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Quantum networking of microwave photons using optical fibers

B. D. Clader*

The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
(Received 27 March 2014; published 17 July 2014)

We describe an adiabatic state-transfer mechanism that allows for high-fidelity transfer of a microwave quantum
state from one cavity to another through an optical fiber. The conversion from microwave frequency to optical
frequency is enabled by an optomechanical transducer. The transfer process utilizes a combined dark state of the
mechanical oscillator and fiber modes, making it robust against both mechanical and fiber loss. We anticipate this
scheme being an enabling component of a hybrid quantum computing architecture consisting of superconducting
qubits with optical interconnects.
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I. INTRODUCTION

The rapidly expanding field of cavity optomechanics
studies the interaction between mechanical and optical degrees
of freedom in an optical resonator. This coupling occurs as
radiation pressure from the confined cavity light acts to move
the cavity mirrors, causing a shift in the cavity resonance.
The first experiments to observe this interaction were done
as far back as 1970 by Braginsky and co-workers [1]. In
this early work, the mirrors were relatively large suspended
macroscopic objects. As early as 1996 it was suggested
that similar systems could be fabricated on chip [2]. More
recent advances in nanofabrication culminated in the first
observation of quantized mechanical motion in 2010 [3] (for
recent reviews, see Refs. [4–8]).

When the mechanical oscillator’s resonant frequency is
much larger than the intrinsic loss rate of the cavity, sidebands
in the optical cavity appear at the mechanical resonant
frequency. In this so-called resolved sideband limit, one can
perform sideband cooling of the mechanical oscillator by
driving the cavity with a cooling laser tuned to the blue
sideband [9,10]. As an additional constraint, when the optical
cavity is strongly coupled to the mechanical resonator, such
that the coupling rate is much greater than the intrinsic loss
rates of the cavity and oscillator, quantum states can be
exchanged between the cavity and the mechanical modes
[11,12]. Because the radiation pressure is so broadband, this
ability to have strongly coupled systems can occur over a
very large wavelength range. This fact has given rise to
demonstrations of strong coupling and resolved sideband
cooling in both the optical [10,12–15] and the microwave
[3,16,17] frequency ranges.

This ability to strongly couple to both microwave and
optical frequency cavities led to a proposal to use an op-
tomechanical resonator as a wavelength convertor between
quantum states of microwave and optical photons [18]. Here
the authors suggested state swapping by using a sequence
of π/2 optomechanical pulses, analogous to how one would
perform state swapping in an atomic system. Later proposals
suggested that one could convert between microwave and
optical frequencies by using an adiabatic dark-state-transfer
scheme [19,20]. While not converting between microwave and
optical light, a recent experiment has demonstrated the use of a
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mechanical dark state to transfer quantum states between two
optical cavities [21]. Alternative proposals for state swapping
make use of the ability to entangle microwave and optical
modes through a common optomechanical interface [22,23],
enabling continuous variable teleportation protocols to be
utilized for state transfer [24]. Recent experimental results
have realized broadband wavelength conversion, showing co-
herent wavelength conversion between microwave and optical
frequencies [25,26], even with room-temperature devices [27].

A superconducting qubit’s transition frequency is in the mi-
crowave regime [28], and recent advances in circuit quantum
electrodynamics has created strongly coupled superconducting
qubit and microwave resonators [29]. The ability to coherently
convert between microwave and optical frequencies should
enable one to develop a distributed quantum system using
superconducting qubits and optical fiber connections. In doing
so, one would improve the scalability of superconducting
qubits in that the size constraints of a cryogenic system
would no longer place a hard constraint on the number of
qubits that one could couple. This idea to optically connect
computational nodes of a quantum network is not new [30–32].
It has been touted as a scalable architecture for ion-trap-
based quantum computers [33]. The inability to reliably
convert between microwave and optical photons has prevented
such architectures for superconducting qubit systems. Recent
proposals have appeared that analyzed the networking of
solid-state qubits through optical fibers using optomechanical
transducers [34,35].

In this paper we present results that show that an adiabatic
dark-state-transfer scheme, similar to the one outlined in
Refs. [19,20], generalizes to fiber coupled systems. We show
that this could enable high-fidelity state transfer between
microwave cavities through optical fibers, enabling a route
towards optical networking of superconducting qubits. The
frequency conversion on each side of the transfer is done using
an optomechanical resonator, simultaneously coupled to both
optical and microwave cavities. The optical cavities are then
coupled via an optical fiber. A system schematic is shown in
Fig. 1. Unlike recent proposals in Refs. [34,35], the scheme
outlined here considers a single-mode fiber and the coupling of
microwave photons to the optomechanical transducer (OMT),
rather than the direct coupling of a qubit to the OMT. The use of
a single-mode fiber eliminates experimental complications that
can prevent transfer of quantum states through the continuum
[36] except in very simple cases [37].

