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Precise experimental implementation of unitary operators is one of the most important tasks for quantum
information processing. Numerical optimization techniques are widely used to find optimized control fields to
realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary
operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE

algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm
[Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This
is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled
nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from
one end of the spin chain to the other end.
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I. INTRODUCTION

Designing control pulses to precisely implement unitary
operators, i.e., effective Hamiltonians, is one of the most
important tasks for quantum information processing. Numer-
ical optimization techniques have been proposed and are
being commonly used for such a purpose [1,2]. However,
due to their extensive numerical complexity, finding robust
and high-fidelity control pulses to realize an arbitrary unitary
operator even in a five-spin system would be a difficult task.
Consider the GRAPE algorithm [2], an efficient and one of
the most widely used algorithms, which is based on the
numerical optimal control approach. A priori knowledge about
the approximate time duration of the pulses will be very helpful
for this algorithm to find high-fidelity pulse sequences to
accurately implement a desired unitary operator. However, in
the case of an arbitrary unitary operator, this information is not
known beforehand, and a lot of time is usually spent in finding
the optimal time duration using trial and error methods.

There are also many numerical algorithms to decompose
an arbitrary unitary operator into a circuit consisting of
single- and two-qubit gates [3–6]. The algorithm proposed
by Ajoy et al. [6] exploits the symmetry of the unitary
operator and, in favorable cases, it can give polynomial product
decompositions. One of the advantages of this algorithm is that
it can provide decompositions into a chosen operator basis.
For example, decompositions into the Pauli operator basis
(gates such as ZZ) would be easier to implement compared
to the CNOT gates in spin-based quantum architectures such as
nuclear magnetic resonance (NMR).

Here, we demonstrate that a combination of the GRAPE

algorithm and Ajoy’s algorithm can be useful for precise
experimental implementations of unitary operators. For this
purpose, we chose to simulate the mirror-inversion propagator
corresponding to the time evolution of an engineered XY spin
chain [7]. In the last decade, there have been many interesting
proposals in using spin chains to efficiently transfer quantum
information between different parts of a quantum information
processor [8–22]. Some of these proposals have also been

experimentally verified [23–29]. Albanese et al. [7] have
shown that mirror inversion of quantum states with respect to
the center of an XY spin chain can be achieved by modulating its
coupling strengths along the length of the chain. The advantage
of this protocol is that nontrivial entangled states of multiple
qubits can be transferred from one end of the chain to the other
end.

In this work, we first product decompose the mirror-
inversion propagators of four- and five-spin XY chains into the
Pauli operator basis using Ajoy’s algorithm. These decomposi-
tions, which only scale linearly with the number of spins, have
also been extended to N-spin chains. Then, the control pulses
to realize each of the decomposed four-spin and five-spin
unitary operators are found using the GRAPE algorithm. There
are several advantages to this approach. First of all, it is
always easy to optimize control pulses for smaller unitary
operators. Second, the approximate time duration of the pulses
to realize the decomposed unitary operators can be estimated
beforehand, which saves a lot of time during optimization.
The decomposed operators can be further decomposed into
rotations about x and y axes and two-spin operators [30].
Hence, by optimizing control pulses only for a universal set
of single- and two-qubit operators, one can implement any
desired unitary operator. The subsystems approach used in
Refs. [31,32] can also be combined with this method to realize
unitary operators in larger spin systems. The high experimental
fidelities achieved in this work indicate the efficiency of the
above method.

The experiments have been performed in a five-qubit
nuclear spin system, partially oriented in a liquid-crystal
medium, using NMR techniques. The spins are thus coupled by
residual dipolar couplings as well as indirect scalar couplings
[33]. The residual dipolar couplings are an order of magnitude
stronger than the scalar couplings, which are frequently used
to realize multiqubit gates in liquid-state NMR quantum
information processing [34,35].

The paper is arranged as follows. In Sec. II, we describe the
mirror-inversion operation in an engineered XY spin chain and
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the product decomposition of the corresponding propagator
into the Pauli operator basis. In Sec. III, we present the
experimental implementation. In Sec. IV, we compare this
simulation with the mirror-inversion operation by a set of SWAP

gates, and in Sec. V we conclude.

