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Weak limit of the three-state quantum walk on the line
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We revisit the one-dimensional discrete time quantum walk with three states and the Grover coin, the simplest
model that exhibits localization in a quantum walk. We derive analytic expressions for the localization and a
long-time approximation for the entire probability density function (PDF). We find the possibility for asymmetric
localization to the extreme that it vanishes completely on one site of the initial conditions. We also connect
the time-averaged approximation of the PDF found by Inui et al. [Phys. Rev. E 72, 056112 (2005)] to a spatial
average of the walk. We show that this smoothed approximation predicts moments of the real PDF accurately.
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I. INTRODUCTION

Quantum walks have been the subject of research for
the past 20 years [1–4]. They were originally proposed as
a description for quantum transport in a one-dimensional
system [5,6]. However, quantum walks soon received consid-
erable prominence as the driving dynamics behind quantum
search algorithms [7,8], leading to many systematic studies of
their asymptotic properties [9–12]. Other applications, such as
to the graph isomorphism problem [13,14], further increased
the interest. The realization of their capability for general
quantum computations [15,16] suggests that understanding
quantum walks is a quest for a better understanding of quantum
computing itself.

Due to its wealth of possible parameters, the discrete time
quantum walk has been studied extensively. From the basic
properties of the simplest possible quantum walk on the one-
dimensional line [10], time-dependent coins [17] and site-
dependent coins [18] are only some of the many extensions
that have been investigated. For a more comprehensive review,
we refer the reader to [3] and the references within.

In this paper, we revisit the one-dimensional quantum walk
with the three-dimensional Grover coin, previously considered
by Inui et al. [19]. They discussed a variation of the walk on
the line, where the walker can remain on the site during a time
step, and found interesting differences from the case of a two-
dimensional coin. Most notably, there is a finite probability
that the quantum walk strongly localizes around the initial
site, as previously found on square lattices [20]. In fact, this
model is the simplest model exhibiting localization, a distinctly
quantum effect entirely absent in the corresponding classical
random walks. A thorough understanding of localization in this
simple context becomes particularly relevant in light of the fact
that this phenomenon is commonplace in higher-dimensional
systems [3]. Furthermore, in systems without translational
invariance, for instance, localization might be asymptotically
complete and broadly distributed [21].

Here, we extend the findings of [19] by analytic expressions
for the localization, calculate the weak limit of the probability
density function (PDF), and show its equivalence to a spatial
average over a local neighborhood. We provide explicit
expressions for general initial conditions present on one site,
study the convergence, and compare our analytic predictions
for moments with those from numerical simulations.

The paper is organized as follows. In Sec. II, we review
the basics for the three-state quantum walk on the line.

In Sec. III we show how the long-time behavior can be
obtained, with an accurate description of the localization and
an approximation for the spreading front. In Sec. IV, we
introduce an approximation that leads to a smoothed PDF,
corresponding to a spatial as well as temporal average. Finally,
in Sec. V, we summarize our findings.

II. THE THREE-STATE QUANTUM WALK

In the common description of the discrete time quantum
walk, every time step consists of two parts. First, the coin
(operator) is applied to the internal degree of freedom (coin
state) at every site. This is followed by the shift operator,
translating components of the coin state to neighboring sites.
Here, we study the case of the one-dimensional quantum walk
with a three-dimensional coin space, driven by the Grover
coin:

C = 1

3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦. (1)

Our convention for the shift operation is the following: the
first component is moved to the left, the third component is
moved to the right, while the second one remains on the site.
The matrices P , Q, and R (see Fig. 1) combine both steps into
a single operation, leading to the master equation describing
the time evolution at any site n:∣∣ψt+1

n

〉 = P
∣∣ψt

n−1

〉+ Q
∣∣ψt

n+1

〉+ R
∣∣ψt

n

〉
, (2)
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0 0 0
2
3

2
3 − 1

3

⎤
⎥⎦, Q =

⎡
⎢⎣− 1

3
2
3

2
3

0 0 0

0 0 0

⎤
⎥⎦,

R =

⎡
⎢⎣0 0 0

2
3 − 1

3
2
3

0 0 0

⎤
⎥⎦.