1050-2947/2014/90(1)/012324(9) 012324-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.012324


B. D. CLADER PHYSICAL REVIEW A 90, 012324 (2014)

Our scheme is similar to stimulated Raman adiabatic
passage (STIRAP) [38,39], used in quantum optics to per-
form state transfer between ground states of atoms without
populating the excited state. As in the atomic case, our use
of a dark state to perform the adiabatic passage reduces the
effects of loss on the state-transfer fidelity. We show, using
analytical and numerical solutions, how one could perform
such a transfer, and we calculate the transfer fidelities for a
variety of input states. We predict that high-fidelity transfer is
possible when (1) both the optical and microwave cavities are
strongly coupled to the mechanical resonator, and (2) there is
strong coupling between the optical cavities and the fiber.

II. MODEL

Our model consists of two identical optomechanical subsys-
tems connected via an optical fiber. Each subsystem consists
of a microwave cavity and an optical cavity connected via
an optomechanical resonator, as shown in Fig. 1. Such op-
tomechanical devices have been demonstrated experimentally
and shown to be capable of coherent conversion of microwave
photons to optical photons [25,26].

We model such a system with a time-dependent Hamilto-
nian,

Ĥ = Ĥom,1 + Ĥom,2 + Ĥf + Ĥd, (1)

consisting of Hamiltonians for the optomechanical subsys-
tems 1 and 2 labeled Ĥom,1 and Ĥom,2 respectively, the fiber
coupling term Ĥf , and dissipation terms contained in Ĥd that
couple the cavity, mechanical, and fiber modes to a continuum.
The linearized optomechanical subsystem Hamiltonian written
in the interaction picture (see Appendix A for a detailed
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âo,1

f̂
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FIG. 1. (Color online) Schematic of the system being modeled.
We consider two coupled cavity optomechanical systems, denoted
with labels 1 and 2. Each system consists of two cavities, one
with a microwave resonant frequency, denoted with red, and cavity
operator âmw,j , and one with an optical frequency, denoted with blue,
and cavity operator âo,j . The cavities are coupled via a common
mechanical oscillator with mechanical frequency ωm and operator
b̂m,j . This system is then coupled to a second identical cavity
optomechanical system via an optical fiber, with operator f̂ , that
is connected with each optical cavity. This setup allows one to
adiabatically transfer a quantum state stored in microwave cavity
1, denoted as |ψ〉1, to microwave cavity 2 through the mechanical
oscillators, optical cavities, and fiber. The adiabatic passage uses a
dark state with minimal excitation in the mechanical and fiber modes,
making it robust against loss in those modes.

derivation) is

Hom,j = �

∑
i=o,mw

gi,j (â†
i,j b̂m,j + b̂

†
m,j âi,j ), (2)

where the subscript i = {o,mw} denotes the optical and
microwave cavity and the subscript j = {1,2} denotes the
optomechanical subsystem. The annihilation operator of the
cavity mode is âi,j , the annihilation operator of the mechanical
mode is b̂m,j , and gi,j are the time-dependent optomechanical
coupling parameters (see Appendix A for an explanation of the
how to tune g parameters by varying a classical cavity driving
field).

The optical cavity to fiber coupling Hamiltonian is [30]

Ĥf = �

∑
k

�kf̂
†
k f̂k

+
{
gf

∑
k

[âo,1 + (−1)kâo,2]f̂ †
k + H.c.

}
, (3)

where �k = ωk − ωoc is the frequency difference between
the kth fiber mode and the cavity mode, gf is the coupling
strength between the fiber and the optical cavities, and f̂k is
the annihilation operator of the kth fiber mode.

The finite length of the fiber implies a quantization of the
modes of the fiber with frequency spacing 2πc/l, where l

is the length of the fiber. Therefore, the number of modes
that significantly interact with the cavity is on the order of
N = �l/2πc, where � is the decay rate of the cavity fields
into a continuum of fiber modes [30]. For short-enough fibers
N � 1, and one can employ the short-fiber limit [30–32] and
only keep the single fiber mode that is resonant with the optical
cavity in Eq. (3). In this limit the fiber Hamiltonian becomes

Ĥf = �gf [(âo,1 − âo,2)f̂ † + (â†
o,1 − â

†
o,2)f̂ ]. (4)

We model dissipation by allowing the optical and mi-
crowave cavities, fiber, and mechanical modes to each couple
to independent continua of harmonic oscillator modes. The dis-
sipation Hamiltonian is then composed of Ĥd = ∑2

i=1(Ĥdo,i +
Ĥdm,i + Ĥdmw,i) + Ĥdf , where Ĥdo,i is the coupling of the
ith optical cavity to the bath, Ĥdm,i the mechanical coupling,
Ĥdmw,i the microwave cavity coupling, and, finally, Ĥdf

describes the coupling of the fiber modes to its dissipation
channel. These Hamiltonians are all similar in form. For
simplicity we write just the one for the optical cavity. Within
the rotating-wave approximation this Hamiltonian is

