.

We can extend the discussion to the case of integer filling of
two excitations per site. In that case the lowest-energy Hilbert
space of a lattice site consists of three eigenstates given by

|1〉 = cos θ2,x |g,2x,0y〉 − sin θ2,x |e1,1x,0y〉, (14a)

|0〉 = cos ϕ|g,1x,1y〉 − sin ϕ(sin ζ |e1,0x,1y〉
+ cos ζ |e2,1x,0y〉), (14b)

|−1〉 = cos θ2,y |g,0x,2y〉 − sin θ2,y |e2,0x,1y〉, (14c)

where the mixing angles are defined as

θ2,β = tan−1

√
2gβ

δ
2 +

√
2g2

β + δ2

4

, (15a)

ϕ = tan−1

√
g2

x + g2
y

δ
2 +

√
g2

x + g2
y + δ2

4

, (15b)

ζ = tan−1 gx

gy

. (15c)

The corresponding energies of the states (14) are

E1 = 2� + δ

2
−

√
2g2

x + δ2

4
, (16a)

E0 = 2� + δ

2
−

√
g2

x + g2
y + δ2

4
, (16b)

E−1 = 2� + δ

2
−

√
2g2

y + δ2

4
, (16c)

respectively. By using the same arguments as above, we con-
clude that in the strong-coupling regime the eigenstates (14)
represent an effective spin s = 1 system. Again, the nature
of the polaritonic excitations can be transformed into various
kinds depending on the spin-phonon couplings gβ and the de-
tuning δ. For large negative detuning (|δ| � gβ) the spin states
contain one atomic excitation and one phonon excitation, |1〉 ≈
|e1,1x,0y〉, |0〉 ≈ (sin ζ |e1,0x,1y〉 + cos ζ |e2,1x,0y〉)/

√
2, and

|−1〉 ≈ |e2,0x,1y〉, while in the limit δ � gβ the atomic
transitions are suppressed so that the spin states contain only
two phononic excitations, |1〉 ≈ |g,2x,0y〉, |0〉 ≈ |g,1x,1y〉,
and |−1〉 ≈ |g,0x,2y〉. In general for n excitations the low-
energy manifold consists of n + 1 eigenstates, which make it
possible to simulate spin 1

2n particles [20].
Now we examine the effect of the finite hopping amplitudes

t
β

i,j . First, we note that the energy spectrum of ĤJC displays
a particle-hole gap, which implies that there exists an energy
difference U between the states with n excitations per site
and the states with n + 1 excitations in one site and n − 1 in
another [36,37]. In Fig. 3(b), we plot these energy differences
for n = 1. For large positive detuning the energy gap becomes
vanishingly small, while in the limit of large negative detuning
the gap scales as U ∼ |δ| [16].

As long as the energy gap is much higher than the hopping
strength t

β

i,j (U � t
β

i,j ) the excitations are strongly localized in
each site, so that the system is in the Mott insulator phase.
In this regime a single excitation jump changes the total
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on-site polaritonic excitations and therefore such processes are
highly suppressed. Although the hopping events are frozen,
the spin degrees of freedom can be coupled by an effective
superexchange interaction. Indeed, the next high-lying states
containing n + 1 or n − 1 excitations can be reached as virtual
intermediate states in second-order hopping processes. Such
second-order hopping events mediate the spin-spin interaction
between the effective spin systems on different sites and can
be studied using the expression

(Ĥeff)rj r
′
k ,dj d

′
k
= (ĤJC)rj r

′
k ,dj d

′
k
+

∑
χ

〈rj ,r
′
k|Ĥb|χ〉〈χ |Ĥb|dj ,d

′
k〉

×1

2

(
1

Erj r
′
k
− Eχ

+ 1

Edj d
′
k
− Eχ

)
. (17)

The matrix elements of the effective Hamiltonian (17) describe
the coupling between the spin states |rj ,r

′
k〉 ↔ |dj ,d

′
k〉 on sites

j and k with energies Erj ,r
′
k

and Edj ,d
′
k
, respectively, created via

hopping processes to state |χ〉 with energy Eχ which contains
n + 1 excitations in one site, and n − 1 in another. In the
following we will consider only the spin- 1

2 and spin-1 models;
then the spin indices take values r,d = ↑,↓ for s = 1

2 or r,d =
1,0,−1 for s = 1.

