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Dark-state adiabatic passage with spin-one particles
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Adiabatic transport of information is a widely invoked resource in connection with quantum information
processing and distribution. The study of adiabatic transport via spin-half chains or clusters is standard in
the literature, while in practice the true realization of a completely isolated two-level quantum system is not
achievable. We explore here, theoretically, the extension of spin-half chain models to higher spins. Considering
arrangements of three spin-one particles, we show that adiabatic transport, specifically a generalization of the
dark-state adiabatic passage procedure, is applicable to spin-one systems. We thus demonstrate a qutrit state
transfer protocol. We discuss possible ways to physically implement this protocol, considering quantum dot and
nitrogen-vacancy implementations.
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I. INTRODUCTION

The communication of information around small quantum
networks is becoming increasingly important as the control
and design of such quantum systems becomes more advanced.
There are now many different approaches to such transport [1]
and the choice of the “best” protocol for a given task depends
on the size of the quantum system and the level of control that
can be applied to it.

One class of transport protocols that is of interest is the set of
protocols inspired by adiabatic passage. Generically, adiabatic
passage is the controlled evolution of a quantum system from
an initial to a final state, so as to maintain the system in
an instantaneous eigenstate throughout, by means of control
of both tunnel matrix elements and on-site energies. The
canonical example of adiabatic passage is perhaps stimulated
Raman adiabatic passage (STIRAP) [2] (see Refs. [3,4] for
a good discussion of this, and related adiabatic techniques).
Here, an excitation (typically an electron) is moved between
energy levels in a three-or-more-level atomic system. The only
control is via coherent electromagnetic fields (e.g., lasers) and
the so-called counterintuitive pulse sequence (defined below)
is employed.

Although many extensions of STIRAP are possible, in gen-
eral the natural restrictions of using atomic systems can limit
what is possible or practical. However, combining STIRAP
techniques with spatially engineered systems mitigates this
restriction somewhat, as seen in original work applying STI-
RAP techniques to double quantum dot systems [5,6]. Later,
full spatial variants of STIRAP were explored, including the
coherent tunneling adiabatic passage (CTAP) approach, which
has been studied in the context of atoms in triple well potentials
[7], superconductors [8], electrons bound to quantum dots and
to donors [9], Bose-Einstein condensates [10,11], photons in
waveguides [12,13], and Bose-Hubbard systems [14]. Again,
the main strength of CTAP derives from the ability to engineer
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the Hilbert space for certain functions, and in this context
there exist applications for quantum information transport
[9,15], adiabatic splitting and operator measurements [16,17],
quantum gates [18], interferometry [19,20], and branching
structures for interaction-free measurement [21] and multiport
splitting [22]. Most generally, adiabatic passage techniques
can be understood as implementing generalized Morris-Shore
transformations [23,24].

Another scheme related to STIRAP that also takes ad-
vantage of Hilbert-space engineering is dark-state adiabatic
passage (DSAP) [25,26]. The dark state in a three-level �

system is an eigenstate, which has no overlap with the excited
state, and is the eigenstate that is utilized by the STIRAP
process. DSAP is named for the multispin generalization of
this state, although, technically, the term dark state is not
meaningful in DSAP as there is no requirement for an optically
active excited state to be present in the system. In DSAP, a
spin chain is considered with adiabatically controlled spin-spin
couplings. Formally, if the chain is a one-dimensional array of
spin-1/2 particles, then it is easy to see how to translate the
particle hopping approach of CTAP to the spin propagation
via spin-spin coupling in DSAP. More generally, spin chains
offer the possibility of creating quantum wires for solid-state
quantum computers [1].

Here we consider DSAP in a system of three spin-one
particles or, equivalently, qutrits depicted schematically in
Fig. 1(a). We show that this system can exhibit DSAP in a
fashion equivalent to that seen in spin-1/2 systems, but it also
introduces richer evolution, which is more akin to alternating
adiabatic passage protocols with five states [27–29], and that
observed in the Bose-Hubbard treatment [14]. We discuss
two methods of implementation, with the first based on
complete control of the three-spin Hamiltonian, such as might
be expected in triple dot structures, and the second using
magic-angle control, such as would be appropriate for dipolar
coupled particles.