II. MIRROR-INVERSION PROPAGATOR AND
SIMULATION

Consider a chain of N spin-1/2 particles, coupled by
nearest-neighbor XY interaction, with the Hamiltonian

H = 1

2

N−1∑
i=1

Ji

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + 1

2

N∑
i=1

hi

(
σ z

i + 1
)
. (1)

Here, σ
x/y/z

i are the Pauli matrices for the spin i, Ji is
the coupling between the spins i and i + 1, and hi is the
local magnetic field at the spin site i. In Refs. [7,15], it
was theoretically shown that mirror-inversion operation with
respect to the center of this chain can be achieved using only
the natural unitary evolution of the spin chain by engineering
its interactions (Ji , hi). To be precise, let us consider the state
�(s1,s2, . . . ,sN ), where sn = 0,1, as the initial state of the spin
chain. Then, for some time τ ,

exp(−iHτ )�(s1,s2, . . . ,sN ) = �(sN ,sN−1, . . . ,s1). (2)

Apart from transferring the quantum state of a qubit to its
mirror site, the mirror-inversion operation in spin chains can
also be used to transfer entangled states of multiple qubits to
their mirror sites.

Here, we consider the above XY spin chain with the
interactions Ji = √

i(N − i), hi = 0. It was shown [7] that this
spin chain achieves mirror inversion for a time τ = π/2. In the
following, we first describe the product decompositions of the
mirror-inversion propagators [UXY (π

2 ) = exp(−iH π
2 )] of

the four- and five-spin XY spin chains into the Pauli operator
basis using Ajoy’s algorithm. Then we extend the decomposi-
tion to N-spin XY chains.

A. Four-spin chain

The values of the nearest-neighbor coupling constants for
the four-spin XY chain are J1 = √

3, J2 = 2, J3 = √
3. For

simplicity, we refer to UXY (π
2 ) as UXY .

The Pauli operator basis for the four-spin system is given
by

B = {
σα

1 σ
β

2 σ
γ

3 σ δ
4

}
, (3)

where α,β,γ,δ ∈ {0,x,y,z} and σ 0 = 1. Our aim is to product
decompose UXY into the Pauli operator basis as follows:

UXY =
m∏

k=1

exp(−iθkDk); Dk ∈ B. (4)

Since B forms a complete basis, UXY can be expanded as a
sum in B as follows:

UXY = 1

4

∑
α,β

ηαβ

(
σα

1 σ
β

2 σ
β

3 σα
4

)
, (5)

B

G0

G1
Gn

FIG. 1. The progressive reduction of search space by the de-
composition algorithm. Here B is the full Pauli operator basis, and
G0,G1, . . . ,Gn is a decreasing chain of subgroups (Gk+1 ⊂ Gk). The
algorithm proceeds until one obtains Gn = {1}.

where α,β ∈ {0,x,y,z}. The coefficient ηαβ = i if (i) α �= β

and (ii) either of α ∈ {0,z} or β ∈ {0,z}, but not both. For all
other cases, ηαβ = 1.

The product decomposition algorithm [6] proceeds through
a systematic reduction of the search space, which is shown
schematically in Fig. 1. Let us consider the set

G0 = {
1,σ x

2 σx
3 ,σ

y

2 σ
y

3 ,σ z
2 σ z

3 ,σ x
1 σx

4 ,σ
y

1 σ
y

4 ,σ z
1 σ z

4 ,

σ x
1 σx

2 σx
3 σx

4 ,σ
y

1 σ
y

2 σ
y

3 σ
y

4 ,σ z
1 σ z

2 σ z
3 σ z

4 ,

σ x
1 σ

y

2 σ
y

3 σx
4 ,σ

y

1 σx
2 σx

3 σ
y

4 ,σ x
1 σ z

2 σ z
3 σx

4 ,

σ z
1 σx

2 σx
3 σ z

4 ,σ
y

1 σ z
2 σ z

3 σ
y

4 ,σ z
1 σ

y

2 σ
y

3 σ z
4

}
, (6)

which contains all of the elements from the sum expansion
in Eq. (5). This set G0 forms a group under multiplication
of operators. This implies that all of the operators Dk in the
product expansion of Eq. (4) belong exclusively to G0. In
cases where G0 does not form a group by itself, one can add a
minimum number of operators from B to G0 so that G0 forms
a group. Now, consider the set

G1 = {
1,σ x

2 σx
3 ,σ

y

2 σ
y

3 ,σ z
2 σ z

3 ,σ x
1 σx

2 σx
3 σx

4 ,σ x
1 σ

y

2 σ
y

3 σx
4 ,

σ x
1 σ z

2 σ z
3 σx

4 ,σ x
1 σx

4

}
, (7)

which is a subgroup of G0. The set G1 is selected such that
it is a maximal subgroup of G0. However, this selection need
not be unique.