Ĥdo,i = �

∫ ∞

−∞
dω(ω − ωo,i)ĉ

†
o,i(ω)ĉo,i(ω)

+ i�

∫ ∞

−∞
dωgdo,i(â

†
o,i ĉo,i − âo,i ĉ

†
o,i), (5)

where ωo,i corresponds to the resonant frequency of the
optical cavity, ĉo,i is the annihilation operator of the optical
cavity bath, and the coupling coefficients is gdo,i . We assume
the canonical commutation relations for the bath operators
[ĉo,i(ω),ĉo,j (ω′)†] = δi,j δ(ω − ω′). A similar Hamiltonian ex-
ists for the microwave bath with bath operators ĉmw,i , as well
as the mechanical and fiber modes with the same convention
for those bath operators.
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We now proceed to calculate the Heisenberg equations of
motion for each of the various operators and eliminate the bath
operators as done using the standard input-output formalism
techniques [40]. The operator equation for the ith optical cavity
bath is

i
∂ĉo,i

∂t
= (ω − ωo,i)ĉo,i − igdo,i âo,i . (6)

Equations identical in form to Eq. (6) can be similarly obtained
for the microwave cavities, mechanical oscillators, and fiber-
mode baths. Meanwhile, the optical and microwave cavities,
mechanical oscillator, and fiber-mode equations of motion are

i
∂âo,i

∂t
= go,i b̂m,i ± gf f̂ + i

∫ ∞

−∞
dωgdo,i ĉo,i , (7a)

i
∂ b̂m,i

∂t
= go,i âo,i + gmwâmw,i + i

∫ ∞

−∞
dωgdm,i ĉm,i , (7b)

i
∂âmw,i

∂t
= gmw,i b̂mw,i + i

∫ ∞

−∞
dωgdmw,i ĉmw,i , (7c)

i
∂f̂

∂t
= gf âo,1 − gf âo,2 + i

∫ ∞

−∞
dωgdf ĉf , (7d)

where the ± in Eq. (7a) is for cavities 1 and 2, respectively.
We integrate Eq. (6) directly, giving

ĉo,i(t) = e−i(ω−ωo,i )(t−t0)ĉo,i(t0)

− gdo,i

∫ t

t0

dt ′e−i(ω−ωo,i )(t−t ′)âo,i(t
′) (8)

and insert this solution along with the similar forms for
the other terms into Eqs. (7). We assume a Markovian bath
such that the various coupling terms gdo,j are frequency
independent, yielding a set of quantum Langevin equations,

i
∂ �v(t)

∂t
= M(t)�v(t) + i

√
K �vin(t), (9)

where we define

�v = (âo,1, b̂m,1,âmw,1,f̂ ,âo,2, b̂m,2,âmw,2)T ,

�vin = (âo,1,in, b̂m,1,in,âmw,1,in,f̂in,âo,2,in, b̂m,2,in,âmw,2,in)T ,

K = diag(κo,κm,κmw,κf ,κo,κm,κmw)T /2π,

and the dynamics matrix M is

M(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−iκo/2 go,1(t) 0 gf 0 0 0
go,1(t) −iκm/2 gmw,1(t) 0 0 0 0

0 gmw,1(t) −iκmw/2 0 0 0 0
gf 0 0 −iκf /2 −gf 0 0
0 0 0 −gf −iκo/2 go,2(t) 0
0 0 0 0 go,2(t) −iκm/2 gmw,2(t)
0 0 0 0 0 gmw,2(t) −iκmw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The noise terms

âj,i,in =
∫ ∞

−∞
dωe−i(ω−ωj )(t−t0)ĉj,i(t0)

describe the bath fluctuations for the cavities with j = {o,mw}.
Similar definitions apply for the mechanical and fiber modes.
We assume that each optical mode’s noise distribution is white
and Markovian such that

〈âj,i,in(t ′)†âm,n,in(t)〉 = δj,mδi,nδ(t − t ′).

We assume thermal noise for the mechanical oscillators with

〈 b̂m,j,in(t ′) b̂
†
m,k,in(t)〉 = (Nth + 1)δj,kδ(t − t ′),

where Nth is the thermal phonon occupation number of
the bath. In addition, we define the cavity decay rates as
g2

do,i ≡ κo/2π , with similar definitions for the microwave
cavity, mechanical oscillator, and fiber modes. We note here
that we have removed the subsystem label from the decay rates
as we are assuming identical optomechanical devices on each
end of the fiber.

Equations (9) and (10) are our starting point for the next
section, where we demonstrate how one can achieve high-
fidelity state transfer between the microwave cavity modes by
adiabatically varying the coupling rates. We have explicitly
included the time dependence of the various optomechanical
coupling rates as these will be the knobs we use to engineer

such a state-transfer protocol. In an experimental setting, these
coupling rates are straightforward to tune, as they are related to
the power of the optomechanical driving laser (see Appendix A
for more details).