There has been relatively little work on quantum transport
in spin-one chains, compared with that of spin-half chains,
and certainly we are not aware of adiabatic passage techniques
in these systems. Understanding of the transport in spin-one
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FIG. 1. (Color online) (a) Schematic representation of the three-
spin system. Individual spin states are labeled according to their z pro-
jection and spin-spin coupling is nearest neighbor only. (b) Dark-state
adiabatic passage is effected by varying the couplings according
to the counterintuitive pulse sequence, in this case illustrated using
sinusoidal modulation of d12 and d23.

chains ultimately seems to derive from the Haldane [30] and
Affleck et al. (AKLT) studies for a spin-one Heisenberg chain
[31], and typically focuses on the properties of the elementary
excitations with the chains (e.g., Refs. [32–35]) or in some
cases teleportation-based transport [36–38] or entanglement
swapping [39].

II. DARK-STATE ADIABATIC PASSAGE WITH
SPIN-ONE PARTICLES

Our treatment of the adiabatic passage protocol is appli-
cable to many systems. All that is required is three effective
spin-one systems with controllable nearest-neighbor coupling.
The generic, nearest-neighbor Hamiltonian can be expressed
as a function of time t (with � = 1) as

H = B

3∑
i=1

Jz,i + [d12(t)J+
1 J−

2 + d23(t)J+
2 J−

3 + H.c.],

(1)

where B is the (possibly time-varying) Zeeman energy associ-
ated with the magnetic field, Jz,i is the spin projection operator
along the z axis for particle i, J+

i (J−
i ) is the spin raising

(lowering) operator for particle i, and dij (t) is the time-varying
(gated) coupling energy between (nearest-neighbor) particles
i and j . We label the states of the particles according to their
z projection as |1〉, |0〉, and |1̄〉. For a given state ψ , we define
the population in a given basis state as Pα,β,γ = |〈α,β,γ |ψ〉|2
for α,β,γ = 1̄,0,1. The passage involves “moving” the state
of a given spin, for example a 0, from particle 1 to particle 3
during the interval from t = 0 to t = tmax, such that at t = 0
the system is in the state |0,α,α〉 and at t = tmax the system
is in the state |α,α,0〉 for particular spin projections α. The
restrictions on the allowed α for DSAP are discussed below.

Adiabatic passage implementation involves the counterin-
tuitive pulse ordering such that d12(0) → 0, d23(0) � d12(0)
and d23(tmax) → 0, d12(tmax) � d23(tmax), with the djk(t)
smoothly varied throughout the protocol (although even
this restriction is not absolute; see, for example, piecewise
adiabatic passage [40] and digital adiabatic passage [41]). The
counterintuitive pulse sequence is named for the fact that the
state to be transferred is initially uncoupled, while the non-
transferred states are initially strongly coupled. This sequence
admits an infinite amount of possible implementations and, for
simplicity and definiteness, we choose

d12(t) = d sin2(πt/2tmax),
(2)

d23(t) = d cos2(πt/2tmax),

where d is the maximum coupling, and the total time tmax

is assumed long enough to ensure adiabatic evolution. This
particular sequence is shown in Fig. 1(b).

We first assume that the interspin coupling can be directly
and independently controlled. This method is best suited
to quantum dot implementations where gates can be used
to independently control the exchange interaction between
neighboring spins.

To gain insight into the dynamics of the three-spin system
under the counterintuitive pulse sequence, we present the
time-dependent eigenspectra in Fig. 2. We have arbitrarily
set d/B = 0.2 in the figure to separate the manifolds with
different numbers of excitations. The full solution is relatively
complicated, with several degeneracies appearing; however,
it is easier to obtain insight into the dynamics if we focus
our attention on each manifold of states centered around a
given energy. The manifolds and evolution for E = ±3B are
trivial. These correspond to the system in |111〉 or |1̄1̄1̄〉
states, respectively, which do not respond to the coupling
interaction variations and are therefore ignored in what
follows.

FIG. 2. Eigenspectra over the counterintuitive pulse sequence
with B = 1, d = 0.2. The states separate into various manifolds,
which are discussed in the text. Highlighted are some of the kets with
constant energy throughout the DSAP protocol.
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The energy levels around E = ±2B are relatively straight-
forward. There are three states involved in each manifold.
In the E = 2B manifold, the basis states involved are |011〉,
|101〉, and |110〉. These show the possibility for a DSAP-like
pathway where the spin state on particle one, |0〉, is transferred

to particle three. This can equivalently be thought of as
adiabatic passage of a hole along the chain, as discussed by
Benseny et al. in the context of atomtronics [42].