V. SPIN- 1
2 ANISOTROPIC XXZ HEISENBERG MODEL

A second-order hopping process to a state with two
excitations in one site and none in the other creates an effective
spin-spin interaction between spin- 1

2 systems on different
lattice sites. By calculating the matrix elements in Eq. (17)
we find that the resulting spin dynamics is described by the
anisotropic XXZ Heisenberg Hamiltonian in the presence of an
external magnetic field,

Ĥeff =
∑
j<k

K
xy

j,k

(
σx

j σ x
k + σ

y

j σ
y

k

) +
∑
j<k

Kz
j,kσ

z
j σ z

k +
∑

j

Hjσ
z
j ,

(18)
where σx

j = (|↑j 〉〈↓j | + H.c.), σ
y

j = −i(|↑j 〉〈↓j| − H.c.),
and σ z

j = |↑j 〉〈↑j | − |↓j 〉〈↓j | denote the corresponding spin
operators of the system. The couplings in Eq. (18) derived by
second-order perturbation theory in the phonon hopping are
given by

K
xy

j,k = −txj,kt
y

j,k

2(tan ζ + cot ζ ) + 5

8gy(1 + tan ζ )
, (19a)

Kz
j,k =

(
txj,k

)2
(tan ζ−6 cot ζ−4) + (

t
y

j,k

)2
(cot ζ−6 tan ζ−4)

16gy(1+ tan ζ )
,

(19b)

Hj = −5

8

∑
k �=j

[(
txj,k

)2

gx

−
(
t
y

j,k

)2

gy

]
, (19c)

where we take δ = 0. Off resonance, the expressions are too
long to be presented here. In Fig. 4 we show the comparison
between the JCHV Hamiltonian (10) and the effective spin
model (18) for a linear ion crystal with three ions. The
superexchange couplings cause oscillation between the initial
state |↑ ↓↑〉 and states |↑ ↑↓〉, |↓ ↑↑〉 according to the spin
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FIG. 4. (Color online) Superexchange interaction in a system of
three ions couples the states |↑ ↓↑〉, |↑ ↑↓〉, and |↓ ↑↑〉 according
to the effective Hamiltonian (18). We compare the probability of
finding the system in states |↑ ↓↑〉 and |↑ ↑↓〉 computed by the
effective Hamiltonian (18) (red circles and blue triangles) and
Hamiltonian (10) (solid lines). The population of state |↓ ↑↑〉 is
indistinguishable from that of |↑ ↑↓〉 and it is not shown in the
figure. We assume axial trap frequency ωz/2π = 120 kHz and
aspect ratios ωy/ωx = 1.8 and ωy/ωz = 100. The parameters are
set to tx

1,2/2π = 0.86 kHz, t
y

1,2/2π = 0.48 kHz, tx
1,3/2π = 0.1 kHz,

t
y

1,3/2π = 0.06 kHz, gx/2π = 19 kHz, gy/2π = 20 kHz, and δ/2π =
−0.22 kHz, which ensure that the system is in the strong-coupling
regime. The phonon detuning is set to δωβ = ωβ,1, such that we have
δωx,1 − δωx,2 = 2π × 8 Hz and δωy,1 − δωy,2 = 2π × 4 Hz.

model (18). Obviously, the effective spin model matches the
exact dynamics very accurately.

Finally, we note that the couplings (19) can be tuned
by adjusting the external parameters, namely, the axial trap
frequency, the laser field intensities, and the detuning. For
example, one could control the amount of spin-exchange
anisotropy λi,j = Kz

i,j /K
xy

i,j by varying the spin-phonon cou-
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FIG. 5. (Color online) The anisotropy λ1,2 = J z
1,2/J

xy

1,2 in a sys-
tem of three ions. (a) The anisotropy as a function of gy . The
parameters are set to gx/2π = 12 kHz and δ/2π = −0.5 kHz. (b)
We fixed the coupling gy/2π = 18 kHz and varied the detuning δ.
The hopping amplitudes are set to tx

1,2/2π = 0.5 kHz and t
y

1,2/2π =
0.7 kHz.
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plings or the detuning, as demonstrated in Fig. 5. This allows
us to choose the appropriate parameters such that an easy-axis
λi,j � 1 or easy-plane λi,j < 1 ferromagnet is realized [38].

