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Monogamy and backflow of mutual information in non-Markovian thermal baths
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We investigate the dynamics of information among the parties of tripartite systems. We start by proving
two results concerning the monogamy of mutual information. The first one states that mutual information
is monogamous for generic tripartite pure states. The second shows that, in general, mutual information is
monogamous only if the amount of genuine tripartite correlations is large enough. Then, we analyze the internal
dynamics of tripartite systems whose parties do not exchange energy. In particular, we allow for one of the
subsystems to play the role of a finite thermal bath. As a result, we find a typical scenario in which local
information tends to be converted into delocalized information. Moreover, we show that (i) the information flow
is reversible for finite thermal baths at low temperatures, (ii) monogamy of mutual information is respected
throughout the dynamics, and (iii) genuine tripartite correlations are typically present. Finally, we analytically
calculate a quantity capable of revealing favorable regimes for non-Markovianity in our model.
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I. INTRODUCTION

Concepts such as information flow, monogamy, and non-
Markovianity have appeared with high frequency in recent
literature of quantum information. The reason for that is
evident: real-world quantum computers and information pro-
cessing protocols, as for instance quantum cryptography [1]
and quantum teleportation [2], invariably depend on how
the transfer of information occurs among the numerous
constituents of a system and how monogamy and Markovianity
constraints this flow.

Generally speaking, recent efforts have focused on quan-
tifying, characterizing, and controlling information flow in
many-body systems. Aiming at understanding the information
transfer in condensed-matter systems, Bayat and Bose charac-
terized the ability of different phases of a finite spin chain in
transmitting entanglement from an end to another, thus acting
as a quantum wire [3]. The dynamics of information in non-
Markovian processes has also been investigated in connection
with concepts such as quantum Fisher information [4] and
geometric phases [5]. Haikka et al. demonstrated how the in-
formation flux between an impurity qubit and a Bose-Einstein
condensate can be manipulated by engineering the ultracold
reservoir with experimentally realistic limits [6]. On the
experimental side, an all-optical experiment has been reported,
which allows one to control the information flow between the
system and the environment and to determine the degree of
non-Markovianity of the process by measurements on the open
system [7]. More recently, the flow of quantum correlations in
pure states was investigated in tripartite [8] and multipartite [9]
systems. By use of the Coffman-Kundu-Wootters (CKW)
formula [10] for the squared concurrence, these works have
shown that genuine tripartite entanglement can appear as the
coherence initially stored in a given subsystem degrades due
to a zero-temperature environment.
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As far as monogamy is concerned, new developments
indicate that, while quantum discord is not generally monog-
amous [11,12], the entanglement of formation is as monog-
amous as concurrence [13]. Interestingly, Fanchini et al.
showed, via a monogamic principle, that quantum discord and
entanglement of formation define together a conservation law
for arbitrary tripartite pure states [14]. More recently, Streltsov
et al. proved that, in general, only entanglement measures can
be strictly monogamous [15]. Nevertheless, Braga et al. were
able to derive a monogamy inequality for quantum correlations
in a multipartite scenario by showing that the sum of pairwise
quantum correlations is upper limited by the global quantum
discord [16]. Concerning non-Markovianity, many measures
have been proposed [17–22] and studied for one- and two-qubit
systems [23,24]. For a brief review and a detailed comparison
of these measures the reader is referred to Ref. [25].

In this paper we link the aforementioned concepts in
an approach that extends the above studies to more com-
plex regimes. First, we remove the approximation of zero-
temperature reservoirs, which immediately leads us to consider
mixed states. Second, we focus our analysis on dephasing
dynamics, in which case the information flow is manifestly
detached from any energy transfer. Third, we investigate the
information dynamics by looking at the total correlations
between parties of the system. In particular, we ask under what
conditions the mutual information becomes monogamous.
Fourth, instead of resorting to the Kraus formalism for arbitrary
quantum channels, which is usually employed to model infinite
reservoirs, we explicitly consider finite thermal baths. Such
baths may present recurrences regimes, which allow us to
analyze the backflow of information and non-Markovianity.
This study is motivated by the fact that recent technology
proved able to access finite environments. As an example we
mention the recent observation of single quantum trajectories
of a superconducting quantum bit, an achievement that became
possible thanks to accurate real-time measurements on the
environment [26]. In many problems the thermal bath can
be highly structured, containing a finite number of modes,
which strongly influence back the system dynamics. In fact, the
system may be driven towards equilibrium through increasing
correlations with the bath [27–34], in contrast with situations
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in which system and bath remain uncorrelated [35]. Such
a complex phenomenon was also observed for the energy
transfer between a light-harvesting protein and a reaction
center protein [36,37]. On the theoretical side, decoherence
due to finite baths was studied in many works [38–44] but
remains as a topic of most relevance for chemical physics
processes.

This paper is organized as follows. In Sec. II we make
some remarks regarding measures of information. In particular,
we show that mutual information is monogamous for mixed
states only if genuine tripartite correlations are large enough. In
Sec. III we study the information flow in dephasing dynamics
governed by finite thermal baths. We identify a typical scenario
in which local information is converted to monogamous mutual
information. A case study is then conducted in Sec. IV, where
several results are obtained for the information dynamics.
Interestingly, we compute a witness of non-Markovianity and
express its behavior as a function of the temperature and the
number of modes of the bath. Section V closes the paper with
a summary of our findings.