For simplicity, we assume the initial conditions are only
nonzero on site n = 0, i.e.,∣∣ψ0

n

〉 = δn,0

∣∣ψ0
0

〉
. (3)
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FIG. 1. The one-dimensional quantum walk with a three-
dimensional coin. The matrices P , Q, and R facilitate a right hop, a
left hop, or no change in position, respectively.

These equations can be solved by a Fourier transform:

|ψ̃ t 〉 =
∞∑

n=−∞
e−ikn

∣∣ψt
n

〉
. (4)

From here on, a tilde indicates quantities with a k dependence,
which we will not explicitly show. Applying Eq. (4) to Eq. (2)
yields the master equation in Fourier space:

|ψ̃ t+1〉 = 1

3

⎡
⎣ −κ 2κ 2κ

2 −1 2
2κ−1 2κ−1 −κ−1

⎤
⎦

︸ ︷︷ ︸
:=C̃

·|ψ̃ t 〉, (5)

where κ = eik . The solution to this equation,

|ψ̃ t 〉 = C̃ t
∣∣ψ0

0

〉
, (6)

can be found by computing the eigenvalue decomposition:

T −1C̃T =
⎡
⎣λ̃1 0 0

0 λ̃2 0
0 0 λ̃3

⎤
⎦. (7)

One eigenvalue is purely real, λ̃1 = 1, whereas the other two
obey

λ2,3 = e±iω̃ and cos (ω̃) = −2

3
− cos(k)

3
. (8)

The t th power of C̃ can then be expressed as

C̃t = M̃1 + λ̃t
2M̃2 + λ̃t

3M̃3. (9)

A representation of T and the M̃ matrices can be found in the
supplementary Mathematica notebook [22]. In the end, the real
space solution is obtained by performing the inverse Fourier
transform: ∣∣ψt

n

〉 = 1

2π

∫ π

−π

eink
∣∣ψ̃ t

〉
dk. (10)

In the next section, we perform an asymptotic approxima-
tion in the long-time limit to find the leading behavior of the
PDF.

III. LONG-TIME APPROXIMATION

In this section, we evaluate Eq. (10) in the limit of t →
∞. First, we compute the time-independent part of |ψt

n〉 that
manifests itself as localization. As a test, we compare our result
with numerical simulations. Afterward, we use the method of
stationary phase to find an approximation for the remaining,
time-dependent part.

A. The stationary distribution

One can see from Eq. (9) that a time-independent compo-
nent of |ψ̃ t 〉 can exist due to the constant eigenvalue of C̃. The
inverse Fourier transform of this part can be computed exactly
by employing the residue theorem. Note that the corresponding
integral for this part following from Eqs. (9) and (10), in terms
of κ , reads ∣∣ψ∞

n

〉 = 1

2πi

∮
|κ|=1

κn−1M̃1 dκ︸ ︷︷ ︸
:=U1(n)

∣∣ψ0
0

〉
. (11)

The details of this calculation can be found in Appendix A, but
the essential observation is that all components of M̃1 share
the same poles,

κ± = −5 ± 2
√

6, (12)

of which only κ+ is inside the unit circle. For n � 0, there is
an additional pole at κ = 0. By straightforward calculations,
we find an expression for U1(n) for different regimes for n:

U1(n < 0) = κn
−√
6

⎡
⎣ 1 −2 − √

6 −5 − 2
√

6
−2 + √

6 −2 −2 − √
6

−5 + 2
√

6 −2 + √
6 1

⎤
⎦,

U1(n = 0) = 1√
6

⎡
⎣ 1 −2 + √

6 −5 + 2
√

6
−2 + √

6 −2 + √
6 −2 + √

6
−5 + 2

√
6 −2 + √

6 1

⎤
⎦,

U1(n > 0) = κn
+√
6

⎡
⎣ 1 −2 + √

6 −5 + 2
√

6
−2 − √

6 −2 −2 + √
6

−5 − 2
√

6 −2 − √
6 1

⎤
⎦.

(13)

At first, the case distinction in the sign of n seems counterin-
tuitive, but the comparison to the numerics in Fig. 2 reveals
the possibility of an asymmetric localization around the initial
site.