VI. HEISENBERG-LIKE MODEL WITH SPIN 1

A simple generalization of interacting spin models with
higher spins can be obtained by considering the case of
two polaritonic excitations per site. Then the low-lying
energy manifold of the Hamiltonian ĤJC consists of three
eigenstates (14), which in the following will represent an
effective spin s = 1 system. The energies of these states are
degenerate for gx = gy , while for unequal couplings gx �= gy

the degeneracy is lifted and due to the nonlinearity in the energy
spectrum, the differences E1 − E0 and E0 − E−1 are not
equidistant. In the strong-coupling regime, the second-order
hopping processes to states with three excitations in one
site and one excitation in another create couplings between
the states (14) at different lattice sites, which allow us to
map the original Hamiltonian (10) to an effective spin s = 1
model. After calculating the matrix elements, we arrive at
the following highly anisotropic effective Heisenberg-like
Hamiltonian (see, Appendix B):

Ĥeff =
∑

j

[
Dj

(
Ŝz

j

)2 + Bj Ŝ
z
j

]

+
∑
j<k

J
xy

j,k

(
Ŝx

j Ŝx
k + Ŝ

y

j Ŝ
y

k

) +
∑
j<k

J z
j,kŜ

z
j Ŝ

z
k

+
∑
j<k

Wj,k

[
Ŝz

j

(
Ŝz

k

)2 + (
Ŝz

j

)2
Ŝz

k

] +
∑
j<k

Vj,k

(
Ŝz

j Ŝ
z
k

)2

+
∑
j<k

[
v

(1)
j,k

(
Ŝz

j Ŝ
+
j Ŝ−

k Ŝz
k + H.c.

) + v
(−1)
j,k

(
Ŝz

j Ŝ
−
j Ŝ+

k Ŝz
k

+ H.c.
)]

. (20)

Here Ŝx
j = 1

2 (Ŝ+
j + Ŝ−

j ), Ŝ
y

j = i
2 (Ŝ−

j − Ŝ+
j ), and Ŝz

j =
−i[Ŝx

j ,Ŝ
y

j ] are the spin s = 1 operators at site j . The
Hamiltonian (20) represents the spin s = 1 Heisenberg model
with Ising-like and single-ion anisotropy terms [38]. Such
an anisotropy of the spin-spin interactions occurs due to the
nonequidistance in the energies of the spin s = 1 system,
which is reflected in the matrix elements in Eq. (17). Indeed, for
equal spin-phonon couplings (gx = gy) the degeneracy of the
states (14) equalizes the superexchange interaction between
the states and the effective Hamiltonian corresponds to the
anisotropic ferromagnetic Heisenberg model in the presence
of the external magnetic field,

Ĥeff =
∑
j<k

{
J

xy

j,k

(
Ŝx

j Ŝx
k + Ŝ

y

j Ŝ
y

k

) + J z
j,kŜ

z
j Ŝ

z
k

} +
∑

j

Bj Ŝ
z
j .

(21)
In Fig. 6 we check the validity of the perturbative approach
by comparing the effective Hamiltonian (20) with the JCHV
Hamiltonian (10) in a system of two ions. For unequal
couplings, Fig. 6(a), the probabilities of finding the system
in the states |1,−1〉, |0,0〉, and |−1,1〉 evolve according to
Eq. (20), while in the case of equal couplings the spin evolution
is governed by the effective Hamiltonian (21), Fig. 6(b).
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FIG. 6. (Color online) Coherent superexchange interaction in a
system of two ions. (a) We plot the time evolution of states |1, −1〉
(blue circles), |−1,1〉 (red squares), and |0,0〉 (gray triangles) accord-
ing to the effective Heisenberg-like Hamiltonian (20) compared with
the JCHV Hamiltonian (10) (solid lines). The parameters are set to
gx/2π = 32 kHz, gy/2π = 34 kHz, δ = 0, tx

1,2/2π = 0.1 kHz, and
t
y

1,2/2π = 0.17 kHz. (b) The same but the spin-phonon couplings are
set to gx/2π = 34 kHz and gx = gy .