II. PRELIMINARY REMARKS

A. State information and mutual information

For a generic multipartite system in a state ρ ∈ H (dimH =
d) we define the state information as

I = ln d − S, (1)

where S = S(ρ) is the von Neumann entropy. Sometimes
called negentropy, I has been given an operational interpre-
tation in terms of the amount of thermodynamic work that
can be extracted from a heat bath when the system state is
ρ [45]. Alternatively, it can be viewed as a measure of purity.
Consider an arbitrary cut yielding two parties x and y such
that d = dxdy . It follows from Eq. (1) that

I = Ix + Iy + Ix:y, (2)

where Ix = I(ρx) and ρx = Tryρ. Ix:y = Sx + Sy − S is the
mutual information of parties x and y. From the non-negativity
of the mutual information it follows that I � Ix + Iy , a
monogamy relation showing that the total local information
is not enough in general to account for the state information;
the difference is the mutual information.

In this paper we will focus on tripartite states, associated
with subsystems A, B, and C. Consider that x = AB and y =
C. According to Eq. (2) one can write I = IAB + IC + IAB:C

and IAB = IA + IB + IA:B , so that

I = ILOC + IA:B + IAB:C, (3)

where ILOC ≡ IA + IB + IC quantifies the total local infor-
mation. From Eq. (1) we can also show that I = ILOC + IT ,
where IT ≡ S(ρ || ρA ⊗ ρB ⊗ ρC) � 0 is the total mutual
information [46] and S(ρ||σ ) is the relative entropy of ρ and
σ . It is clear that IT measures the amount of information
that is not stored locally. In fact, it can be written as IT =
1
3 (IA:B + IB:C + IA:C + IAB:C + IBC:A + IAC:B), the sum of
the mutual information of all bipartitions of the system.

B. Genuine tripartite correlations

Bennett et al. [47] define n-partite correlations as follows:
“A state of n parties has genuine n-partite correlations if it
is nonproduct in every bipartite cut.” Then they show that
n-partite correlations accordingly defined satisfy a set of
reasonable postulates. As noted by Maziero et al. [48], it
follows as a logical implication that

I3 ≡ min
(A,B,C)

IAB:C = min{IAB:C,IAC:B,IBC:A} (4)

turns out to be a measure of genuine tripartite correlations,
where the minimization is taken over all permutations of
(A,B,C). Throughout this paper we employ this measure to
quantify genuine tripartite correlations. Rewriting Eq. (3) as
I − ILOC − IA:B = IAB:C and applying the minimization in
both sides, we obtain, by Eq. (4), that

I = ILOC + I3 + max
(A,B,C)

IA:B. (5)

Since I(t) = I(0) for any closed system, this relation implies
a tradeoff for those measures of information. We use this
expression to establish our notion of information flow. It is
clear that whenever the local information changes, the sum of
tripartite and bipartite correlations has to change by the same
amount.

C. Monogamy of mutual information

Entanglement is a monogamous correlation [10,13,49].
This means that it cannot be freely shared by distinct parties.
An example of monogamy inequality is the CKW formula
for the squared concurrence [10], C2

(AB)C � C2
AC + C2

BC , which
holds for three-qubit pure states. Since the bipartite entangle-
ment does not generally add up to the total entanglement of
the parties AB and C, there should be some genuine tripartite
entanglement τABC such that C2

(AB)C = C2
AC + C2

BC + τABC ,
with τABC � 0. On the other hand, it is well known that
classical correlations are not monogamous. Here we ask
whether there exists some monogamy inequality for the
mutual information. To assess this question, we manipulate
the definition of mutual information to arrive at

IAB:C = (IA:C + IB:C) + I, (6)

where

I = SAB + SAC + SBC − SA − SB − SC − S. (7)

The classical counterpart of I—sometimes called interaction
information—appeared long ago in information theory [50,51]
but, to the best of our knowledge, its interpretation is still
debatable (see Ref. [52] and references therein).

Equation (6) shows that a monogamy inequality will exist
if I � 0. It has been recently shown by Hayden et al. [53]
that the mutual information is monogamous for quantum field
theories with holographic duals. However, it is easy to show
by direct evaluation of I for some states, that monogamy is not
always satisfied (see Appendix). In what follows, we identify
some situations in which mutual information is assured to be
monogamous.
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Result 1. Mutual information is monogamous for tripartite
pure states. The proof is given as follows. Since ρ is pure,
then S = 0. The Araki-Lieb inequality implies that SAB = SC ,
SAC = SB , and SBC = SA. This immediately implies that I =
0 and

IAB:C = IA:C + IB:C, (8)

which completes the proof. Within the context of the strong
subadditivity (SSA) of the von Neumann entropy, a recent
work found out the structure of states that satisfy SSA
with equality (see Ref. [54] and references therein). From
the above calculations, it follows as a simple exercise (see
Ref. [55]) that tripartite pure states saturate both forms
of the strong subadditivity, i.e., SAC + SBC = SA + SB and
S + SB = SAB + SBC .

It is clear from Eq. (7) that I is invariant under permutations
of the subsystems, this being an expression of its global feature.
Then, one may wonder whether this quantity is somehow
related to genuine tripartite correlations. To approach this
question we minimize Eq. (6) over all permutations of the
subsystems, and obtain by Eq. (4) that

I3 = min
(A,B,C)

(IA:C + IB:C) + I. (9)

Besides relating I with tripartite correlations, this expression
brings us to our second result concerning monogamy.

Result 2. For a generic tripartite state, mutual information
is monogamous if and only if the amount of genuine tripartite
correlation is large enough, i.e.,

I3 � min
(A,B,C)

(IA:C + IB:C). (10)

The proof immediately follows from Eqs. (6) and (9). In
addition, as a corollary of result 1, it follows that for tripartite
pure states the equality holds in (10).

III. INFORMATION FLOW IN DEPHASING DYNAMICS

When two systems interact, they change both energy and
coherence. If one of the systems is a reservoir, with ideally
infinite degrees of freedom, then two physical processes
take place: relaxation and decoherence. While the former
is associated with the irreversible loss of energy, the latter
refers purely to the loss of purity (dephasing). Typically,
decoherence’s time is much smaller than relaxation’s, which
justifies the interest in nondissipative dynamics.