For our particular pulse sequence, the eigenstates around
E = 2B are

∣∣D(2)
0

〉 = cos2
(

πt
2tmax

)|011〉 − sin2
(

πt
2tmax

)|110〉√
cos4

(
πt

2tmax

) + sin4
(

πt
2tmax

) , (3)

|D(2)
± 〉 =

sin2
(

πt
2tmax

)|011〉 ±
√

3+cos
(

2πt
tmax

)
2 |101〉 − cos2

(
πt

2tmax

)|110〉√
3 + cos

(
2πt
tmax

) , (4)

with energies

E
(2)
0 = 2B, E

(2)
± = 2B ± d

2

√
3 + cos

(
2πt

tmax

)
. (5)

We interpret these results in the usual fashion for CTAP,
namely, that when t = 0, d23 � d12, the system is initialized
in the state |D(2)

0 〉 = |011〉, and adiabatically following the
counterintuitive pulse sequence transfers the spin 0 state from
site 1 to site 3 without modifying the spin state at site 2. The
calculated time evolution of the populations in this case is
shown in Fig. 3. We note that the evolution presented here and
all subsequent figures is calculated from a full solution of the
time-varying Hamiltonian. When compared with the analytical
results provided, full agreement is obtained. The evolution at
E = −2B follows from exactly the same reasoning, except

FIG. 3. (Color online) Populations in the E = 2B manifold
throughout the protocol determined using density matrix analysis
as a function of time, confirming the DSAP evolution. The red line
is P011 and the green line is P110. Note that the system is initialized
in the state |011〉 (P011 = 1) and evolves to the state |110〉, staying in
the state |D2

0〉 as expected, with P101 = 0 throughout the protocol.
Population in the E = −2B manifold follows similarly. For this
simulation, tmax = 100B−1. The path of the adiabatic passage is
schematically shown at the top, where only the lower states are
populated. This representation also makes clear the connection be-
tween the DSAP pathway under consideration and STIRAP in the �

configuration.

that in this case, the states involved are |01̄1̄〉, |1̄01̄〉, and |1̄1̄0〉.
In this case, we can picture the transport as a particle moving
along a chain in a CTAP process. It should be self-evident that
in these one-particle and one-hole cases, all of the standard
CTAP-like results can be obtained. In particular, extension to
many-site (i.e., more than 3-site) straddling [9] and alternating
geometries [28,29] will follow trivially. Also straightforward is
the extension to the fractional protocol discussed in the context
of STIRAP in Refs. [43] and [44], or adiabatic splitting in a
five-site configuration [45]. In the DSAP case, these splittings
will produce entangled states, rather than the superpositions
generated in STIRAP or CTAP; however, we will not discuss
these possibilities here.

The adiabaticity is a convenient way to quantify whether
the system evolves along a continually varying series of
connected eigenstates during evolution or is likely to make
a discontinuous jump to an unrelated eigenstate [46]. Using
the standard approach, we parameterize the adiabaticity for
any two instantaneous eigenstates |φ1〉 and |φ2〉 as

A = 〈φ1|∂t |φ2〉∣∣Eφ1 − Eφ2

∣∣ . (6)

In particular, for the E = 2B manifold, we have the adiabatic-
ity between |D(2)

0 〉 and either of |D(2)
± 〉,

A(2) =
2
√

2π sin
(

πt
tmax

)
dtmax

[
3 + cos

(
2πt
tmax

)]3/2 . (7)

The remaining three manifolds at E = ±B and E = 0 are
not as simple due to the increase in the degeneracies. The
composition of the E = −B manifold follows obviously by
symmetry argument from the E = B manifold, hence we do
not treat it separately.

The states comprising the E = B manifold are, in general,
complicated and their form is not especially illuminating;
however, the states at E = B exactly highlight an inter-
esting adiabatic pathway for population transfer. For the
E = B manifold, the degenerate spanning states may be
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taken as ∣∣D1
1

〉 = 1√
3

(|111̄〉 − |11̄1〉 + |1̄11〉), (8)

and
∣∣D1

2

〉 =
(−d2

12 + d2
23

)|111̄〉 − d2
23|11̄1〉 + d12d23|010〉√

d4
12 − d2

12d
2
23 + 2d4

23

.