The Heisenberg-like model (20) presented here can be
considered as a generalization of the highly anisotropic spin-1
models recently investigated in a system of ultracold dipolar
molecules loaded in a one-dimensional optical lattice [39,40].
However, to the best of our knowledge, there is no extensive
study of the entire phase diagram of our highly anisotropic
spin-1 model. As was pointed out in Refs. [41–43], the gapped
phases of any one-dimensional spin model can be classified by
its symmetry group. An example of such a topological phase is
the Haldane phase, which appears in one-dimensional integer-
spin chains [44]. The latter are characterized by nonzero
excitation gaps and exponentially decaying spin correlation
functions. The stability of the Haldane phase crucially depends
on the protection of an appropriate set of symmetries. Since
our model contains an odd number of spin operators, the only
discrete symmetry of the Hamiltonian (20) is rotation by π

around the z axis, which takes Ŝ
x,y

j → −Ŝ
x,y

j and Ŝz
j → Ŝz

j ,
while the Hamiltonian (21) obeys an additional symmetry,
which is a rotation by π around the y axis and time reversal
such that Ŝ

x,z
j → Ŝ

x,z
j and Ŝ

y

j → −Ŝ
y

j . As was pointed out in
Ref. [39], such spin-1 models may exhibit novel nontrivial
topological order.

Although the spin couplings J
xy

j,k < 0 and J z
j,k < 0 support

ferromagnetic ground-state order we may use the duality
between ferro- and antiferromagnetic models, i.e., ĤAF =
−ĤF [45]. The latter implies that the highest-energy state of
the ferromagnetic model is in fact the ground state of the corre-
sponding antiferromagnetic Hamiltonian. The key observation
here is that one could switch between the two spin models (20)
and (21) by controlling the intensities of the laser beams.
For example, the preparation can start by setting gx = gy

and txj,k � t
y

j,k , which implies |J z
j,k| � |J xy

j,k|, and prepare the
antiparallel spin configuration. Such a state can be realized by
ground-state cooling of the radial vibrational modes and pump-
ing the internal ion states to |g〉j . The antiparallel configuration
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between states |1〉 and |−1〉 can be created by noting that for
large negative detuning (|δ| � gβ) the polaritonic nature of the
states is reduced to |1〉 ≈ |e1,1x,0y〉 and |−1〉 ≈ |e2,0x,1y〉;
see Eq. (14). The latter states can be created by π pulses that
are resonant with the respective blue-sideband transitions [11].
Once the initial state is prepared one could lower δ and
induce unequal spin-phonon couplings. The superexchange
interaction can be probed by letting the system evolve and then
measuring either the local phonon number or the internal ion
population.

VII. CONCLUSIONS

We have shown that a laser-driven linear ion crystal can
realize the JCHV model. We have studied the strongly coupled
regime where the JCHV model can be mapped to effective spin
models. We have considered the case of one and two polari-
tonic excitations per site, which represent our effective spin- 1

2
and spin-1 systems. The underlying mechanism that creates
the spin-spin couplings is the Heisenberg superexchange
interaction, which can be controlled by the trap frequencies,
the laser intensity, and the detuning.
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APPENDIX A: IMPLEMENTATION OF JCHV MODEL IN
AN OPTICAL V-TYPE SYSTEM

Here we consider an alternative implementation of the
JCHV model with ions which possess three long-lived internal
states in the microwave domain. In order to induce JC
couplings between the ground state and the two excited states
we assume that the ion crystal interacts with a time-varying
magnetic field quadrupole,

�B(t) = bf (t)(x�ex − y�ey). (A1)

We note that such a magnetic field quadrupole was used
recently for implementation of entangling operations in an
ion trap [35]. The total Hamiltonian is

Ĥ = Ĥxy + Ĥs + ĤI, (A2)

where

Ĥs =
N∑

j=1

[ωe,1|e1,j 〉〈e1,j | + ωe,2|e2,j 〉〈e2,j |]. (A3)

The interaction between the ionic internal states and the
magnetic field is described by ĤI = −∑

j ( �μge1
j + �μge2

j ) �Bj .
Here �μgea (a = 1,2) is the magnetic dipole moment operator
between states |g〉 ↔ |ea〉, respectively. The latter can be
expressed as �μgea = μ

gea
x (|ea〉〈g| + H.c.) − iμ

gea
y (|ea〉〈g| −

H.c.), and in the following we assume the condition μ
gea
x =

μ
gea
y = μgea . Using this, we write the interaction Hamiltonian

as

ĤI = −bf (t)
∑
a=1,2

N∑
j=1

μgea [δr̂x,j (|ea,j 〉〈gj | + H.c.)