Here we consider two noninteracting systems, A and B,
coupled to a common environment C via the Hamiltonian
H = HA + HB + HC + Hint, where

Hint = (VA ⊗ 1B + 1A ⊗ VB) ⊗ VC (11)

and VX (X = A,B,C) is an operator acting on HX. To focus
on nondissipative dynamics, we demand that [VX,HX] = 0,
where HX denotes the free Hamiltonian of the subsystem
X. Since HX is local it does not contribute to the dynamics
of correlations and can be omitted. We also assume that A

and B share an initially correlated state ρAB(0), whereas
C is in the thermal-equilibrium state ρC = e−βHC /Z, where
Z = Tr e−βHC , T = (kBβ)−1 is the equilibrium temperature
and kB is the Boltzmann constant.

The dynamics of the system is governed by the propagator
U = e−iHintt/� = UACUBC , which yields

ρ(t) = UAC UBC ρAB(0) U
†
BC U

†
AC ρC, (12)

where UXC = e−iVX⊗VCt/� (X = A,B). Given the form of
the interaction and the fact that [VC,ρC] = 0, we obtain the
reduced states

ρXC(t) = UXC ρX(0) ⊗ ρC U
†
XC (13)

and ρC(t) = ρC , where ρA,B(0) = TrB,AρA,B(0). It follows
that SXC(t) = SXC(0) = SX(0) + SC(0) and SC(t) = SC(0).
Therefore,

IX:C(t) + IX(t) = IX(0) (X = A,B). (14)

This relation expresses the notion of information flow: any
decrease in the information stored locally in X is accompanied
with an increase in the mutual information of X and C. In other
words, the local information decreases because the reservoir
C, now correlated with X, gets to know about this subsystem,
so that by measuring C one can get information about X. In
addition, because S(t) = S(0) = SAB(0) + SC(0) one has that
IAB:C(t) = IAB(0) − IAB(t) and

I(t) = IA:B(0) − IA:B(t). (15)

Since the system is closed, the state information (3) is constant
and can be shown to be I(0) = ILOC(0) + IA:B(0). Then, we
can rewrite Eq. (3) as

IX:Y (t) + IXY :Z(t) = IA:B(0) + δILOC(t), (16)

where

δILOC(t) ≡ ILOC(0) − ILOC(t) (17)

and (X,Y,Z) assume any permutation of (A,B,C). The above
results allow us to construct a picture for the information
flow in our dephasing model. First, one sees that IA:C(0) =
IB:C(0) = IAB:C(0) = I(0) = I3(0) = 0. In virtue of the non-
negativity of the mutual information, Eq. (14) implies that
IX(t) � IX(0) (X = A,B), whereas IC(t) = IC(0). These re-
lations show that the information stored locally will generally
decrease as the system evolves in time, that is δILOC(t) � 0.
By Eq. (16) we see that, as a consequence, the information
reappears between distinct parties as mutual information. In
fact, Eq. (16) implies that not all bipartite information can
vanish simultaneously when IA:B(0) > 0. Moreover, the sum
of bipartite correlations has to increase as the local information
decreases. Finally, if C acts as a typical reservoir, then
we expect IA:B(t) to decrease with time, so as to produce,
according to Eq. (15), I(t) > 0. This ensures that throughout
the dynamics the mutual information is monogamous. Further-
more, by Eq. (9) we see that I3(t) > 0 as well. To sum up, our
dephasing model reveals a typical scenario in which (i) local
information transforms to mutual information and (ii) genuine
tripartite correlations emerge and ensure monogamy.

Consider for a while the case in which ρAB(0) is a
state with maximally mixed marginals, i.e., ρX(0) = 1X/dX

(X = A,B). It follows from Eq. (13) that ρXC(t) = ρXC(0) =
ρX(0) ⊗ ρC = 1X/dX ⊗ ρC . In this case, there is no dynamics
of local information, i.e., δILOC(t) = 0. Also, it is clear from
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Eq. (14) that IX:C(t) = 0. Hence, by Eqs. (9) and (15) we
conclude that

I3(t) = I(t) = IA:B(0) − IA:B(t). (18)

This result provides a simple way to track the dynamics of
genuine tripartite correlations. Moreover, it tells us that I3(t)
will typically increase in ideally infinite thermal baths. On the
other hand, as far as finite baths are concerned, the increase
in I3(t) may not be monotonic. In fact, one might suspect that
due to eventual information backflow, the tripartite correlations
would temporarily decrease. This speculation is assessed in the
next section with the aid of a specific model.

IV. CASE STUDY: TWO QUBITS IN A FINITE BOSONIC
RESERVOIR

Now we study the information dynamics using a model
that allows for an analytical analysis free from usual simplifi-
cations, such as the approximations of Born (weak coupling)
and Markov (no memory effects). We model the finite bath as
a set of N uncoupled harmonic modes, with free Hamiltonian

HC = �

N∑
k=1

ωkn̂k, (19)

where ωk is the frequency of the kth mode. The Hamiltonian
of the coupling is constructed as in Eq. (11) with

VX = � gX σX
3 and VC =

N∑
k=1

gkn̂k, (20)

where gX is the coupling constant of the qubit X with the
bath, n̂k is the number operator of the kth mode, and gk is the
coupling constant between the mode k and the qubits. The two
qubits are subjected to the same bath, but the strength of the
interaction is controlled by gX (X = A,B). The effectiveness
of this bosonic bath in yielding nondissipative decoherence
was demonstrated in Ref. [56].