There are a total number of m operators (Dk) in the product
decomposition of Eq. (4) and, as said earlier, all of them
belong to G0. Let us suppose that m′ of these operators belong
to (G0 − G1). Then, the next and key step of the algorithm
is to find out these m′ operators Dk ∈ (G0 − G1) and the
corresponding angles θk , such that UXY

∏m′
k=1 exp(iθkDk) can

be expanded as a sum in B, whose elements belong exclusively
to G1, i.e.,

UXY

m′∏
k=1

exp(iθkDk) = U
(m′)
XY

=
∑

r

1

τ
Tr

(
U

(m′)
XY D̃†

r

)
D̃r , (8)

where D̃r ∈ G1 and τ = Tr(D̃†
r D̃r ).
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We define the norm of the space spanned by the elements
of a set G in a unitary U as

NG(U ) =
∑

n

|Tr(UD†
n)/Tr(D†

nDn)|2; Dn ∈ G. (9)

The intuitive meaning of norm NG(U ) is to what extent U can
be constructed using the elements of G.

For a chosen operator Dk , the angle θk is chosen such
that the quantity NG1 (U (k)

XY ) − NG1 (U (k−1)
XY ) is maximized. This

leads to

θk = 1

2
tan−1

[
Wk−1(Dk)

�k−1

]
, (10)

where

Wq(D) = 1

τ 2
Im

∑
r

Tr
(
U

(q)
XY D̃†

r

)
Tr

(
U

(q)
XY D†D̃†

r

)∗
,

�q = NG1

(
U

(q)
XY

) − 1

2
.

The next operator Dk+1 can be chosen as follows. Calculate
the quantity Wk(D) for all of the operators D in (G0 − G1).
Choose the operator D that maximizes Wk(D) as the operator
Dk+1.

By following the above procedure, we get

UXY exp

(
−i

π

4
σ

y

1 σ z
2 σ z

3 σ
y

4

)

= 1√
8

[(
1 + σ z

2 σ z
3 + σx

1 σx
2 σx

3 σx
4 + σx

1 σ
y

2 σ
y

3 σx
4

)

+ i
(
σx

2 σx
3 + σ

y

2 σ
y

3 + σx
1 σx

4 + σx
1 σ z

2 σ z
3 σx

4

)]
, (11)

where all of the operators on the right-hand side belong to G1.
Now consider the set

G2 = {
1,σ z

2 σ z
3 ,σ x

2 σx
3 ,σ

y

2 σ
y

3

}
, (12)

which is a subgroup of G1. By repeating the above procedure,
we get

UXY exp

(
−i

π

4
σ

y

1 σ z
2 σ z

3 σ
y

4

)
exp

(
−i

π

4
σx

1 σ z
2 σ z

3 σx
4

)

= 1

2

[
1 + σ z

2 σ z
3 + i

(
σx

2 σx
3 + σ

y

2 σ
y

3

)]
, (13)

where again all of the operators on the right-hand side belong
to G2.

This process is repeated until we get Gn = {1}. Here, by
repeating the above procedure two more times with G3 =
{1,σ x

2 σx
3 } and G4 = {1}, we get the full product decomposition

as

UXY exp

(
−i

π

4
σ

y

1 σ z
2 σ z

3 σ
y

4 ) exp

(
−i

π

4
σx

1 σ z
2 σ z

3 σx
4

)

× exp

(
−i

π

4
σx

2 σx
3

)
exp

(
−i

π

4
σ

y

2 σ
y

3

)
= 1, (14)

which can be written as

UXY = exp

(
i
π

4
σ

y

1 σ z
2 σ z

3 σ
y

4

)
exp

(
i
π

4
σx

1 σ z
2 σ z

3 σx
4

)

× exp

(
i
π

4
σx

2 σx
3

)
exp

(
i
π

4
σ

y

2 σ
y

3

)
. (15)

B. Five-spin chain

The values of the nearest-neighbor coupling constants
for the five-spin XY chain are J1 = 2, J2 = √

6, J3 = √
6,

J4 = 2. The unitary evolution of this five-spin chain for a time
τ = π/2, i.e., UXY (π

2 ) = exp(−iH π
2 ), produces the mirror

image of any five-spin input state up to a phase difference.
For example,

UXY

(
π

2

)
1√
2

(|00〉 + |11〉)12|000〉345

= |000〉123
1√
2
(|00〉 − |11〉)45 (16)

and

UXY

(
π

2

)
1√
2

(|01〉 + |10〉)12|000〉345

= |000〉123
1√
2
(|01〉 + |10〉)45. (17)

The above equations show that entangled states can be
transferred from one end of the chain to the other up to a
phase difference.