(9)

Of course, any superposition of these states is also in the
E = B eigenspace. It is convenient here to take a particular
superposition,

|D1〉 ∝ −∣∣D1
2

〉 +
√

3d2
23√

d4
12 − d2

12d
2
23 + 2d4

23

∣∣D1
1

〉

= d2
23|1̄11〉 − d12d23|010〉 + d2

12|111̄〉√
d4

12 − d2
12d

2
23 + d4

23

. (10)

A complete discussion of adiabatic evolution in degenerate
subspaces can be found in the work by Rigolin and Ortiz
[47]. The state |D1〉 is analogous to the states found with
alternating STIRAP [27] and CTAP protocols with five sites
(ACTAP5) [28,29]. In the adiabatic limit with counterintuitive
pulse ordering, the passage is from |1̄11〉 to |111̄〉. This can
be understood as transport of the |1̄〉 state from spin 1 to spin
3 via the states |001〉, |010〉, and |100〉, with the populations
P001 = P100 = 0, and transient population in state |010〉. This
evolution is shown in Fig. 4.

The manifold of seven states around E = 0 is also very
interesting. At time t = tmax/2 (i.e., when d12 = d23), there is
a clear anticrossing arising from the adiabatic passage transfer,

FIG. 4. (Color online) Time evolution of the populations in the
E = B manifold when the starting state is |1̄11〉, corresponding to
evolution in the state |D1〉. The purple line shows P1̄11, the cyan
line shows P010, and the orange line shows P111̄. This evolution
is completely analogous to the evolution observed in alternating
adiabatic passage protocols with five states. The system is initially in
the state |1̄11〉 and evolves to the state |111̄〉, with transient population
in the state |010〉.

and also a true three-state crossing. The state

∣∣D0
0

〉 = d23(|011̄〉 − |01̄1〉) − d12(|11̄0〉 − |1̄10〉)
√

2
√

d2
12 + d2

23

(11)

remains an eigenstate with E = 0 throughout the protocol and
demonstrates adiabatic passage of the spin 0 state from site 1 to
site 3, with the rest of the chain in a particular entangled state.

III. QUTRIT TRANSPORT PROTOCOL

The DSAP protocols involving |011〉 and |1̄11〉 are quite
similar, and both can be effected by the same gate control
sequence, i.e., the same variation in the dij (t). Although the
control sequence is the same in each case, the properties of the
evolution differ quantitatively. The protocol involving |1̄11〉 is
slightly less adiabatic than the |011〉 protocol, which follows
from the form of the null states, as discussed in Ref. [29]. We
compare the rate limiting adiabaticities for the two evolutions
in the E = ±2B and the E = ±B manifolds for the transitions
between the states |D(±2

0 〉 and |D±2
± 〉, denoted A(2), with the

adiabaticity between the states |D±1
0 〉 and |D±1

± 〉, denoted
A(1). One needs to be careful about applying the adiabatic
theorem within degenerate subspaces. Adiabaticities involving
degenerate subspaces are taken relative to the closest states
outside of the degenerate manifold. Under these conditions,
we find that

A(2)

(
t = tmax

2

)
= π

tmaxd
, (12)

A(1)

(
t = tmax

2

)
= 2π

tmaxd

√
3

7
(4 +

√
2). (13)

The presence of parallel DSAP channels in the same system
suggests two interesting corollaries. First, this DSAP protocol
would allow the adiabatic transport of a qutrit encoded in
one of the spins, i.e., where the initial state of the chain is
a superposition α|111〉 + β|011〉 + γ |1̄11〉. As A(1) > A(2),
for high-fidelity qutrit transport, the worst case adiabaticity
must be used to ensure adiabatic passage for the qutrit as a
whole. Note that this is an advantage of adiabatic passage,
as a nonadiabatic scheme would require gate operations of
precise durations, such that equal populations were transferred
from each of the starting states, which is more restrictive than
simply requiring high-fidelity population transfer for the states
independently. Second, we can see that an error that only
affects the first spin will not be communicated to the rest of the
chain. Although this latter point is appealing for the purposes
of quantum information transfer, it is clear that the converse
is not true, and, in general, errors in the chain do affect the
transport protocol.