The two-qubit system is assumed to be initially prepared in
a Bell-diagonal state with three real parameters. In the Bloch
representation, this state is written as ρAB(0) = ρc where

ρc = 1

4

(
1A ⊗ 1B +

3∑
i=1

ciσ
A
i ⊗ σB

i

)
. (21)

The reduced states are given by ρX = 1X/2. It follows from
the analysis carried out in the previous section that the
generation of genuine tripartite correlations can be quantified
via Eq. (18). Another interesting feature of this model is that
the dynamics confines the two-qubit system to a particular
subspace. Specifically, the dynamics maps Bell-diagonal states
onto Bell-diagonal states. In fact, by computing the time-
evolved state ρ(t) and tracing out the reservoir we arrive (using
the computational basis) at

ρAB(t) =

⎛
⎜⎝

α 0 0 δ(t)
0 β γ (t) 0
0 γ ∗(t) β 0

δ∗(t) 0 0 α

⎞
⎟⎠ , (22)

where

α = 1 + c3

4
, γ (t) = (c1 + c2)

4
θ−(t),

(23)

β = 1 − c3

4
, δ(t) = (c1 − c2)

4
θ+(t),

and

θ±(t) =
N∏

k=1

(
1 − e−β �ωk

1 − e−[β �ωk+2i(gA±gB ) gkt]

)
. (24)

Interestingly, all the influence of the thermal bath on the
two-qubit system is encoded in the functions θ±(t), which
depend on the number N of modes, their frequencies and
the coupling parameters (gk, gA, and gB). Although the
antidiagonal elements are complex, they can be made real by
the local unitary transformation e−iφAσA

3 ⊗ e−iφBσB
3 [57], with

φA = − (ϕ++ϕ−)
4 and φB = − (ϕ+−ϕ−)

4 , where θ± = |θ±|eiϕ± .
This procedure brings the state (22) back to the class of
three-parameter Bell-diagonal states, i.e., ρAB(t) = ρc′ , where
c′ = (c′

1,c
′
2,c

′
3) and

c′
1 = c1

( |θ−| + |θ+|
2

)
+ c2

( |θ−| − |θ+|
2

)
,

c′
2 = c1

( |θ−| − |θ+|
2

)
+ c2

( |θ−| + |θ+|
2

)
, (25)

c′
3 = c3.

As a consequence, one has that ρX(t) = 1X/2, which implies
that there will be no dynamics of local information. The
calculations show that the locally transformed state is identical
to (22) provided we replace the functions θ±(t) with their
moduli,

|θ±(t)| =
N∏

k=1

(
1 + sin2[(gA ± gB) gk t]

sinh2(β �ωk/2)

)−1/2

. (26)

Even though general models of baths assume that the fre-
quencies of its constituents obey some distribution, here we
will admit, as a simplifying hypothesis, that ωk = ω0. This
assumption is justified by the fact—verified numerically—that
a distribution for gk is more effective in causing decoherence
than would be a distribution for ωk with gk = g0. For the
present analysis we will take a Gaussian spectral distribution
for the coupling parameters,

gk = g0 exp

(
−k2

δ2

)
, (27)

where δ controls the width of the distribution and g0 gives the
strength of the coupling.

Now we obtain the main defining features of our reservoir
model. First, we compute the decoherence time. To this end,
we consider a short time regime, (gA ± gB)tgk � 1, which
allows Eq. (26) to be approximated by

|θ±(t)| ∼= exp

[
−

∑
k

(gA ± gB)2g2
k t2

2 sinh2(β�ω0/2)

]
. (28)
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This result can be rewritten as |θ±(t)| ∼= e−t2/t2
D , where tD—the

decoherence time—is given by

tD = sinh(β�ω0/2)

g G
, (29)

where g = min{|gA + gB |,|gA − gB |} and G2 = 1
2

∑
k g2

k . In
the limit N → ∞, one may show that G2 = √

π
8 g2

0 δ ξ , where

ξ = ϑ3(0, exp(−2/δ2))−1√
2πδ2

� 1
2 and ϑ3 is a Jacobi theta function.

It follows that G2 �
√

π
32g2

0δ, equality holding strictly for
δ → ∞ and approximately for δ � 1. The link with Ohmic
environments can be established by taking G2 = ∫ ∞

0 dωJ (ω)
for a Ohmic-like spectral density J (ω) = η ωs

ωs−1
c

e−ω/ωc , where
ωc is the cutoff frequency, η is a dimensionless coupling
constant and s is a parameter that regulates whether the
reservoir is sub-Ohmic (s < 1), Ohmic (s = 1), or super-
Ohmic (s > 1) [24]. By performing the integration in ω we
obtain the relation

√
π
32g2

0δ = ω2
cη�(1 + s), where � is the

gamma function. Then, for s > −1 the identifications ω2
c ∝ δ

and η ∝ g2
0 allow us to simulate an Ohmic bath. As far as we

consider N finite, however, we can check that

G ∼= g0

2

(√
π

2
δ − 1

)1/2

(30)

is a rather good approximation for 0 � δ � N . Clearly,
decoherence is more destructive when δ is large. In particular,
we can use δ ∼ N (for N � 2), which accentuates the variation
in the spectral profile. In this case, since G ∝ N1/2, the
decoherence time scales as N−1/2, thus decreasing with
the number of modes, as expected. Also, tD decreases with
the temperature. For low temperatures, however, decoherence
can still occur, provided that N is large enough. We can qualify
the competition between N and T as follows. First we write

|θ±(t)| = [
∏

k(1 + x2
k

y2
0
)]−1/2, with xk = sin[(gA ± gB)tgk] and

y0 = sinh(β�ω0/2). Given that |xk| � 1, one can show that
|θ±(t)| � |θ |min, where

|θ |min = tanhN (β �ω0/2) � 1. (31)

This is the value reached by |θ±(t)| for t > tD . Therefore,
strictly speaking, decoherence is not complete for finite N .
However, it is always possible to make the minimum arbitrarily
small by increasing the temperature.