By following the procedure similar to that of the four-spin
case, the five-spin unitary operator UXY (π

2 ) is decomposed
into the Pauli operator basis and is given by

UXY

(
π

2

)
= exp

(
i
π

2
σx

1 σ
y

2 σ
y

4 σx
5

)
exp

(
−i

π

4
σx

1 σ z
2 σ z

3 σ z
4 σ

y

5

)

× exp

(
−i

π

4
σ

y

1 σ z
2 σ z

3 σ z
4 σx

5

)
exp

(
−i π

4 σx
2 σ z

3 σ
y

4

)

× exp

(
−i

π

4
σ

y

2 σ z
3 σx

4

)
. (18)

C. N-spin chain

The above decomposition can be extended to N -spin XY
chains, which are given as follows:

When N is odd,

UXY

(
π

2

)
= exp

(
± i

π

2
σx

1 σ
y

2 σx
3 · · · 1 N+1

2
· · · σx

N−2σ
y

N−1σ
x
N

)

×
(N−1)/2∏

k

⎡
⎣exp

⎛
⎝∓i

π

4
σx

k σ
y

(N−k+1)

N−k⊗
j=k+1

σ z
j

⎞
⎠

× exp

⎛
⎝∓i

π

4
σ

y

k σ x
(N−k+1)

N−k⊗
j=k+1

σ z
j

⎞
⎠

⎤
⎦ , (19)

where the signs − and + are for chains having 4m + 1 and
4m + 3 (m is an integer) number of spins, respectively, and
1 N+1

2
is the identity operator for the spin N+1

2 .
When N is even,

UXY

(
π

2

)
=

N/2∏
k

⎡
⎣exp

⎛
⎝±i

π

4
σx

k σ x
(N−k+1)

N−k⊗
j=k+1

σ z
j

⎞
⎠

× exp

⎛
⎝±i

π

4
σ

y

k σ
y

(N−k+1)

N−k⊗
j=k+1

σ z
j

⎞
⎠

⎤
⎦ , (20)
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FIG. 2. (Color online) Chemical structure of the molecule and
Hamiltonian parameters. In the table, diagonal elements correspond
to the Zeeman shifts (νi) of the nuclear spins (in Hz) in the doubly
rotating frame and the off-diagonal elements correspond to the
coupling constants (Jij + 2Dij ) between them (in Hz).

where the signs + and − are for chains having 4m and 4m + 2
(m is an integer) number of spins, respectively.

The unitary operators in the right-hand side of Eqs. (15)
and (18) can be further decomposed into single-qubit rotations
and two-qubit gates [30]. Conventional pulse sequences can
be constructed by using these decompositions to realize
the full unitary evolution. However, in the experimental
implementation, we realized each of the decomposed operators
with a single GRAPE pulse. We now describe the experimental
simulation of the above four- and five-spin chains using NMR
techniques.

III. EXPERIMENTAL IMPLEMENTATION

We choose 1-bromo-2,4,5-trifluorobenzene partially ori-
ented in a liquid-crystal medium, N-(4-methoxybenza-
ldehyde)-4-butylaniline (MBBA), as our spin system for the
experimental implementation [36]. The three 19F and two 1H
nuclei form a five-spin system. These spins are labeled as 1–5,
as shown in Fig. 2. The effective transverse relaxation times
(T ∗

2 ) of the transitions of spins 1, 3, and 5 (fluorine nuclei)
are in the range 40–60, 40–60, and 60–100 ms, respectively,
and that of the transitions of spins 2 and 4 (proton nuclei) are
in the range 140–150 and 110–150 ms, respectively. These
are calculated from the inverse of the observed linewidths,
which are mainly governed by the director fluctuation in a
liquid crystal and are an order of magnitude larger than the
linewidths in isotropic solutions. All of the experiments have
been carried out at an ambient temperature of 300 K on a
Bruker AVIII 500 MHz NMR spectrometer using a QXI probe.