To obtain the stationary PDF, we calculate

p1(n) = 〈
ψ∞

n

)∣∣ψ∞
n

〉 = 〈
ψ0

0

∣∣U †
1 (n)U1(n)

∣∣ψ0
0

〉
. (14)

−12 −9 −6 −3 0 3 6 9 12

100

10−5

10−10

10−15

10−20

10−25

10−30

Site index n

p
1
(n

)

FIG. 2. (Color online) Comparison between analytic prediction
(lines) and numerical simulation after T = 220 time steps (symbols)
for the localization around n = 0. The initial conditions are |ψ0

0 〉 ∝
(1, − 1.9,1) (red triangles), |ψ0

0 〉 ∝ (10,0,1) (blue circles), |ψ0
0 〉 ∝

(1, − 3,2 + i) (black squares), and |ψ0
0 〉 ∝ (410, − 800,499) (orange

diamonds). They have been chosen to show the possible asymmetry
of p1(n).
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For general initial conditions, p1(n) still contains the case
distinction in n, but the localization only at the initial site for
arbitrary |ψ0

0 〉 = (α,β,γ )T , for example, reads

(ᾱ,β̄,γ̄ )U†
1 (0)U1(0) ·

⎛
⎝α

β

γ

⎞
⎠ = (5 − 2

√
6)[(2α + β)ᾱ

+ (α + β + γ )β̄ + (β + 2γ )γ̄ ],

(15)

which coincides with the result in [19].
We point out that the stationary PDF always decays

exponentially away from the initial site as p1(n) ∼ κ
2|n|
+

independent of the initial conditions, even though the pro-
portionality constant might differ from positive to negative
n. The initial conditions |ψ0

0 〉 ∝ (1, − 2,1) comprise a non-
generic case where the localization completely vanishes. There
exists also a whole family, |ψ0

0 〉 ∝ (−a(1 + κ±)/2 − bκ±,a,b)
with a,b ∈ R, where the localization vanishes for positive
(negative) n while still exponentially decaying for negative
(positive) values.

To show that our calculations describe the localized part
comprehensively, we compare to a long simulation of a system,
where the system is large enough that the finite size has no
influence on the PDF near the initial site at the end of the
simulation. The system starts with different initial conditions
and evolves for 220 time steps. In the end, the final probabilities
at sites around the origin are recorded. Figure 2 shows the
comparison between evaluating Eq. (14) and the simulation. To
demonstrate the asymmetry, we choose four particular initial
conditions.

The rapid decay renders estimating p1(n) with simulations
for |n| 	 10 problematic. The values range over 30 orders
of magnitude, challenging the machine precision used in
the simulations. Furthermore, the time to converge to p1(n)
grows exponentially with n, as we will see, which restricts
the numerical evaluation, as system size would have to grow
exponentially as well. The case of zero localization for either
n > 0 or n < 0 is also hard to resolve numerically due to the
limited machine precision, but the blue and orange curves in
Fig. 2 demonstrate the asymmetry, and the jump at n = 0 can
be arbitrarily steep.

B. Approximating the time-dependent integrals

After solving the time-independent part analytically, we
have to resort to approximations for the time-dependent part
of |ψ̃ t 〉 in the limit t → ∞. In analogy to Eq. (11), we define

U2,3(t,n) = 1

2π

∫ π

−π

eiknM̃2,3λ̃
t
2,3 dk, (16)

such that the sum U1 + U2 + U3 = C̃ t expresses the full time
evolution. By introducing the “velocity” v via

n = vt (17)

and using Eq. (8), we write the integrals as

1

2π

∫ π

−π

f̃ (k)eit(vk±ω̃) dk,
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FIG. 3. (Color online) The PDF of the walk (blue dots) after t =
4096 steps with the initial conditions |ψ0

0 〉 ∝ (0,i,1). Beyond the
shown index range, the probability is essentially zero. Inset: Relative
difference between the asymptotic approximation and the numerical
values. The prediction is fairly good for a wide range of points.

where the function f̃ represents the different (slowly varying)
elements of the M̃ matrices.