In Fig. 1, |θ−(t)| and I3(t) are shown as a function of
time for a very small thermal bath (N = 10). Interestingly,
recurrences occur for low temperatures and a smooth spectral
density [Figs. 1(a)–1(d)]. It is obvious by Eq. (18) that tripartite
correlations increase at expense of the correlations between the
qubits. Although the simulations shown concern the Werner
state c1,2,3 = −0.8, the scenario there illustrated is typical
because the decoherence dynamics is mostly governed by
|θ±(t)|. The dependence on the initial state reflects only in
the amplitude of I3.

From ρX(t) = ρX(0) = 1X/2 and Eqs. (16) and (18) it
follows that

IAB:C(t) = I3(t). (32)

This shows that the tripartite correlations emerge from the
flow of the information initially stored in AB to C. Also, since

FIG. 1. |θ−(t)| (first column) and I3(t) (second column) as a
function of time (in log scale) for N = 10, c1,2,3 = −0.8, � = ω0 = 1,
gA = 1, gB = 2, and g0 = 0.1. The varying parameters are the
temperature and the width of the spectral distribution: (a), (b) β = 1
and δ = 10N ; (c), (d) β = 0.1 and δ = 10N ; (e), (f) β = 0.1 and
δ = N . All parameters are given in arbitrary units. The vertical line
in each panel accounts for the decoherence time (29).

IX:C(t) = 0, the reservoir C knows nothing about A and B

individually, only about AB.

A. Quantum versus classical correlations

Given that IA:B(t) = IA:B(0) − I3(t), it is clear that the total
correlations between A and B decreases with time. To see what
happens with the flow of quantum and classical correlations
separately, we compute the quantum discord D←−

AB , whose
formula is well known for Bell-diagonal states [58,59], and
the accessible information J←−

AB = IA:B − D←−
AB (a measure of

classical correlations [60]), which can be show to be [58]

J←−
AB (ct ) = (1 + ct )

2
ln (1 + ct ) + (1 − ct )

2
ln (1 − ct ) ,

where ct = max{|c′
1|,|c′

2|,|c′
3|}. From Eq. (25) we see that

|c′
1,2| � |c1,2|. Hence, for any initial state such that |c3| �

|c1,2|, we have that ct = |c3| and, therefore, J←−
AB (t) = J←−

AB (0).
In this case, IA:B(t) = D←−

AB (t) + J←−
AB (0), which implies, by

Eq. (18), that

I3(t) + D←−
AB (t) = D←−

AB (0). (33)

This result identifies a class of states for which any increase
in the genuine tripartite correlations occurs at expense of
the quantum correlations between A and B. For states such
that |c3| < |c1,2|, the accessible information decreases with
time until |c3| > |c′

1,2|, a condition that is invariably reached
as decoherence takes place. At this stage, the accessible
information assumes the constant value J←−

AB (|c3|) and the
conservation relation (33) starts to hold (see Fig. 2). It was
recently shown that the instant tPB , at which the accessible
information suddenly reaches a constant value, signals the
emergence of the pointer basis, a crucial element in approaches
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FIG. 2. Quantum discord D←−
AB (t) (solid line) and accessible

information J ←−
AB (t) (dashed line) as a function of time (in log scale)

for the same parameters of Figs. 1(e), 1(f). In (a) c1,2,3 = −0.6 and
in (b) c1,2 = −0.6 and c3 = −0.5. The solid vertical lines account
for the decoherence time (29), whereas the dashed vertical line in (b)
accounts for the sudden-change time (34). The constant value of the
accessible information is given by J ←−

AB (|c3|).

to the measurement problem [61]. In our model, tPB can be
analytically computed when c2 = −εc1 with ε = ±1, for in
this case we have that |c′

1,2| = |c1||θε |. Imposing that |c′
1,2| =

|c3| and using the short-time approximation for |θε(tPB)| we
obtain that

t2
PB = t2

D ln
|c1|
|c3| , (34)

where tD is to be calculated via Eq. (29) with g = |gA + εgB |.
Clearly, a sudden transition will occur only if |c1| > |c3|.

We also evaluated the entanglement of formation EAB [62].
The results showed that the entanglement typically undergoes
sudden death, which happens soon after the decoherence time,
but it can eventually reappear for regimes such as those of
Figs. 1(a)–1(d).

B. A measure of non-Markovianity

We now discuss the conditions under which our reservoir
model is non-Markovian. To this end, we introduce a witness
of non-Markovianity (NM) that is inspired by well-established
measures [17,19,20] but has the advantage of being easily
computable for our model. Here we associate the notion of NM
with the capability of the process in allowing for the backflow
of correlations from the reservoir to the system. In our model,
this is signaled by recurrences in IAB:C(t), which measures
how much the reservoir C gets to know about the system
AB. Then, by Eq. (32) and the results shown in Fig. 1, we
can conclude that the mechanisms of NM can be investigated
directly in |θ±(t)|, a state-independent quantity. For simplicity,

we replace |θ±(t)| with |θ (t)| = [
∏

k(1 + x2
k

y2
0
)]−1/2, where xk =

sin(ggkt), y0 = sinh(β�ω0/2), and g = min{|gA + gB |,|gA −
gB |}. If y0 � xk , then |θ | ∼= e− ∑

k x2
k /2y2

0 . This result can be
conveniently written as

|θ (t)| ∼= exp

(
− N

4y2
0

[1 − 〈c〉(t)]
)

, (35)

where

〈c〉(t) = 1

N

N∑
k=1

cos(2ggkt). (36)

Since recurrences in |θ (t)| are a symptom of NM, we define
our measure as

NM (t) = 1

t

∫ t

0
dt ′|θ (t ′)|. (37)