Due to the partial orientational order of the liquid-crystal
medium, the direct dipolar couplings among the spins do
not get fully averaged out, but get scaled down by the
order parameter. Depending on the order parameter of the
liquid-crystal medium, the residual dipolar couplings between
the spins are an order of magnitude stronger than the indirect
scalar couplings. The Zeeman shift values of the nuclear spins
and the coupling constants between them are given in Fig. 2.
The Hamiltonian for the dipolar interaction between the het-
eronuclear spins is of the form HD = π

2

∑
i,j (i<j ) Dij 2σ z

i σ z
j ,

where Dij is the scaled dipolar coupling constant, and
the same between the homonuclear spins is of the form
HD = π

2

∑
i,j (i<j ) Dij (3σ z

i σ z
j − σi · σj ). Since, the difference

between Zeeman shifts of any pair of spins is much larger than
the respective dipolar coupling between them, the Hamiltonian
for the homonuclear dipolar interaction can be approximated
to HD = π

2

∑
i,j (i<j ) Dij 2σ z

i σ z
j . Hence, the full Hamiltonian

of the spin system in the doubly rotating frame can be written
as

HNMR = −π
∑

i

νiσ
z
i + π

2

∑
i,j (i<j )

(Jij + 2Dij )σ z
i σ z

j , (21)

where νi is the Zeeman shift of the spin i and Jij is the scalar
coupling constant between the spins i and j . The magnitude
of the coupling constants (Jij + 2Dij ) was obtained by fitting
equilibrium spectra of the spin system and the sign of them was
determined by performing heteronuclear z-COSY experiments
[37–39].

The equilibrium deviation density matrix of the spin system
under high-temperature and high-field approximation can be
represented by [40]

ρ�
eq = γF

(
σ 1

z + σ 3
z + σ 5

z

) + γH
(
σ 2

z + σ 4
z

)
, (22)

where γH and γF = 0.94γH are gyromagnetic ratios of the
nuclei 19F and 1H, respectively.

The five-spin NMR system has been used to demonstrate
the mirror-inversion operation in the following XY chains:
(i) a five-spin chain, prepared in mixed or subsystem pseu-
dopure initial states and (ii) a four-spin chain prepared in
pseudopure initial states. We used the GRAPE [2] technique
to realize the product decompositions of the mirror-inversion
propagators of four- and five-spin XY chains, which are given
in Eqs. (15) and (18). Each of the unitary operators in the
right-hand side of these equations has been realized using
a single GRAPE pulse. The total length of these pulses for
realizing the mirror-inversion propagator of a four-spin chain
is 34 ms and the same for a five-spin chain is 40 ms. All of the
GRAPE pulses were optimized such that they are robust against
rf field inhomogeneity and the average Hilbert-Schmidt fidelity
[41] of all of these pulses is greater than 0.99.

A. Five-spin initial states

Coherence transfer. The mirror-inversion operation can be
used to transfer single quantum coherence of a spin to its
mirror image (in-phase to antiphase). Here, we perform two
different experiments with respective initial states (i) σx

1 and
(ii) σx

2 . These initial states were prepared from the equilibrium
state as follows. We first apply a spin-selective (π/2)x pulse
on spin 1 (2) and then a (π/2)−x pulse on all of the spins
followed by a gradient pulse in the z direction. This saturates
the magnetization of all of the spins except spin 1 (2). We
now apply a spin-selective (π/2)y pulse on spin 1 (2), which
produces the desired initial state σx

1 (σx
2 ). All the spin-selective

and global pulses used here and henceforth were realized using
the GRAPE technique [2]. The lengths of the spin-selective
pulses on fluorine spins (1, 3, and 5) are in the range 500–
600 μs, and those on the proton spins 2 and 4 are 2.5 and 3 ms,
respectively. The length of the π/2 pulse on all of the spins is
500 μs. The resultant spectra, which confirm the creation of
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FIG. 3. (Color online) Experimental results for single quantum coherence transfer. (a) Transfer from spin 1 to its mirror image, spin 5, and
(b) transfer from spin 2 to its mirror image, spin 4. In both (a) and (b) the top row corresponds to the equilibrium spectra, the middle row
represents spectra corresponding to the initial state, and the bottom row is that of the final state.

the initial states, are shown in the middle trace of Figs. 3(a)
and 3(b). The application of the unitary operator in Eq. (18) on
the initial states σx

1 and σx
2 produces the states σ z

1 σ z
2 σ z

3 σ z
4 σx

5
and σ z

1 σ z
2 σ z

3 σx
4 σ z

5 , respectively. This clearly demonstrates that
the coherence of spin 1 (2) is transferred to its mirror image 5
(4). The transferred coherence is antiphase with respect to all
other spins; this is due to the relative phase difference between
different many-particle subspaces. The experimental spectra
corresponding to the final states are shown in the bottom trace
of Figs. 3(a) and 3(b). The clear antiphase signals for the spins
5 and 4 and the absence of signals for all the other spins indicate
the efficient implementation of the mirror-inversion operation.