III. QUANTUM-STATE-TRANSFER PROTOCOL

We now proceed to describe an adiabatic dark-state-transfer
protocol that enables one to perform the state transformation

|ψ〉1|φ〉2 → |φ′〉1|ψ〉2, (11)

where the subscripts 1 and 2 refer to microwave cavities 1
and 2, respectively. Equation (11) implies that we intend to
transfer the arbitrary quantum microwave cavity state from
cavity 1 to cavity 2. This is not a swap gate in that the final
state of microwave cavity 1 is not the initial state of cavity 1.
Rather, it consists of a transformation of the initial states of
the various other optical cavity, fiber, and mechanical oscillator
initial states.

To see how such a transfer is possible, we rewrite Eq. (9)
as

i
∂ �̃v(t)

∂t
= i

∂U (t)†

∂t
U �̃v(t) + �(t) �̃v(t) + i

√
K �̃vin(t), (12)

where �(t) = U (t)†M(t)U (t) is the diagonalized version of
M(t), U (t) contains the normalized eigenvectors of M(t) in
each column, and �̃v(t) = U (t)†�v(t). The adiabatic condition
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implies that the time-dependent couplings in Eq. (10) obey
the inequality |∂gi,j /∂t | 
 g2

0,j , where g0,j (t)2 = go,j (t)2 +
gmw,j (t)2. When this inequality holds, we can neglect the first
term on the right-hand side of Eq. (12), giving

i
∂ �̃v(t)

∂t
≈ �(t) �̃v(t) + i

√
K �̃vin(t), (13)

the solution of which is given by

�̃v(t) = e−i
∫ t

0 dt ′�(t ′) �̃v(0) + i
√

K

∫ t

0
dt ′e−i

∫ t

t ′ dt ′′�(t ′′) �̃vin(t ′).

(14)

To integrate Eq. (14) requires us to solve for the eigenvec-
tors and eigenvalues of the matrix in Eq. (10). Unfortunately,
this is difficult in general. We can gain insight into the
dynamics by setting each of the cavity-bath loss terms on
the diagonal to 0. In that case, solving for the full eigensystem
is still difficult, as it contains a cubic equation. There is one
solution that can be easily obtained. It is straightforward to
show that the vector

ψd (t) = 1

gT (t)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−gmw,1(t)gmw,2(t)
0

go,1(t)gmw,2(t)
0

−gmw,1(t)gmw,2(t)
0

gmw,1(t)go,2(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

is an eigenvector of the matrix M(t) (with all diagonal terms
set to 0) with eigenvalue 0, where gT (t)4 = gmw,1(t)2go,2(t)2 +
2gmw,1(t)2gmw,2(t)2 + go,1(t)2gmw,2(t)2. In other words, ψd (t)
is a dark state of the lossless system. To see how loss affects
this dark state, we use Eq. (15) along with the diagonal terms
in Eq. (10) to calculate the dark-state eigenvalue to first order
in perturbation theory, giving

λd = − i

2gT (t)4

[
2κogmw,1(t)2gmw,2(t)2

+ κmwgo,1(t)2gmw,2(t)2 + κmwgmw,1(t)2go,2(t)2
]
. (16)

One can see that only the optical and microwave decay
rates appear in the dark-state eigenvalue. The nonzero value
indicates that loss causes coupling of the dark state to other
modes that are, in turn, coupled to the environment, resulting
in imperfect state-transfer fidelity.

Insight into the adiabatic transfer scheme can be seen
by examining Eq. (15). One uses a “counterintuitive” pulse
sequence that begins at t = 0 as

gmw,1(0) = go,2(0) = 0 and go,1(0) = gmw,2(0) = g,

and ends at t = T with

gmw,1(T ) = go,2(T ) = g and go,1(T ) = gmw,2(T ) = 0.

With such a sequence it is straightforward to show that ψd (0) =
(0,0,1,0,0,0,0)T and ψd (T ) = (0,0,0,0,0,0,1)T . This implies

that

U (0)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(17)

and

U (T )† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where the ∗ terms indicate the other unknown eigenstates of
M(t). At time t = 0 the dark mode is the first microwave
cavity mode since ṽ1(0) = [U (0)†�v(0)]1 = âmw,1 and at time
t = T the dark mode is the second microwave cavity mode
since ṽ1(T ) = [U (T )†�v(T )]1 = âmw,2. Therefore, as long as
one performs this passage adiabatically, which in this case
implies T  1/gT (t), the system will remain in the dark
state while the excitation from the first microwave cavity will
be transferred to the second microwave cavity. This scheme
requires fully coherent microwave and optical cavity driving
sources. While experimentally challenging, recent advances
in frequency combs suggest that this does not present an
insurmountable technical hurdle [41].