This quantity increases with the number of recurrences
occurring up to the instant t . Using again the limit of low
temperatures (y2

0 � N ) we expand Eq. (35), perform the time
integral analytically, and then turn the result back to the
exponential form. The result reads

NM (t) = exp

{
− N [ 1 − 〈c〉(t) ]

4 sinh2(β �ω0/2)

}
, (38)

where

〈c〉(t) = 1

N

N∑
k=1

sin(2ggkt)

2ggkt
. (39)

These expressions hold in the weak-coupling regime. They
reveal the conditions for NM to occur. When g = 0 one
has that 〈c〉(t) = 1 and the NM of the process is maximum
(NM (t) = 1), as expected. This shows that NM is favored by
weak coupling. For g > 0, two time regimes are noticeable.
While in the short-time regime NM is influenced by the spectral
distribution gk , at the equilibrium this distribution plays no role
at all. In fact, it is clear that 〈c〉(∞) = 0 and

NM (∞) = exp

(
− N

4 sinh2[β �ω0/2]

)
. (40)

This formula identifies the physical parameters that crucially
influence NM. One sees that NM can be significantly enhanced
for small baths (N small) and low temperatures. This was also
observed in classical systems coupled to finite baths [63,64].
For the simulations shown in Fig. 1, our measure results
lnNM = −9.206 in Fig. 1(a), lnNM = −999.086 in Fig. 1(c),
and lnNM = −999.212 in Fig. 1(e), when computed for
t = 104, thus suggesting that the processes in Figs. 1(c)
and 1(e) are strongly Markovian. Although these results agree
with the scenario illustrated in the figure, those simulations
were obtained in the regime of high temperatures, for which
it is not clear whether our measure can give accurate results.
In Fig. 3 we illustrate the behavior of NM as a function of the

FIG. 3. (Color online) Non-MarkovianityNM as a function of the
inverse temperature β and the number of modes N for � = ω0 = 1,
gA = 1, gB = 2, g0 = 0.1, and δ = 10N . In this simulation we
used t = 106. All parameters are given in arbitrary units. Non-
Markovianity is favored by small reservoirs and low temperatures.
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inverse temperature β and the number of modes N for a given
regime of coupling.

V. SUMMARY

In this paper we conducted a thorough analysis of the
information flow in the context of dephasing dynamics induced
by finite baths. We started by deriving some results for the main
figure of merit in our work, namely, the mutual information.
Specifically, we showed that mutual information is monoga-
mous (i) for all tripartite pure states and (ii) for tripartite mixed
states for which the amount of genuine tripartite correlations
is greater than a certain lower bound. Besides complementing
recent studies on the monogamy of correlations [12,13,53],
our result establishes an interesting link between the mutual
information monogamy and tripartite correlations. Concerning
dephasing dynamics, we found out a typical scenario in which
the information associated to subsystems delocalizes within
the system. In addition, our results show that genuine tripartite
correlations will generally increase, thus ensuring monogamy
for the mutual information. At last, we provided an analytical
study for a model of two noninteracting qubits coupled with
a nondissipative finite thermal bath. Besides illustrating our
predictions for general dephasing models, this case study
allowed for the observation of two relevant aspects. First, we
verified the existence of a conservation relation involving the
amount of tripartite correlations and the amount of quantum
correlations in the two-qubit system. Second, we calculated a
measure of non-Markovianity, which revealed the quantitative
dependence of the decoherence process with the number of
modes of the thermal bath, the equilibrium temperature, and
the spectral distribution.
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APPENDIX: GENUINE TRIPARTITE CORRELATIONS
AND INTERACTION INFORMATION FOR THREE-QUBIT

STATES

Here we present some examples showing that monogamy
is not always respected by mutual information. Consider the

FIG. 4. (Color online) (a) I3/4 (solid line) and I (dashed line)
as a function of x for the state (A1). Monogamy is violated by
mixed states with x � 0.435 96. (b) I3 − I (yellow thick line) and
min(A,B,C)(IA:C + IB:C) (red dashed line) as a function of x for the
state (A1). This simulation illustrates the validity of Eq. (9).

states [53]

ρ1 = 1
4 (|000〉〈000| + |011〉〈011| + |101〉〈101| + |110〉〈110|),

ρ2 = ρAC ⊗ ρB,

ρ3 = 1
2 (|000〉〈000| + |111〉〈111|).

By direct calculations one gets I(ρ1) = ln 2, I(ρ2) = 0, and
I(ρ3) = − ln 2. For an illustration of the nontrivial behaviors
of I3 and I, we consider a three-qubit system in the state

ρ = (
1−x

8

)
1A ⊗ 1B ⊗ 1C + x |ψ〉〈ψ |,

(A1)
|ψ〉 = α |000〉 + β |010〉 + γ |101〉 + δ |111〉,

where x ∈ [0,1] and |α|2 + |β|2 + |γ |2 + |δ|2 = 1. Although
an analytical formula for I does exist for this state, it is not
insightful and so it will be omitted. We then consider some
particular cases. For α = β = γ = 0 we have that

I3 = (1 + 7x)

8
ln (1 + 7x) − 3(1 − x)

8
ln (1 − x)

− 4(1 + x)

8
ln (1 + x) − 2(1 + 3x)

8
ln (1 + 3x), (A2a)

I = I3 + (1 − x)

2
ln (1 − x) + 4(1 + x)

2
ln (1 + x)

− (1 + 3x)

2
ln (1 + 3x). (A2b)

In Fig. 4 the behavior of these quantities is shown as a function
of x. For pure states (x = 1) one shows that I = 0, as predicted
by result 1 in Sec. II.
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arXiv:1402.4975.
[26] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Nature

(London) 502, 211 (2013).
[27] E. Lubkin, J. Math. Phys. 19, 1028 (1978).
[28] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[29] J. Gemmer, A. Otte, and G. Mahler, Phys. Rev. Lett. 86, 1927

(2001).
[30] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[31] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004).
[32] J. Gemmer and M. Michel, Eur. Phys. J. B 53, 517 (2006).
[33] A. Pernice and W. T. Strunz, Phys. Rev. A 84, 062121 (2011).
[34] A. Pernice, J. Helm, and W. T. Strunz, J. Phys. B 45, 154005

(2012).
[35] U. Weiss, Quantum Dissipative Systems (World Scientific,

Singapore, 1999).
[36] M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley,

Nature Phys. 6, 462 (2010).
[37] G. D. Scholes, Nature Phys. 6, 402 (2010).
[38] W. Yang and R.-B. Liu, Phys. Rev. B 78, 085315 (2008).