The configuration described above, where the nondata
qutrits are in the state |11〉, is not the only possible state to
allow qutrit transport via DSAP. By examining the null states
described above, we observe that complete qutrit transport can
be achieved when the two nondata qutrits are in the states
|11〉, |1̄1̄〉, and (1/

√
2)(|11̄〉 − |1̄1〉). Also, any superposition

of these states of the chain will allow for DSAP transport,
including entangled states of the form sin ϕ|11〉 − cos ϕ|1̄1̄〉
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for arbitrary ϕ, although we note that the state (1/
√

2)(|11̄〉 +
|1̄1〉) does not allow qutrit transport.

IV. DIPOLE COUPLING EFFECTED VIA
MAGIC-ANGLE CONTROL

Not all spin systems have obvious mechanisms to allow
independent control of the spin-spin coupling via some gate
mechanism. Magic-angle coupling can be used for controllable
dipole-dipole coupling to effect the desired counterintuitive
pulse sequence, a mechanism proposed for controlled coupling
in a dipolar phosphorus in silicon quantum computer [48]. The
approach here is to vary the magnetic field direction along a
trajectory that zeros the coupling between spins 1 and 3, while
varying d12 and d23 according to the counterintuitive pulse
sequence.

The dipole-dipole coupling between two spins, j and k, in
a magnetic field is (� = 1)

djk(θjk,rjk) = γjγk

r3
jk

(3 cos2 θjk − 1), (14)

where the γ are the dipole moments, ω = γB, θjk is the angle
between the magnetic field and the line joining the spins, and
rjk is the separation between spins. Now when | cos θjk| =
1/

√
3, we must have djk = 0, hence there is no coupling.

To demonstrate the appropriate control of the dipole-dipole
coupling, we consider an arrangement of three equally spaced
spins in the x-y plane, as shown in Fig. 5(a). To understand
an implementation of the counterintuitive pulse sequence for
DSAP from spin 1 to spin 3, in Fig. 5(b) we show the rays
between the spins and the cones show the magic angles for
the magnetic field to null the dipolar coupling. A possible
counterintuitive pulse sequence trajectory is highlighted in
yellow, where the central cone corresponds to nulling the 1-3

FIG. 5. (Color online) (a) Arrangement of three spins in the x-y
plane. (b) Interspin separations with magic angles for each pair of
spins marked. Because there are points of intersection of the magic
angles, it is possible to define a magnetic field trajectory that effects
the counterintuitive pulse sequence, and one such trajectory is shown
here in yellow with the start and stop points marked with yellow dots.

FIG. 6. Eigenspectrum for the magic-angle control protocol,
where the angle of the applied field is according to the trajectory
outlined in Eq. (15) for the case that the three spins are located at the
vertices of an equilateral triangle.

coupling and the end points (yellow dots) correspond to the
case where either the 1-2 or 2-3 coupling is also canceled. The
magic magnetic trajectory defined by this configuration is

B = B[cos ϕ(t), cot θm, sin ϕ(t)], (15)

where θm is the magic angle and ϕ(t) specifies the time-varying
trajectory of the counterintuitive pulse sequence and

cos[ϕ(0)] = π − cot θm sin(2π/3)

cos(2π/3) − 1
, (16)

cos[ϕ(tmax)] = cot θm sin(2π/3)

cos(2π/3) − 1
. (17)

Following a magic-angle trajectory of the form envisaged
here perforce changes Bz as well as the djk , and hence the
eigenspectrum, shown in Fig. 6, is slightly more complicated
than the simpler case studied in Sec. II. Nevertheless, the
overall structure of the manifolds is unchanged from our earlier
treatment, with the trajectories appearing to “bend” due to
the varying z component of the magnetic field relative to the
dipoles. However, the relative ordering of the states and their
degeneracy is unaffected by using this control scheme rather
than the earlier, more idealized approach where the magnitude
of Bz is constant. We note that the form of the dipole coupling
ensures square sinusoidal variation in the coupling coefficients
as we assumed for the “ideal” version.