This form is known as a generalized Fourier integral [23],
and the leading long-time behavior can be found by the
method of stationary phase. The method assumes that the
main contribution to the integral stems from a small region
of k around an extremal value of (vk ± ω̃), say k∗. Expanding
the exponent to second order and replacing the function f̃ (k)
by f̃ (k∗) yields a solvable Gaussian integral. A more detailed
discussion can be found in Appendix B.

In this approximation, C̃ t will contain the constant terms
from U1 and terms proportional to t−1/2 that further oscillate
both in space and in time. In their full extent, these terms
are too complex to write down here but are easily used to
compute numerical values for specific initial conditions. The
supplementary Mathematica notebook contains an applet that
shows the approximation for interactive initial conditions [22].

Figure 3 shows the PDF for a specific initial condition as
a function of the site index n for a fixed time t . To show
the quality of the approximation, we also show the relative
difference

εr = 2 |ps(n,t) − pa(n,t)|
ps(n,t) + pa(n,t)

(18)

between the simulation ps and the asymptotic expression pa .
Note that prediction and simulation are indistinguishable on
this scale. The quality of the prediction remains excellent for
general (complex and asymmetric) initial conditions |ψ0

0 〉.
The approximation can also be used for a fixed n as

a function of t , as demonstrated in Fig. 4 for the initial
site. The plot displays a short sequence of a time series at
large t . Again, simulation and asymptotic approximation are
indistinguishable on this scale.

To better understand the quality of the approximation, we
plot the relative difference in the bottom part of Fig. 4. The
data suggest, surprisingly, that the error of the approximation
decays as ∼t−3/2. This would imply that the method of
stationary phase correctly predicts the leading behavior to
order t−1. This cannot be expected a priori, because the next
order, obtainable with the method of steepest descent, may
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FIG. 4. (Color online) Top: A short time series of the probability
at the initial site. The numerical values (blue circles) and the
asymptotic approximation (black line) are indistinguishable on
this scale. Bottom: The relative difference for p(0,t) between the
simulation and asymptotic approximation. The black line corresponds
to ∼t−3/2 and is only a guide to the eye.

yield terms of that order for C̃ t . Those should generate terms of
the same magnitude in the PDF due to the constant eigenvalue.
The data here suggest that such terms cancel out.

IV. WEAK LIMIT DISTRIBUTION

In the previous section, we found that the method of
stationary phase yields a good approximation to the evolution
of the quantum walk for sufficiently large times. It also became
obvious that the PDF oscillates as a function of both n and t ,
especially close to the moving front, near |v| � 1/

√
3. In this

section, we find a smooth approximation known as the weak
limit [24]. We demonstrate that it yields a proper PDF, study
the convergence toward it, and show that the walk spreads
ballistically for all initial conditions.

A. Properties and implications

Following Ambainis et al. [10], we can separate out the
rapidly oscillating part of Eq. (9). If we ignore the localized
part for a moment, the corresponding distribution, which we
will call pavg(n,t), can be found via

pavg(n,t) = 〈
ψ0

0

∣∣ (U†
2U2 + U†

3U3)
∣∣ψ0

0

〉
. (19)

This expression seems ad hoc but contains all nonoscillating
terms from the full approximation. This corresponds to a
temporal average at a specific site, assuming that the rapidly
oscillating phase factors lead to a negligible contribution to the
inverse Fourier transform (according to Riemann-Lebesgue).
We argue that this also corresponds to a local spatial average at
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FIG. 5. (Color online) The smooth approximation pavg from
Eq. (19) (orange line) and the spatial average over 16 sites (blue
dots) after 4096 time steps. The initial conditions are the same as in
Fig. 3. The actual PDF is shown by gray dots.

fixed t , because as t → ∞ a small change in n will only lead to
a small change in v, such that the nonoscillating contribution
should be the same in a neighborhood around a point that is
reasonably small compared to t . This average also smoothes
out the spatial oscillations of the PDF. In fact, we will use a
spatial average to numerically predict pavg.