− iδr̂y,j (|ea,j 〉〈gj | − H.c.)]. (A4)

Clearly, the magnetic field mediates a coupling between the
internal levels and motional displacements. In order to induce
the desired JC-type interaction we use a periodic driving field

f (t) = cos ν1t + cos ν2t (A5)

with frequencies

ν1 = ωe,1 − ω0 − (ω̄x − �), (A6a)

ν2 = ωe,2 − ω0 − (ω̄y − �), (A6b)

with ω̄β = ωβ + δωβ . Such a choice of driving frequencies
allows excitation of a JC interaction between |g〉 → |e1(2)〉
states with creation of x (y) phonons, respectively. Indeed, by
performing a unitary transformation of Hamiltonian (A2) into
a rotating frame with respect to

Û (t) = exp

[
− i

∑
j

{ 2∑
a=1

(ωe,a − ω0)|ea,j 〉〈ea,j |

+
∑

β

(ω̄β − �)â†
β,j âβ,j

}
t

]
, (A7)

we find ĤJCHV = Û †Ĥ Û − iÛ †∂t Û , or

ĤJCHV = ĤJC + Ĥb, (A8a)

ĤJC =
∑

j

∑
β

�β,j â
†
β,j âβ,j +

∑
j

ω0(|e1,j 〉〈e1,j |

+ |e2,j 〉〈e2,j |) +
∑

j

gx(âx,j |e1,j 〉〈gj | + H.c.)

+
∑

j

gy(ây,j |e2,j 〉〈gj | + H.c.), (A8b)

where �β,j = � + δωβ,j − δωβ . The couplings between
the internal states and the local phonon states are gx =
−bμge1/

√
2mωx and gy = −bμge2/

√
2mωy , respectively. Fi-

nally, in Hamiltonian (A8b) fast-rotating terms are neglected,
which is justified as long as gβ � |ωx ± ωy |, ωe,a .

APPENDIX B: DERIVATION OF SPIN-1 HAMILTONIAN

By using Eq. (17) we find that the spin-spin interaction
gives rise to the effective Hamiltonian

Ĥj,k = (ĤJC)j,kδj,k + Ĥ
xy

j,k + Ĥ z
j,k, (B1)

with Ĥeff = ∑
j<k Ĥj,k . The first term can be written as

ĤJC =
∑

j

(
E1X̂

11
j + E0X̂

00
j + E−1X̂

−1−1
j

)
, (B2)

where we truncate the Hilbert space only to the three lowest
eigenstates of ĤJC. Here we have defined the Hubbard
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operators X̂ab
j = |aj 〉〈bj | (a,b = 1,0,−1). Expressing the

Hubbard operators in terms of spin s = 1 operators, X̂11
j =

1
2 [(Ŝz

j )2 + Ŝz
j ], X̂00

j = Îj − (Ŝz
j )2, and X̂−1−1

j = 1
2 [(Ŝz

j )2 − Ŝz
j ],

we obtain

ĤJC = 1

2

∑
j

[
Ŝz

j (E1 − E−1) + (
Ŝz

j

)2

×(E1 + E−1 − 2E0) + 2E0Îj

]
. (B3)

Note that in the isotropic case gx = gy the energies are
degenerate; hence the term (B3) yields only a global phase.
The last two terms in Eq. (B1) arise due to the second-order
hopping processes and can be written as

Ĥ
xy

j,k = T
(1)
j,k

(
X̂10

j X̂01
k + H.c.

) + T
(−1)
j,k

(
X̂−10

j X̂0−1
k + H.c.

)
+ T

(0)
j,k

(
X̂10

j X̂−10
k + X̂−10

j X̂10
k + H.c.