Entanglement transfer. As discussed in the previous sec-
tion, mirror-inversion operation can also be used to transfer
entangled states from one end of the chain to the other. We
initially prepare maximally entangled states of spins 1 and 2.
The unitary evolution of the spin chain drives these entangled
states to their mirror images, i.e., spins 4 and 5. We choose the
initial states as 1

16 (|00〉 + |11〉)(〈00| + 〈11|)12 ⊗ 13 ⊗ 14 ⊗
15 and 1

16 (|01〉 + |10〉)(〈01| + 〈10|)12 ⊗ 13 ⊗ 14 ⊗ 15, where
spins 1 and 2 are in the maximally entangled state and all
other spins are in the maximally mixed state. These initial
states were prepared from the equilibrium as described below.
We first prepare the spins 1 and 2 in the |00〉 pseudopure

state using the spatial-averaging technique [42] and all the
other spins in the maximally mixed state by dephasing
their magnetization. The pulse sequence, used to create
the state 1

8 |00〉〈00|12 ⊗ 13 ⊗ 14 ⊗ 15 from equilibrium, is
given by

[
π

2

]1,2

x

−
[
π

2

]All

−x

−
[
G

]
z

−
[

0.32π

]1

x

−
[
G

]
z

−
[
π

4

]2

x

−
[

1

2(J + 2D)12

]
−

[
π

4

]2

−y

−
[
G

]
z

, (23)

where [θ ]iα denotes a θ degree pulse on spin i about the axis
α, [G]z denotes a gradient pulse along the z direction, and
[ 1

2(J+2D)ij
] represents coupling evolution of spins i,j for a

period 1
2(J+2D)ij

. Here, the two π/4 pulses on spin 2 and the
coupling evolution in between were combined and realized
using a single GRAPE pulse. The length of this pulse is 2.4 ms.
The state 1

8 |10〉〈10|12 ⊗ 13 ⊗ 14 ⊗ 15 can be prepared from
the state 1

8 |00〉〈00|12 ⊗ 13 ⊗ 14 ⊗ 15 by applying a π pulse
on spin 1. The desired initial states 1

16 (|00〉 + |11〉)(〈00| +
〈11|)12 ⊗ 13 ⊗ 14 ⊗ 15 and 1

16 (|01〉 + |10〉)(〈01| + 〈10|)12 ⊗
13 ⊗ 14 ⊗ 15 were prepared by applying the unitary operator
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FIG. 4. (Color online) Experimental results for entanglement transfer. Reconstructed deviation density matrices (traceless) of spins 1 and 2,
and spins 4 and 5, for (a) the initial state 1

2 (|01〉 + |10〉)(〈01| + 〈10|)12 ⊗ 13 ⊗ 14 ⊗ 15, (b) the final state 11 ⊗ 12 ⊗ 13 ⊗ 1
2 (|01〉 + |10〉)(〈01| +

〈10|)45, (c) the initial state 1
2 (|00〉 + |11〉)(〈00| + 〈11|)12 ⊗ 13 ⊗ 14 ⊗ 15, and (d) the final state 11 ⊗ 12 ⊗ 13 ⊗ 1

2 (|00〉 − |11〉)(〈00| − 〈11|)45.

exp(−i π
4 σx

1 σ
y

2 ) to the states |00〉〈00|12 ⊗ 13 ⊗ 14 ⊗ 15 and
|10〉〈10|12 ⊗ 13 ⊗ 14 ⊗ 15, respectively. This unitary opera-
tor was also realized using a GRAPE pulse and its length
is 2.4 ms.

Applying the mirror-inversion propagator of Eq. (18) to the
above initial states leads to

1
16 (|00〉 + |11〉)(〈00| + 〈11|)12 ⊗ 13 ⊗ 14 ⊗ 15

−→ 1
1611 ⊗ 12 ⊗ 13 ⊗ (|00〉 − |11〉)(〈00| − 〈11|)45, (24)

1
16 (|01〉 + |10〉)(〈01| + 〈10|)12 ⊗ 13 ⊗ 14 ⊗ 15

−→ 1
1611 ⊗ 12 ⊗ 13 ⊗ (|01〉 + |10〉)(〈01| + 〈10|)45, (25)

where now spins 1–3 are in the maximally mixed state, and
spins 4 and 5 are in the maximally entangled state.