Inserting the expressions for U2,3(n,t), we find the matrix

U†
2U2 + U†

3U3 = 1

πt
√

2(1 − 3v2)(1 − v2)

×
⎡
⎣ (1 − v)2 2v(1 − v) 1 − 5v2

2v(1 − v) 2 − 2v2 −2v(1 + v)
1 − 5v2 −2v(1 + v) (1 + v)2

⎤
⎦

(20)

valid for all n subjected to |n|/t < 1/
√

3. Outside this interval,
pavg(n,t) ≡ 0. The dependency on n is implicit through v =
n/t . For a specific initial condition, a comparison between the
numerical simulation and the analytic prediction can be found
in Fig. 5.

Our definition of pavg(n,t) closely relates to the weak limit
proven by Grimmett et al. [24]. Note that pavg(n,t)/t only
depends on v, which corresponds to f (y) in their notation.
They show that every quantum walk on regular lattices exhibits
this convergence [for example, see Eq. (20) in [24]].

In the long-time limit, we can tread v = n/t as a continuous
variable. Hence, we approximate probabilities

p(n− � n � n+,t) =
n+∑

n=n−

p(n,t)

by integrals of the form

p(a � v � b,t) =
∫ b

a

pavg(vt,t)tdv.

Here a = n−/t and b = n+/t . By using the convergence of
pavg(vt,t)t to a stationary distribution solely depending on
v, we conclude that the spreading is always ballistic. In this
continuous limit, the localized part remains concentrated at the
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initial site and

p1(vt)t → 〈
ψ0

0

∣∣
⎛
⎜⎜⎜⎝

1√
6

1 −
√

2
3 2 − 5√

6

1 −
√

2
3 1 −

√
2
3 1 −

√
2
3

2 − 5√
6

1 −
√

2
3

1√
6

⎞
⎟⎟⎟⎠∣∣ψ0

0

〉
δ(v),

(21)
characterizing the localization within the weak limit. Some
algebra reveals that

∞∑
n=−∞

p1(n) +
∫ 1/

√
3

−1/
√

3
pavg(vt,t)tdv = 1, (22)

i.e., our approximation actually yields a proper PDF. Connect-
ing once more with [19], if the system starts in one of the three
initial states (1,0,0), (0,1,0), and (0,0,1) each with probability
1/3, we rediscover

p(v,t) ≈ 1

3
δ(v) + 4

3π (1 − v2)
√

2 − 6v2
.

However, observe that generically the numerator of the second
term is quadratic in v rather than just a constant, as can
be seen from Eq. (20). As an example, we utilize pavg(n,t)
to approximate the second moment of the PDF. Figure 6
shows a comparison between the approximation and numerical
simulations. The details of the calculation are in Appendix C,
but the main result is that the second moment always grows
∼t2 regardless of the initial conditions [see Eq. (C3)]. This
means that only the PDF’s shape can be influenced by |ψ0

0 〉,
but not the asymptotic scaling of its spread.

In principle, we can approximate every moment, but the
quality declines for higher moments. Those depend more
strongly on sites farther away from the initial site where the
accuracy is worse.

B. Convergence

In the previous sections, we have shown that the three-
state quantum walk on the line is well described by a time-
independent localized part and a ballistically moving front
that can be approximated by a smooth PDF. In this section, we
investigate how quickly the error of this approximation decays
with time.

0 5 10 15
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2

4

10−3 t

10
−

7
n

2
(t

)
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10−3

10−5

10−7

ε r

FIG. 6. (Color online) Comparison between the numerical values
(symbols) and the evaluation of Eq. (C3) for the second moment of
the PDF. Inset: The relative difference between the two values.

From the method of stationary phase, we already identified
that the localization originates from the U†

1U1 term, whereas
pavg stems from U†

2U2 + U†
3U3. We group the missing terms of

the approximation into two functions:

q1 = 〈
ψ0

0

∣∣U†
1 (U2 + U3) + (U2 + U3)†U1

∣∣ψ0
0

〉
, (23)

qavg = 〈
ψ0

0

∣∣U†
2U3 + U†

3U2

∣∣ψ0
0

〉
. (24)

These functions are not non-negative quantities and hence
cannot be interpreted as probabilities. In fact, both functions
oscillate and average to zero. As Grimmet et al. [24] already
pointed out, the convergence to the smooth probability
function depends in general on the initial conditions. With
our approximation, we can determine the slowest convergence
rate.