)
, (B4a)

Ĥ z
j,k = T

(1,1)
j,k X̂11

j X̂11
k + T

(0,0)
j,k X̂00

j X̂00
k + T

(−1,−1)
j,k X̂−1−1

j X̂−1−1
k

+ T
(1,0)
j,k

(
X̂11

j X̂00
k + X̂00

j X̂11
k

)
+ T

(0,−1)
j,k

(
X̂00

j X̂−1−1
k + X̂−1−1

j X̂00
k

)
+ T

(1,−1)
j,k

(
X̂11

j X̂−1−1
k + X̂−1−1

j X̂11
k

)
. (B4b)

The coupling coefficients in (B4) are the respective matrix
elements of the second term in Eq. (17). The Hamiltonian Ĥ

xy

j,k

describes the transition probabilities between different spin
states. In terms of spin s = 1 operators it is expressed as

Ĥ
xy

j,k = v
(1)
j,k

(
Ŝz

j Ŝ
+
j Ŝ−

k Ŝz
k + H.c.

) + v
(−1)
j,k

(
Ŝz

j Ŝ
−
j Ŝ+

k Ŝz
k + H.c.

)
+ J

xy

j,k

(
Ŝx

j Ŝx
k + Ŝ

y

j Ŝ
y

k

)
, (B5)

with the couplings given by v
(1)
j,k = 1

2 (T (1)
j,k − T

(0)
j,k ), v

(−1)
j,k =

1
2 (T (−1)

j,k − T
(0)
j,k ), and J

xy

j,k = T
(0)
j,k . The spin-dependent energy

corrections due to the hopping events are described by Ĥ z
j,k ,

which can be written as

Ĥ z
j,k = Bj,k

(
Ŝz

j + Ŝz
k

) + Dj,k

[(
Ŝz

j

)2 + (
Ŝz

k

)2] + J z
j,kŜ

z
j Ŝ

z
k

+Wj,k

[
Ŝz

j

(
Ŝz

k

)2 + (
Ŝz

j

)2
Ŝz

k

] + Vj,k

(
Ŝz

j Ŝ
z
k

)2
. (B6)

The coupling coefficients are given by

J z
j,k = 1

4

[
T

(1,1)
j,k + T

(−1,−1)
j,k − 2T

(1,−1)
j,k

]
, (B7a)

Wj,k = 1
4

[
T

(1,1)
j,k − T

(−1,−1)
j,k + 2T

(0,−1)
j,k − 2T

(1,0)
j,k

]
, (B7b)

Vj,k = 1
4

[
T

(1,1)
j,k + T

(−1,−1)
j,k + 2T

(1,−1)
j,k + 4T

(0,0)
j,k

− 4T
(1,0)
j,k − 4T

(0,−1)
j,k

]
, (B7c)

Dj,k = 1
2

[
T

(1,0)
j,k + T

(0,−1)
j,k − 2T

(0,0)
j,k

]
, (B7d)

Bj,k = 1
2

[
T

(1,0)
j,k − T

(0,−1)
j,k

]
. (B7e)

Obviously, the single-ion anisotropy term and the external
magnetic field term in Eq. (20) are given by

Dj = 1

2
(E1 + E−1 − 2E0) +

∑
k �=j

Dj,k, (B8a)

Bj = 1

2
(E1 − E−1) +

∑
k �=j

Bj,k. (B8b)

For gx = gy the spin coefficients in Eq. (B4a) become equal,
T

(1)
j,k = T

(−1)
j,k = T

(0)
j,k , and the Hamiltonian (B5) reduces to

Ĥ
xy

j,k = J
xy

j,k

(
Ŝx

j Ŝx
k + Ŝ

y

j Ŝ
y

k

)
, (B9)

with

J
xy

j,k = −123
√

2

7gx

txj,kt
y

j,k, (B10)

where we take δ = 0. The same simplification holds for
Eq. (B6),

Ĥ z
j,k = Jj,kŜ

z
j Ŝ

z
k + Bj,k

(
Ŝz

j + Ŝz
k

)
, (B11)

with

J z
j,k = − 123

7
√

2gx

[(
txj,k

)2 + (
t
y

j,k

)2]
, (B12)

Bj,k = − 53

2
√

2gx

[(
txj,k

)2 − (
t
y

j,k

)2]
. (B13)
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