To confirm the creation and transfer of entangled states,
we have performed quantum state tomography of two-spin
subsystems containing spins 1, 2 and 4, 5 for both initial and
final states. The tomography results for both the initial and
final states are shown in Fig. 4.

To quantitatively evaluate the experimental results, we com-
pare the experimental deviation (traceless) density matrices
with the theoretically expected ones by using the following
measures. (i) Correlation. The correlation (c) between the

experimental deviation density matrices and the theoretically
expected ones is defined as [1,43]

c = tr(ρ�
th ρ�

expt)√
tr[(ρ�

th )2]tr[(ρ�
expt)2]

. (26)

It quantifies how similar in direction the two deviation density
matrices are, analogous to the dot product between two vectors.
To also account for the net loss of magnetization due to
the nonunitary evolution, we use the measure (ii) attenuated
correlation (ac) [44], defined as

ac = tr(ρ�
th ρ�

expt)

tr[(ρ�
th )2]

. (27)

The correlations and attenuated correlations of all of the
initial and final states are given in Table I. The high correlations
between the experimental and theoretically expected deviation
density matrices of both the initial and final states indicate
the efficient creation and transfer of entangled states. The
low values of attenuated correlations of the final states
can be attributed to the nonunitary evolution caused by
decoherence during the experiment, as the total time of the
experiment (≈52 ms including the preparation of initial state)
is comparable to the T ∗

2 of the fluorine spins.
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TABLE I. Correlation and attenuated correlation of all the initial and final entangled states.

Correlation Attenuated correlation Correlation Attenuated correlation

Initial State I Initial State II
1

16 (|00〉 + |11〉)(〈00| + 〈11|)12 ⊗ 13 ⊗ 14 ⊗ 15
1
16 (|01〉 + |10〉)(〈01| + 〈10|)12 ⊗ 13 ⊗ 14 ⊗ 15

Spins 1& 2 0.992 0.926 Spins 1 & 2 0.991 0.921
Spins 4 & 5 0.998 Spins 4 & 5 0.998

Final State I Final State II
1

1611 ⊗ 12 ⊗ 13 ⊗ (|00〉 − |11〉)(〈00| − 〈11|)45
1
1611 ⊗ 12 ⊗ 13 ⊗ (|01〉 + |10〉)(〈01| + 〈10|)45

Spins 1 & 2 0.998 Spins 1 & 2 0.998
Spins 4 & 5 0.993 0.545 Spins 4 & 5 0.986 0.504

B. Four-spin pseudopure initial states

The spatially averaged logical labeling technique (SALLT)
[45] was used to prepare four-spin pseudopure states in a five-
spin system as described below. Here, the Hilbert space of the
five-spin system is divided into two four-spin subspaces based
on the |0〉 and |1〉 states of spin 5, which do not take part in
the mirror-inversion operation. Starting from equilibrium, we
dephased the magnetization of all spins except spin 5, by using
the procedure described earlier in Sec. III A. Then, the state of
the spin system can be described by the density operator σ z

5 .
The desired four-spin pseudopure states (in each of the two
subspaces corresponding to the |0〉 and |1〉 states of spin 5)
were prepared from the state σ z

5 by flipping (π rotation) the
corresponding transition of spin 5. For example, the |0000〉
pseudopure state (labeled by the states of spins 1 to 4) was
prepared by inverting the |00000〉 ↔ |00001〉 transition of spin
5. A representative diagram for the deviation populations of
the |0000〉 pseudopure state is given in Fig. 5. Note that the
deviation populations in both of the subspaces (of spin 5) are
the same but are opposite in sign.

By using the above method, we prepared the |1000〉〈1000|,
|1010〉〈1010|, and |1110〉〈1110| initial pseudopure states. All
of the transition-selective π pulses were implemented by
Gaussian-shaped pulses of duration 40 ms. The above initial
states were transformed into their mirror images |0001〉〈0001|,
|0101〉〈0101|, and |0111〉〈0111|, respectively, by the unitary
operator in Eq. (15).