From the formulas in the supplementary material [22], we
see that the leading order of q1 generically is ∼t−1/2. By
choosing special initial conditions, one can cancel this term
and achieve a faster convergence ∼t−3/2. This term dominates
for small n but is exponentially suppressed for large n. In that
case qavg 	 q1 and a different convergence rate is possible. In
fact, for n 	 1, the deviation from the smooth PDF decay is
at least ∼t−3, for particular initial conditions even ∼t−5.

Figure 7 illustrates our findings. It shows the convergence
toward p1(0) + pavg(0,t) for two different initial conditions at
two different sites. The smooth PDF is represented by the
orange line. The envelopes (black lines) are derived from
Eqs. (23) and (24) depending on the site.

Our calculations enable us to make statements about the
convergence of the PDF toward the limiting distribution. We
have already seen that the oscillations around the stationary
value at the initial site decay ∼t−1/2. This was due to the
contribution of U1(n). But for sites sufficiently far away from
the initial site, this term becomes exponentially small, and the
asymptotic behavior changes. The right panels of Fig. 7 present
data similarly to the left, but for n = 512. By changing the x

axis to t−1, it is evident from the inset that p(512,t) ∼ t−1

for sufficiently large times. This corresponds to the stationary
distribution itself. By computing the envelope, we find that the
next order correction vanishes ∼t−3, resulting in a correction
O(t−2) for the stationary distribution.

V. CONCLUSION

We studied the three-state quantum walk on the line in
the long-time limit using the method of stationary phase. We
found explicit formulas for the localization that are asymmetric
around the initial site. The degree of asymmetry, including
the extreme cases where the localization vanishes completely
either for positive or negative site indices, solely depends on the
initial conditions (see Fig. 2). We showed how the weak limit of
the PDF can be interpreted as a time average at a fixed site, or as
a spatial average for a fixed t . We used the latter interpretation
to demonstrate the good agreement between the asymptotic
approximation and long-time simulations. We applied the
smooth, approximative PDF to show that the quantum walk
always spreads ballistically for all initial conditions. Finally,
we studied the convergence toward this smooth description.
We identified the generic convergence rate depending on the
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FIG. 7. (Color online) The numerically observed probabilities (blue dots), the weak limit approximation p1(n) + pavg (orange line), and
the corresponding envelopes from the long-time approximation (black lines). For the upper panels, it is |ψ0

0 〉 ∝ (0,i,1)T ; for the lower ones, it is
|ψ0

0 〉 ∝ (1,0, −1)T . The left panels refer to the initial site, whereas the right ones refer to n = 512, to contrast sites with and without significant
localization. Note the difference in scaling with time, depending on the initial conditions. Inset: Zoom for large times on the same t scale. For
the data in panel (c), there is no prediction from the method of stationary phase, because for n = 0 all available orders cancel. However, from
the formulas we know that the envelope should scale ∼t−3/2, as supported by the numerical data.

site index and pointed out that other initial conditions only
converge faster.
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APPENDIX A: THE STATIONARY PROBABILITY
DISTRIBUTION

The nontrivial limit of the PDF as t → ∞ is purely
determined by the κ-independent eigenvalue of C̃ in Eq. (7).
To find this “stationary state,” we evaluate the definition of
U1 in Eq. (11). For this calculation, we do not have to resort
to any approximation but can solve the integrals analytically
by applying the residue theorem. As already mentioned in the
text, all components share the two poles

κ± = −5 ± 2
√

6,

of which only κ+ lies inside the unit circle. Depending on n,
there is an additional pole at κ = 0. After some simple algebra,

we find

U1(n) = κn
+

⎡
⎢⎢⎢⎢⎣

1√
6

1 −
√

2
3 2 − 5√

6

−1 −
√

2
3 −

√
2
3 1 −

√
2
3

−2 − 5√
6

−1 −
√

2
3

1√
6

⎤
⎥⎥⎥⎥⎦

+ Res
κ=0

(κn−1M̃1). (A1)

Please refer to the supplementary material for the full expres-
sion of M̃1 [22]. The last term is only nonzero if n � 0 and
counteracts the divergence of κn

+ as n → −∞. All residues
are of the form

Res
κ=0

(
aκm

1 + 10κ + κ2

)
.