IV. STATE-TRANSFER FIDELITY MODEL

To see how well this transfer protocol works, we wish to
estimate the state-transfer fidelity for a variety of input quan-
tum states, including squeezed-coherent states and qubit states.
We define squeezed-coherent states in the usual way: |α,s〉 =
D̂(α)Ŝ(r)|0〉 with D(α) = exp(αâ

†
mw,1 − α∗âmw,1) the dis-

placement operator and Ŝ(r) = exp[ 1
2 r∗â2

mw,1 + 1
2 r(â†

mw,1)2]
the squeezing operator [42]. We define a qubit state as an
arbitrary superposition of the |0〉, |1〉 Fock states, α|0〉 + β|1〉.

Because the matrix M(t) in Eq. (10) is difficult to
diagonalize in general, we obtain the state-transfer fidelity
by integrating the solution to Eq. (9) numerically. We outline
our numerical solution method in Appendix B . The numerical
solution we integrate is given by

�v(t) = e−i
∫ t

0 dt ′M(t ′)�v(0)

+ i
√

K

∫ t

0
dt ′e−i

∫ t

t ′ dt ′′M(t ′′)�vin(t ′). (19)

We note that our numerical solution to Eq. (19) is exact in
the sense that we do not make any adiabatic approximations.
This allows us to see what affect nonadiabaticy has on the
state-transfer fidelity.

The fidelity of two mixed quantum states given by density
matrices ρ1 and ρ2 is given by [43]

F (ρ1,ρ2) = Tr[
√

ρ1ρ2
√

ρ1]. (20)
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Isar showed that, because Gaussian states, like the squeezed-
coherent states above, are defined entirely by their covariance
matrices, the fidelity between two Gaussian states can be
written as [44]

FG = 1√
det[(A1 + A2)/2]

e−βT (A1+A2)−1β. (21)

We set our initial state ρ1 = |ψ1〉〈ψ1| to one of the pure
quantum states defined above. After integrating Eq. (19), we
extract the last component in �v(t) that gives us the state
in microwave cavity 2, since [�v(t)]7 = âmw,2. The terms Aj

are the covariance matrices of the state quadratures q̂j =
(âj + â

†
j )/

√
2 and p̂j = −i(âj − â

†
j )/

√
2 and are defined as

Aj =
(

2σqj qj
σpj qj

+ σqj pj

σpj qj
+ σqj pj

2σqj qj

)
, (22)

where σqj qj
= 〈q̂j q̂j 〉 − 〈q̂j 〉2 and similarly for p̂j , while

the covariance is σpj qj
= 〈p̂j q̂j 〉 − 〈p̂j 〉〈q̂j 〉. The term β =

α2 − α1 is the difference of the mean value of the quadrature
amplitudes with

αi =
(〈q̂i〉

〈p̂i〉
)

. (23)

For qubit states we calculate the state-transfer fidelity using
the formalism of Julsgaard and Mølmer [45]. They derived the
the fidelity between two qubit states as a rather complicated
expression given by

Fq = 1

6
√(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)
{

3 + 3
(
σ 2

1 σ 2
2 − 1

4

)
(
σ 2

2 + 1
2

)(
σ 2

2 + 1
2

)

+ Re[C + D̃∗]

σ 2
1 + 1

2

+ Re[C − D̃∗]

σ 2
2 + 1

2

− |C + D̃∗|2(σ 2
1 − 1

)
(
σ 2

1 + 1
2

)2 − |C − D̃∗|2(σ 2
2 − 1

)
(
σ 2

2 + 1
2

)2

− |C + D̃∗|2(σ 2
2 − 1

2

) + |C − D̃∗|2(σ 2
1 − 1

2

)
2
(
σ 2

1 + 1
2

)(
σ 2

2 + 1
2

)
}
. (24)

The various parameters are defined as follows:

σ 2
1 = σ̄ 2 + δσ 2, σ 2

2 = σ̄ 2 − δσ 2,

tan(2θ ) = σq2p2 + σp2q2

σ 2
q2q2

− σp2p2

, σ̄ 2 = σ 2
q2q2

+ σ 2
p2p2

2
, (25)

δσ 2 =
√

1

4

(
σq2q2 − σp2p2

)2 + 1

4

(
σq2p2 + σp2q2

)2
.

The C and D̃ terms are given by

C = 1
2 (B11 − iB12 + iB21 + B22),

(26)
D̃ = 1

2 (B11 + iB12 + iB21 − B22)e−2iθ .