Diagonal tomography of all of the initial and final states
was performed by applying a gradient pulse followed by a
π/2 pulse on each spin separately, and fitting the resultant
single quantum spectra. The results along with the theoretically

FIG. 5. (Color online) A representative energy-level diagram and
deviation populations for the |0000〉 pseudopure state. The filled and
open circles represent the positive and negative deviation populations
(with respect to the background population), respectively.

expected ones are shown in Fig. 6. The bar plots shown in
the figure represent the diagonal deviation density matrices
(traceless) of spins 1 to 4. These are obtained by taking the
average over the deviation populations of the two subspaces of
spin 5, where the sign of deviation populations of one of the
two subspaces is reversed, and then subtracting the trace. The
correlations of the experimental diagonal deviation density
matrices with respect to the theoretically expected ones are
calculated and the results are as follows. The diagonal correla-
tions of all the initial states are better than 0.994 and those of
all the final states are better than 0.989. The high correlation
of the final states confirms the successful implementation of
the mirror-inversion operation on pseudopure initial states.

IV. DISCUSSION

Here, we compare the simulation of mirror-inversion
propagators described in this work with the mirror-inversion
operation by a set of two-qubit SWAP gates in the case of
spin chains having only nearest-neighbor interactions. To
realize the full mirror-inversion operation in a four-spin chain,
six two-qubit SWAP gates are needed, and for the same
in a five-spin chain, ten two-qubit SWAP gates are needed.
Each two-qubit SWAP gate is implemented by a sequence
of XX [exp(−iπ/4σ i

xσ
j
x )], YY [exp(−iπ/4σ i

yσ
j
y )], and ZZ

[exp(−iπ/4σ i
zσ

j
z )] gates [46]. So, a total of 18 two-qubit gates

are required in the case of a four-spin chain, and 30 two-qubit
gates are required in the case of a five-spin chain.

Now, let us see the number of two-qubit gates required
to realize the product decompositions of the mirror-inversion
propagators described in this work. The propagator of the
four-spin chain is decomposed into two four-spin generators
and two two-spin generators. Each four-spin generator can
be implemented by five two-qubit (nearest-neighbor) gates
(such as ZZ, XX) [30]. So, a total of 12 two-qubit gates are
needed to realize the four-spin mirror-inversion propagator.
By a similar line of argument, a total of 27 (7 + 7 + 7 + 3
+ 3) two-qubit (nearest-neighbor) gates are needed to realize
the five-spin propagator. Note also that the mirror-inversion
operation realized in this paper is exact for the input states
from each excitation subspace, but may not be exact for
the input states, which have superpositions from different
excitation subspaces. Overall, we point out that the number of
two-qubit gates required for our simulation, and that required

012306-7



K. RAMA KOTESWARA RAO, T. S. MAHESH, AND ANIL KUMAR PHYSICAL REVIEW A 90, 012306 (2014)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.25

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.4

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.4

0.8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.25

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.4

0.8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.25

0.5

(a)

(b)

(c)

Initial States Final States

Theory

Experiment Experiment

Experiment

Experiment Experiment

TheoryTheory

Theory Theory

Theory

Experiment

FIG. 6. (Color online) The theoretically expected and the experimentally reconstructed diagonal deviation density matrices (traceless;
top and bottom rows in each case, respectively) for the initial (left column) and final (mirror-inverted; right column) pseudopure states,
(a) |1000〉〈1000| → |0001〉〈0001|, (b) |1010〉〈1010| → |0101〉〈0101|, and (c) |1110〉〈1110| → |0111〉〈0111|. The x axes represent the standard
computational basis in decimal form and the y axes represent the amplitude of the corresponding elements.

for a mirror-inversion operation through a set of SWAP gates,
in a nearest-neighbor setting, are of the same order.

V. CONCLUSION

It is demonstrated that the combination of two different
numerical algorithms, i.e., one is a unitary operator decom-
position algorithm and the other is a pulse optimization
algorithm, can yield high experimental fidelities in precise
implementations of arbitrary unitary operators. Combining
these two algorithms also saves a lot of time during numerical

optimization. To illustrate the method, we simulated the
mirror-inversion propagator of an engineered XY spin chain.
This propagator has been chosen because of its simple product
decomposition into the Pauli operator basis, which scales only
linearly with the number of qubits. The simulation has also
been used to demonstrate the transfer of entangled states from
one end of the chain to the other end. The presented method is
expected to work well for all of the unitary operators, which
have polynomial product decompositions. This method can
also be combined with the subsystems approach given in
Refs. [31,32] to extend the simulations to larger spin systems.
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