To calculate the residue, note that with partial fractions

1

1 + 10κ + κ2
= 1

4
√

6

[
1

κ− − κ
− 1

κ+ − κ

]

= 1

4
√

6

[ ∞∑
k=0

κk

κk+1
−

−
∞∑

k=0

κk

κk+1
+

]
.
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With this representation, we find

Res
κ=0

(
aκm

1 + 10κ + κ2

)
= a

2πi

∮
κm 1

1 + 10κ + κ2
dκ

= a

4
√

6

∞∑
k=0

(κ−k−1
− − κ−k−1

+ )
1

2πi

∮
κm+kdκ︸ ︷︷ ︸

=δ−1,m+k

= a

4
√

6
[κm

− − κm
+ ].

Plugging this result into Eq. (A1) yields Eq. (13).

APPENDIX B: APPROXIMATION FOR LONG TIMES

The inverse Fourier transform reads∣∣ψt
n

〉 = (
1

2π

∫ π

−π

einkC̃ t dk

) ∣∣ψ0
0

〉
= [U1(n) + U2(n,t) + U3(n,t)]

∣∣ψ0
0

〉
.

We have already seen how U1(n) emerges from the constant
eigenvalue and how it can be calculated explicitly. For the
evaluation of Eq. (16), we have to resort to an asymptotic
analysis for t → ∞. Note that the integrals can be written as

1

2π

∫ π

−π

f (k)eink±itω̃dk,

where f (k) represents the components of M̃2,3. Before we can
apply the method, we introduce the parameter v [see Eq. (17)].
This allows us to write the integrals in the form

1

2π

∫ π

−π

f (k)eit[vk±ω(k)]dk := 1

2π

∫ π

−π

f (k)eitρ(k)dk.

The idea is now to expand ρ(k) around any extrema k∗ to
second order:

ρ(k) = ρ(k∗) + 1
2ρ ′′(k∗)(k − k∗)2 + O((k − k∗)3).

For t → ∞, this captures the main contribution around these
points of stationary phase, and everything else is exponentially
suppressed. This requires f (k∗) �= 0, which holds for all
integrals considered here. Within this scheme the integral is
approximated by∫

f (k)eitρ(k)dk ≈ f (k∗)eitρ(k∗)
∫

e
itρ′′ (κ∗ )

2 (k−k∗)2
dk,

and the remaining Gaussian integral can be computed exactly.
Caution has to be taken with the additional rotation by π/4
to transform the exponent into the real domain. The direction
depends on the sign of ρ ′′(k∗). This rotation turns the original
integration path into a steepest descent where |ρ ′′| varies the
most.

The extrema occur at k∗ = ± arccos( 1−5v2

v2−1 ) depending on
the eigenvalue at hand and the sign of v. There is always
one such point for each eigenvalue. Furthermore, we find the

simple expression

ρ ′′(k∗) = ±
√

2

4

√
1 − 3v2(1 − v2).

The expressions forM̃2,3(k∗) can be found in the Mathematica
file [22]. They still contain case distinctions for the sign of n,
which disappear when calculating the expression for pavg in
Eq. (20).

APPENDIX C: CALCULATING MOMENTS

Assuming the pavg(n,t) is always a good approximation
and that the localized part does not contribute to the time
dependence of any moment, we calculate the first three
moments of the PDF, 〈nk〉 for k = 0,1,2. However, instead of
performing sums over all n, we approximate them by integrals:

〈f (n)〉 =
∞∑

n=−∞
f (n)p(n,t)

≈
∫ 1/

√
3

−1/
√

3
f (vt)pavg(vt,t)tdv.