The Bij terms come from the propagator exp[−i
∫ t

0 dt ′M(t ′)]
defined in (19). We write the propagation equation analogous
to Eq. (19) for the q̂mw,2 and p̂mw,2 quadrature variables alone.
This yields an equation of the form(

q̂mw,2

p̂mw,2

)
=

(
B11 B12

B21 B22

)(
q̂mw,1

p̂mw,2

)
+

(
F̂qmw,2

F̂pmw,2

)
, (27)

where F̂qmw,2 and F̂pmw,2 are the associated noise operators for
the q̂mw,2 and p̂mw,2 quadrature variables, respectively, along
with coupling to any other degrees of freedom besides the
microwave cavity. These Bij terms are used in Eq. (26) to
calculate the qubit transfer fidelity.

V. STATE-TRANSFER FIDELITY RESULTS

With this framework in place, we proceed to calculate the
state-transfer fidelity by numerically integrating Eq. (19). As
was shown in Sec. III, our transfer protocol requires that we
use a counterintuitive sequence of optomechanical coupling
terms. One is free to choose the pulse shapes. We choose
the simplest scheme that satisfies the constraints implied by
Eq. (15). Namely, we take the pulses to be

−go,1(t) = gmw,2(t) = g

(
1 − t

T

)
,

(28)
gmw,1(t) = −go,2(t) = g

t

T
,

where 0 � t � T and g is the maximum pulse strength. For
all pulses we see that |∂gi,j /∂t |2 = g2/T 2; therefore, the
adiabatic condition requires that gT /2  1.

We use the resulting solution to estimate the transfer fidelity
for Gaussian states using the formula given in Eq. (21) and for
qubit states using the formula given in Eq. (24). One would
expect that the fidelity is more sensitive to changes in the
cavity loss rates, compared to the mechanical and fiber loss
rates, since we are using a dark state that is decoupled from
the fiber and mechanical modes to lowest order. To test this,
we fix the fiber loss and optomechanical loss terms and look
at how the state-transfer fidelity scales as the microwave and
cavity loss rates vary. These results are plotted in Fig. 2. Next
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FIG. 2. (Color online) Plot of the state-transfer fidelity for a
coherent state |α,s〉 = |1,0〉 (black, top), a squeezed-coherent state
|α,s〉 = |1,0.4〉 (red, middle), and a qubit state α|0〉 + β|1〉 (blue,
bottom). Both optical and microwave cavity loss rates are varied
equally as specified by the x axis. We set the fiber and optomechanical
loss rates to κf /g = γm/g = 0.002, the total time to gT/2 = 25, and
the thermal population to Nth = 10.
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FIG. 3. (Color online) Plot of the state-transfer fidelity for a
coherent state |α,s〉 = |1,0〉 (black, top), a squeezed-coherent state
|α,s〉 = |1,0.4〉 (red, middle), and a qubit state α|0〉 + β|1〉 (blue,
bottom). Both fiber and mechanical oscillator loss rates are varied
equally as specified by the x axis. We set the optical and microwave
loss rates to κo/g = κmw/g = 0.002, the total time to gT/2 = 25,
and the thermal population to Nth = 10.

we fix the optical and microwave cavity loss rates and vary
the fiber and mechanical loss rates. These results are plotted
in Fig. 3.

As seen from the two figures, the results do indicate that
the transfer fidelity is more sensitive to cavity loss than to
fiber and mechanical loss. As the cavity loss rate approaches
zero, the transfer fidelity is nearly perfect even though we
have a nonzero mechanical and fiber loss rate in Fig. 2. In
Fig. 3 we see that with nonzero cavity loss rates, nearly
perfect transfer fidelity is only possible for the coherent-state
input. Additionally the fidelity gets worse more quickly when
increasing cavity loss rates than the corresponding mechanical
and fiber loss rates. We also note that in both cases, the
coherent state is least susceptible to loss, while the squeezed
state and qubit state are progressively more prone to loss.
This is expected as the coherent state is a nearly classical state,
while the squeezed state and qubit state are progressively more
“quantum,” causing them to be more fragile.

For the pulse shapes defined in Eq. (28), the adiabatic
condition requires that gT /2  1. To satisfy this condition
one can choose to increase either a large g or T . We show
that it is always desirable to have g large, while increasing T

enhances susceptibility to loss, causing reduced fidelity. To see
this, we vary g and T defined in Eq. (28). We plot the transfer
fidelity in Fig. 4 for the same three input states as before. In the
figure, we plot two sets of curves. The solid curves correspond
to varying g with fixed T , while the dashed lines correspond
to varying T with fixed g.