[39] E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev. Lett.
88, 228304 (2002).

[40] X.-T. Liang, Phys. Lett. A 349, 98 (2006).
[41] V. Wong and M. Gruebele, Chem. Phys. 284, 29 (2002).
[42] I. Burghardt, M. Nest, and G. A. Worth, J. Chem. Phys. 119,

5364 (2003).
[43] C. M. Goletz and F. Grossmann, J. Chem. Phys. 130, 244107

(2009).
[44] W. Koch, F. Grossmann, J. Stockburger, and J. Ankerhold,

Chem. Phys. 370, 34 (2010).
[45] M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A.

Sen, U. Sen, and B. Synak-Radtke, Phys. Rev. A 71, 062307
(2005).

[46] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson,
Phys. Rev. Lett. 104, 080501 (2010).

[47] C. H. Bennett, A. Grudka, M. Horodecki, P. Horodecki, and
R. Horodecki, Phys. Rev. A 83, 012312 (2011).

[48] J. Maziero and F. M. Zimmer, Phys. Rev. A 86, 042121 (2012).
[49] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[50] W. J. McGill, Psychometrika 19, 97 (1954).
[51] R. M. Fano, Transmission of Information: A Statistical Theory

of Communications (MIT Press, Cambridge, Massachusetts,
1961).

[52] K. Krippendorff, Int. J. Gen. Syst. 38, 669 (2009).
[53] P. Hayden, M. Headrick, and A. Maloney, Phys. Rev. D 87,

046003 (2013).
[54] P. Hayden, R. Jozsa, D. Petz, and A. Winter, Commun. Math.

Phys. 246, 359 (2004).
[55] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[56] R. M. Angelo, E. S. Cardoso, and K. Furuya, Phys. Rev. A 73,
062107 (2006).

[57] Y. Huang, Phys. Rev. A 88, 014302 (2013).
[58] S. Luo, Phys. Rev. A 77, 042303 (2008).
[59] A. C. S. Costa and R. M. Angelo, Phys. Rev. A 87, 032109

(2013).
[60] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
[61] M. F. Cornelio, O. J. Farı́as, F. F. Fanchini, I. Frerot, G. H.

Aguilar, M. O. Hor-Meyll, M. C. de Oliveira, S. P. Walborn,
A. O. Caldeira, and P. H. Souto Ribeiro, Phys. Rev. Lett. 109,
190402 (2012).

[62] T. Yu and J. H. Eberly, Quantum Inf. Comput. 7, 459 (2007).
[63] J. Rosa and M. W. Beims, Phys. Rev. E 78, 031126 (2008).
[64] C. Manchein, J. Rosa, and M. W. Beims, Physica D 238, 1688

(2009).