Applying this to every matrix entry in Eq. (20) yields

〈n0〉 = 1√
6

〈
ψ0

0

∣∣
⎡
⎣−1 + √

6 2 − √
6 5 − 2

√
6

2 − √
6 2 2 − √

6
5 − 2

√
6 2 − √

6 −1 + √
6

⎤
⎦ ∣∣ψ0

0

〉
,

(C1)

〈n〉 = t√
6

〈
ψ0

0

∣∣
×
⎡
⎣ 2 − √

6 −2 + √
6 0

−2 + √
6 0 2 − √

6
0 2 − √

6 −2 + √
6

⎤
⎦ ∣∣ψ0

0

〉
, (C2)

〈n2〉 = t2

6
√

6

〈
ψ0

0

∣∣
×
⎡
⎣−13 + 6

√
6 14 − 6

√
6 29 − 12

√
6

14 − 6
√

6 2 14 − 6
√

6
29 − 12

√
6 14 − 6

√
6 −13 + 6

√
6

⎤
⎦ ∣∣ψ0

0

〉
.

(C3)

We observe that the zeros moment is unity only for the initial
conditions that show no localization, 〈ψ0

0 | ∝ (1, − 2,1)T . The
matrix for the first moment has the eigenvector (1,1,1)T with
eigenvalue zero. However, this does not cover all symmetric
initial conditions that will yield a zero first moment by symme-
try. It easily verified that the initial conditions ∼(1,0,1)T also
yield a zero first moment. Hence, every linear combination of
those two will do so, too, which now covers all symmetric
initial conditions. These asymptotic formulas show that any
nonzero first moment grows linearly in time while the second
moment is proportional to t2.
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Soriano, Phys. Rev. A 73, 062304 (2006).
[18] Y. Shikano and H. Katsura, Phys. Rev. E 82, 031122

(2010).
[19] N. Inui, N. Konno, and E. Segawa, Phys. Rev. E 72, 056112

(2005).
[20] N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323

(2004).
[21] S. Boettcher, S. Falkner, and R. Portugal, arXiv:1311.3369.
[22] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.90.012307 for detailed formulas and inter-
active plots for different initial conditions.

[23] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers: Asymptotic Meth-
ods and Perturbation Theory (Springer, New York, 1999),
Vol. 1.

[24] G. Grimmett, S. Janson, and P. F. Scudo, Phys. Rev. E 69, 026119
(2004).

012307-8

http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1166/jctn.2013.3105
http://dx.doi.org/10.1166/jctn.2013.3105
http://dx.doi.org/10.1166/jctn.2013.3105
http://dx.doi.org/10.1166/jctn.2013.3105
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevA.81.042330
http://dx.doi.org/10.1103/PhysRevA.81.042330
http://dx.doi.org/10.1103/PhysRevA.81.042330
http://dx.doi.org/10.1103/PhysRevA.81.042330
http://dx.doi.org/10.1103/PhysRevA.73.062304
http://dx.doi.org/10.1103/PhysRevA.73.062304
http://dx.doi.org/10.1103/PhysRevA.73.062304
http://dx.doi.org/10.1103/PhysRevA.73.062304
http://dx.doi.org/10.1103/PhysRevE.82.031122
http://dx.doi.org/10.1103/PhysRevE.82.031122
http://dx.doi.org/10.1103/PhysRevE.82.031122
http://dx.doi.org/10.1103/PhysRevE.82.031122
http://dx.doi.org/10.1103/PhysRevE.72.056112
http://dx.doi.org/10.1103/PhysRevE.72.056112
http://dx.doi.org/10.1103/PhysRevE.72.056112
http://dx.doi.org/10.1103/PhysRevE.72.056112
http://dx.doi.org/10.1103/PhysRevA.69.052323
http://dx.doi.org/10.1103/PhysRevA.69.052323
http://dx.doi.org/10.1103/PhysRevA.69.052323
http://dx.doi.org/10.1103/PhysRevA.69.052323
http://arxiv.org/abs/arXiv:1311.3369
http://link.aps.org/supplemental/10.1103/PhysRevA.90.012307
http://dx.doi.org/10.1103/PhysRevE.69.026119
http://dx.doi.org/10.1103/PhysRevE.69.026119
http://dx.doi.org/10.1103/PhysRevE.69.026119
http://dx.doi.org/10.1103/PhysRevE.69.026119