Clearly, for small gT /2, nonadiabaticity has a strongly
negative influence on the transfer fidelity. Increasing g always
increases the fidelity up to the limit imposed by the loss
rates. In principle, one can always increase g while decreasing
T to make loss negligible. In this limit the transfer fidelity
approaches 1. Conversely, as T is increased, the transfer
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FIG. 4. (Color online) Plot of the state-transfer fidelity for a
coherent state |α,s〉 = |1,0〉 (black, top), a squeezed-coherent state
|α,s〉 = |1,0.4〉 (red, middle), and a qubit state α|0〉 + β|1〉 (blue,
bottom). Here we study the effects of adiabaticity by varying g (solid
curves) and T (dashed curves). We set the optical and microwave
loss rates to κo/g = κmw/g = κf /g = γm/g = 0.05 for the dashed
curves and κoT = κmwT = κf T = γmT = 0.05 for the solid curves.
The thermal population is set to Nth = 10. As seen in the figure, only
when gT/2 � 10 can we achieve high-transfer fidelity state transfer.
This is expected due to requirements for adiabaticity. However, while
it is always better to increase the optomechanical coupling rate g, one
cannot increase T indefinitely as eventually photon loss becomes an
issue leading to an optimal transfer time.

fidelity initially goes up due to the satisfying of the adiabatic
condition. As one continues to increase T , cavity loss begins to
lower the fidelity. The longer the transfer sequence, the more
likely photon loss will occur. For this reason, eventually the
fidelity begins to go down as T is continuously increased. This
feature leads to an optimal transfer time T that is governed by
the coupling parameter and the various loss rates.

The parameters we have chosen here that lead to high
transfer fidelity require one to have both the optical cavity and
microwave cavity to be strongly coupled to the mechanical
oscillator. In addition, we require that the fiber be strongly
coupled to the optical cavity. We find that the ratio of the
optomechanical coupling to cavity loss rate that produces high-
fidelity transfers is around g/κ � 10. These are challenging
requirements for an experimental implementation, as the best
recent experiments are closer to g/κ � 1 for optical [12,13]
and microwave setups [3,17]. However, given the remarkable
improvements over the last few years, we are optimistic that
these requirements are plausible for a future experimental
setup to meet.

VI. CONCLUSIONS

We have derived the dynamical model that describes two
microwave-mechanical-optical systems coupled through an
optical fiber. We derive solutions to this model that describe an
adiabatic state transfer from one microwave cavity to the other
through a quantum dark state. This state transfer is analogous

012324-6



QUANTUM NETWORKING OF MICROWAVE PHOTONS USING . . . PHYSICAL REVIEW A 90, 012324 (2014)

to STIRAP, used to adiabatically transfer atomic population
between ground states of an atom. Because the dark state
is decoupled from the mechanical and fiber modes, the state
transfer is relatively insensitive to loss in those modes.

Current superconducting qubit architectures make use
of microwave cavities to interact with the qubits for state
preparation, measurement, and control. The ability to transfer
microwave quantum states through optical fibers will enable
one to couple remote superconducting qubit systems. This will
allow one to design a distributed superconducting qubit quan-
tum system, similar to those proposed for ion-trap architectures
[33]. This mechanism to distribute quantum information
optically, will improve the scalability of superconducting
systems as size constraints imposed by the volume of the
cryogenic system will no longer be an issue for large-scale
systems.
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APPENDIX A: LINEARIZED OPTOMECHANICAL
HAMILTONIAN DERIVATION

The linearized optomechanical Hamiltonian given in Eq. (2)
describes the interaction of a mechanical oscillator with an
optical cavity driven by an external field. The interaction arises
from the radiation pressure force imparted on the mechanical
oscillator from the light driving the optical cavity. The total
Hamiltonian Ĥ = Ĥom + Ĥdrive is two quantum harmonic
oscillators together with a external driving field, where

Ĥom = �ωc(x̂)â†â + �ωm b̂
†
m b̂m (A1)

and

Ĥdrive = i�E(â†e−iωLt − âeiωLt ), (A2)

where ωc(x̂) is the cavity resonant frequency; â is the cavity
annihilation operator; ωm is the mechanical oscillator resonant
frequency; b̂m is the mechanical oscillator’s annihilation

operator; E =
√

Pγc

�ωc
is related the input power of the driving

field, P , and cavity decay rate, γc; and ωL is the frequency of
the driving laser. We explicitly note the dependence on x̂ of

the cavity resonant frequency, where x̂ = xzpf( b̂m + b̂
†
m) is the

displacement one of the cavity mirrors from equilibrium due
to mechanical motion, and xzpf =

√
〈0|x̂2|0〉 is the zero-point

fluctuation of the mechanical oscillator. We note that we have
neglected the zero-point energy of both the mechanical and
the optical oscillators as they do not contribute to the overall
dynamics.

Nonzero displacement can occur from radiation pressure
forces, thereby creating the coupling between light and
mechanical motion. To derive Eq. (2), we begin by expanding
the cavity resonant frequency in a Taylor series about the

origin,

ωc(x̂) = ωc + x̂
∂ωc

∂x̂
+ · · · . (A3)

To first order in the motion of the mirror, Eq. (A1) becomes

Ĥom = �ωcâ
†â + �ωm b̂

†
m b̂m − �g0â

†â( b̂m + b̂
†
m), (A4)

where g0 = − ∂ωc

∂x̂
xzpf = −ωcxzpf/L and the second equality

comes from assuming a Fabry-Pérot cavity of equilibrium
length L.