V. POSSIBLE EXPERIMENTAL REALIZATIONS

There are many possible systems in which the spin-one
version of DSAP could be implemented. Here we briefly
explore two such platforms: spin-based quantum dot arrays and
spin-one defects in diamond. We also note other possibilities
to be explored for implementation, such as chains of trapped
ions [49], NiCl2-4SC(NH2)2 [33,34], and liquid-phase nuclear
magnetic resonance (NMR), e.g., via deuterated molecules
[50,51].
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A. Quantum dots

The design and engineering of controlled electrostatic
potential landscapes in two-dimensional electron gasses has
led to the production of quantum dots with remarkable and
beautiful quantum properties. A single quantum dot can
typically be manipulated to hold a preset number of electrons,
and the singlet-triplet subspace of a two-electron quantum dot
has been identified as a useful qubit encoding [52]. Conversely,
the triplet subspace defines a spin-one subspace that may be
used for our purposes. Triple dots have been demonstrated
several times [53,54], although we are not aware of any
that have specifically operated in the particular six-electron
configuration necessary to test spin-one DSAP. Entanglement
between pairs of double dots operating in the single-triplet
basis has also been demonstrated [55]. This latter work shows
controlled coupling similar to that required to test DSAP, with
two-qubit coupling times of the order of 100 ns.

B. Nitrogen-vacancy center in diamond

The negatively charged nitrogen-vacancy (NV) center in
diamond has emerged as an extremely interesting system for
room-temperature quantum information processing. This is
because the ground-state spin levels, which form a natural
spin-one system, are long lived at room temperature and they
can be optically initialized and read out at room temperature.
However, most of the concepts for scalable quantum com-
puting with NV centers require cryogenic temperatures due
to spectral broadening of the main optical transitions [56]. If
there were no requirements for coherent coupling from the
ground-state manifold to the excited state, then it might be
possible to construct a room-temperature quantum computer
based on NV, and this is the subject of the proposal by Yao
et al. [57].

While a deterministically created array of three NV centers
at these separations has not been achieved, pair implantations
(i.e., implantation of N2

+) have been used to create coupled
NV-N systems [58], and NV-NV systems [59] have also
been formed by implantation through a mask. It should be
possible to extend these methods to create small clusters of
implanted N, which could be searched to identify a cluster of
three NV centers. Reference [59] demonstrated dipole-dipole
couplings between the NV centers that were around 10 nm
apart. The techniques outlined in Sec. IV should enable a three-
NV complex to perform spin-one DSAP. Other fabrication
techniques that have the required precision include low-energy
nanoimplantation through a nanostencil [61] and ultracold ion
source implanters [62].

An alternative to explore electron-spin coupling would be
to look at the nuclear spin coupling in the three N system. The
14N nucleus is also a spin-one particle [60]. In fact, Bermudez
et al. have already proposed a two-qubit operation between
two N nuclear spins in diamond, mediated by the electron spin
[63].

VI. CONCLUSIONS

We have shown that the concept of dark-state adiabatic
passage (DSAP) [25] can be extended from spin-half particles
to arrays of spin-one particles. In particular, we have shown
adiabatic pathways for an array of three spin-one particles
by either direct control of the qutrit-qutrit coupling or
by alignment control of a uniform, external dc magnetic
field.

In the case of conventional DSAP, the state of a single qubit
is transmitted along a chain of qubits using the counterintuitive
pulse sequence. The canonical example, where the chain qubits
are all either aligned parallel or antiparallel to the quantization
axis, is formally equivalent to the case of coherent tunneling
adiabatic passage of either particles [7,9] or holes [42]. The
spin-one version of DSAP is certainly richer than the spin-half
or pseudo-spin-half version. We have shown qutrit transport
across three spin-one particles when the other two spins are in
one of the states |11〉, |1̄1̄〉, or |11̄〉 − |1̄1〉.

While the transport of the qutrit is adiabatically protected,
it is important to stress that single qutrit errors on the
chain particles (i.e., the nondata qutrits) will, in general,
cause errors in the protocol. One may think of the error as
producing another effective particle, and then particle-particle
interactions will become important and will likely destroy the
desired or predicted transport outcome. The sensitivity of the
intended spin passage to errors in the nondata qutrits appears
to be a property of most bus-type proposals for quantum
information transport if a defined propagation direction is not
maintained.
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