012322-8

http://dx.doi.org/10.1103/PhysRevA.85.040102
http://dx.doi.org/10.1103/PhysRevA.85.040102
http://dx.doi.org/10.1103/PhysRevA.85.040102
http://dx.doi.org/10.1103/PhysRevA.85.040102
http://dx.doi.org/10.1103/PhysRevA.89.034303
http://dx.doi.org/10.1103/PhysRevA.89.034303
http://dx.doi.org/10.1103/PhysRevA.89.034303
http://dx.doi.org/10.1103/PhysRevA.89.034303
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevLett.109.050503
http://dx.doi.org/10.1103/PhysRevLett.109.050503
http://dx.doi.org/10.1103/PhysRevLett.109.050503
http://dx.doi.org/10.1103/PhysRevLett.109.050503
http://dx.doi.org/10.1103/PhysRevA.86.062106
http://dx.doi.org/10.1103/PhysRevA.86.062106
http://dx.doi.org/10.1103/PhysRevA.86.062106
http://dx.doi.org/10.1103/PhysRevA.86.062106
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.86.044101
http://dx.doi.org/10.1103/PhysRevA.85.052108
http://dx.doi.org/10.1103/PhysRevA.85.052108
http://dx.doi.org/10.1103/PhysRevA.85.052108
http://dx.doi.org/10.1103/PhysRevA.85.052108
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.88.020102
http://dx.doi.org/10.1103/PhysRevA.87.052109
http://dx.doi.org/10.1103/PhysRevA.87.052109
http://dx.doi.org/10.1103/PhysRevA.87.052109
http://dx.doi.org/10.1103/PhysRevA.87.052109
http://dx.doi.org/10.1103/PhysRevA.88.012105
http://dx.doi.org/10.1103/PhysRevA.88.012105
http://dx.doi.org/10.1103/PhysRevA.88.012105
http://dx.doi.org/10.1103/PhysRevA.88.012105
http://arxiv.org/abs/arXiv:1402.4975
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.86.1927
http://dx.doi.org/10.1103/PhysRevLett.86.1927
http://dx.doi.org/10.1103/PhysRevLett.86.1927
http://dx.doi.org/10.1103/PhysRevLett.86.1927
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.76.1267
http://dx.doi.org/10.1103/RevModPhys.76.1267
http://dx.doi.org/10.1103/RevModPhys.76.1267
http://dx.doi.org/10.1103/RevModPhys.76.1267
http://dx.doi.org/10.1140/epjb/e2006-00407-3
http://dx.doi.org/10.1140/epjb/e2006-00407-3
http://dx.doi.org/10.1140/epjb/e2006-00407-3
http://dx.doi.org/10.1140/epjb/e2006-00407-3
http://dx.doi.org/10.1103/PhysRevA.84.062121
http://dx.doi.org/10.1103/PhysRevA.84.062121
http://dx.doi.org/10.1103/PhysRevA.84.062121
http://dx.doi.org/10.1103/PhysRevA.84.062121
http://dx.doi.org/10.1088/0953-4075/45/15/154005
http://dx.doi.org/10.1088/0953-4075/45/15/154005
http://dx.doi.org/10.1088/0953-4075/45/15/154005
http://dx.doi.org/10.1088/0953-4075/45/15/154005
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1693
http://dx.doi.org/10.1038/nphys1693
http://dx.doi.org/10.1038/nphys1693
http://dx.doi.org/10.1038/nphys1693
http://dx.doi.org/10.1103/PhysRevB.78.085315
http://dx.doi.org/10.1103/PhysRevB.78.085315
http://dx.doi.org/10.1103/PhysRevB.78.085315
http://dx.doi.org/10.1103/PhysRevB.78.085315
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1016/j.physleta.2005.09.026
http://dx.doi.org/10.1016/j.physleta.2005.09.026
http://dx.doi.org/10.1016/j.physleta.2005.09.026
http://dx.doi.org/10.1016/j.physleta.2005.09.026
http://dx.doi.org/10.1016/S0301-0104(02)00534-7
http://dx.doi.org/10.1016/S0301-0104(02)00534-7
http://dx.doi.org/10.1016/S0301-0104(02)00534-7
http://dx.doi.org/10.1016/S0301-0104(02)00534-7
http://dx.doi.org/10.1063/1.1599275
http://dx.doi.org/10.1063/1.1599275
http://dx.doi.org/10.1063/1.1599275
http://dx.doi.org/10.1063/1.1599275
http://dx.doi.org/10.1063/1.3157162
http://dx.doi.org/10.1063/1.3157162
http://dx.doi.org/10.1063/1.3157162
http://dx.doi.org/10.1063/1.3157162
http://dx.doi.org/10.1016/j.chemphys.2009.12.017
http://dx.doi.org/10.1016/j.chemphys.2009.12.017
http://dx.doi.org/10.1016/j.chemphys.2009.12.017
http://dx.doi.org/10.1016/j.chemphys.2009.12.017
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevA.83.012312
http://dx.doi.org/10.1103/PhysRevA.83.012312
http://dx.doi.org/10.1103/PhysRevA.83.012312
http://dx.doi.org/10.1103/PhysRevA.83.012312
http://dx.doi.org/10.1103/PhysRevA.86.042121
http://dx.doi.org/10.1103/PhysRevA.86.042121
http://dx.doi.org/10.1103/PhysRevA.86.042121
http://dx.doi.org/10.1103/PhysRevA.86.042121
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1103/PhysRevA.69.022309
http://dx.doi.org/10.1007/BF02289159
http://dx.doi.org/10.1007/BF02289159
http://dx.doi.org/10.1007/BF02289159
http://dx.doi.org/10.1007/BF02289159
http://dx.doi.org/10.1080/03081070902993160
http://dx.doi.org/10.1080/03081070902993160
http://dx.doi.org/10.1080/03081070902993160
http://dx.doi.org/10.1080/03081070902993160
http://dx.doi.org/10.1103/PhysRevD.87.046003
http://dx.doi.org/10.1103/PhysRevD.87.046003
http://dx.doi.org/10.1103/PhysRevD.87.046003
http://dx.doi.org/10.1103/PhysRevD.87.046003
http://dx.doi.org/10.1007/s00220-004-1049-z
http://dx.doi.org/10.1007/s00220-004-1049-z
http://dx.doi.org/10.1007/s00220-004-1049-z
http://dx.doi.org/10.1007/s00220-004-1049-z
http://dx.doi.org/10.1103/PhysRevA.73.062107
http://dx.doi.org/10.1103/PhysRevA.73.062107
http://dx.doi.org/10.1103/PhysRevA.73.062107
http://dx.doi.org/10.1103/PhysRevA.73.062107
http://dx.doi.org/10.1103/PhysRevA.88.014302
http://dx.doi.org/10.1103/PhysRevA.88.014302
http://dx.doi.org/10.1103/PhysRevA.88.014302
http://dx.doi.org/10.1103/PhysRevA.88.014302
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.87.032109
http://dx.doi.org/10.1103/PhysRevA.87.032109
http://dx.doi.org/10.1103/PhysRevA.87.032109
http://dx.doi.org/10.1103/PhysRevA.87.032109
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevLett.109.190402
http://dx.doi.org/10.1103/PhysRevLett.109.190402
http://dx.doi.org/10.1103/PhysRevLett.109.190402
http://dx.doi.org/10.1103/PhysRevLett.109.190402
http://dx.doi.org/10.1103/PhysRevE.78.031126
http://dx.doi.org/10.1103/PhysRevE.78.031126
http://dx.doi.org/10.1103/PhysRevE.78.031126
http://dx.doi.org/10.1103/PhysRevE.78.031126
http://dx.doi.org/10.1016/j.physd.2009.05.004
http://dx.doi.org/10.1016/j.physd.2009.05.004
http://dx.doi.org/10.1016/j.physd.2009.05.004
http://dx.doi.org/10.1016/j.physd.2009.05.004