We now change into a reference frame rotating at laser
frequency with the unitary operator Û = exp(iωLâ†ât) via
Ĥ ′ = ÛĤ Û † − i�Û ∂Û †

∂t
. One can verify that this transforma-

tion yields

Ĥ ′ = Ĥ ′
0 + Ĥ ′

int + Ĥ ′
drive, (A5)

where

Ĥ ′
0 = −��â†â + �ωm b̂

†
b̂, (A6a)

Ĥ ′
int = −�g0â

†â( b̂m + b̂m), (A6b)

Ĥ ′
drive = i�E(â† − â), (A6c)

and � = ωL − ωc is the detuning of the laser field from the
cavity resonance.

We now proceed to linearize Eqs. (A6) by assuming we
have a strong driving field. Under this assumption we can write
the cavity-mode operators as a classical term plus a quantum
fluctuation term â = ᾱ + δâ, where ᾱ = √

n is the classical
amplitude with mean photon number n and δâ denotes the
quantum portion. With this substitution, Eqs. (A6) become

Ĥ ′
0 = −��(ᾱ∗ + δâ†)(ᾱ + δâ) + �ωm b̂

†
b̂, (A7a)

Ĥ ′
int = −�g0(ᾱ∗ + δâ†)(ᾱ + δâ)( b̂m + b̂

†
m), (A7b)

Ĥ ′
drive = i�E(ᾱ∗ + δâ† − ᾱ − δâ). (A7c)

Within Eq. (A7a), we drop ��ᾱ2 since it is simply a zero-
point energy shift and does not contribute to the dynamics.
Within Eq. (A7b) we again drop the term proportional to
|ᾱ|2 since it simply adds a displacement of the origin of the
mechanical oscillator, and we drop the terms proportional to
δâ†δâ as they are smaller by a factor of α compared to the term
we keep. After making these assumptions, and taking ᾱ to be
real without loss of generality, Eqs. (A7) become

Ĥ ′
0 ≈ −��(ᾱδâ + ᾱδâ† + δâ†δâ) + �ωm b̂

†
b̂, (A8a)

Ĥ ′
int ≈ −�g(δâ† + δâ)( b̂m + b̂

†
m), (A8b)

Ĥ ′
drive ≈ i�E(δâ† − δâ), (A8c)

where g = g0ᾱ is the optomechanical coupling strength that is
enhanced by a factor proportional to the optical driving field
amplitude.

We now once again change reference frames, this time
going to a frame rotating at the mechanical frequency with the

operator Û = exp(iωmδâ†δât + iωm b̂
†
m b̂mt). Applying this
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transformation yields

Ĥ ′′
0 ≈ −�(� + ωm)δâ†δâ − ��(ᾱδâe−iωmt + ᾱδâ†eiωmt ),

(A9a)

Ĥ ′′
int ≈ −�g(δâ†eiωmt + δâe−iωmt )( b̂me−iωmt + b̂

†
meiωmt ),

(A9b)

Ĥ ′′
drive ≈ i�E(δâ†eiωmt − δâe−iωmt ), (A9c)

We now make the assumption that � ≈ −ωm. This allows
us to employ the rotating-wave approximation (RWA) and
eliminate the terms oscillating at ±iωmt and higher. This
yields the resulting form of the optomechanical interaction
Hamiltonian,

Ĥ ′′
int ≈ −�g(δâ† b̂m + δâ b̂

†
m), (A10)

that we use in our analysis. Both Ĥ ′′
0 and Ĥ ′′

drive can be dropped
in the RWA.

APPENDIX B: NUMERICAL SOLUTION METHOD

Here we sketch our numerical solution technique used
to solve Eq. (19). The propagator that must be evaluated is

given by

exp

[
− i

∫ t

t ′
dt ′′M(t ′)

]
, (B1)

where M(t) is defined in Eq. (10). We numerically eval-
uate the time-ordered exponential in the standard way
as

T {e−i
∫ t

t ′ dt ′′M(t ′′)}
= lim

N→∞
[eM(tN )�teM(tN−1)�t · · · eM(t1)�teM(t0)�t ], (B2)

where tj = j�t and �t = t/N for j = M, . . . ,N , with
t ′ = Mt/N the initial time and M < N . For the numerical
evaluation of Eq. (19), we truncate the expansion given in
Eq. (B2) such that �t 
 1.

To numerically evaluate the integral contained in the noise
term of Eq. (19), we use the trapezoidal rule

∫ b

a

f (x)dx ≈ �x

2

N∑
k=1

[f (xk+1) + f (xk)], (B3)

where �x = (b − a)/N . We choose a �x 
 1 to ensure good
convergence of the numerical integral.
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[12] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J.

Kippenberg, Nature (London) 482, 63 (2012).
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