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Completely positive maps within the framework of direct-sum decomposition of state space
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We investigate completely positive maps for an open system interacting with its environment. The families of
the initial states for which the reduced dynamics can be described by a completely positive map are identified
within the framework of direct-sum decomposition of state space. They include not only separable states with
vanishing or nonvanishing quantum discord but also entangled states. A general expression of the families as well
as the Kraus operators for the completely positive maps are explicitly given. It significantly extends the previous
results.
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I. INTRODUCTION

Any real quantum system S inevitably interacts to some
extent with its environment E. The dynamics of an open system
cannot be described by a unitary operator in general, although
the combined system of the system and its environment expe-
riences a unitary evolution, ρSE(t) = USE(t)ρSE(0)USE†(t),
where USE(t) denotes the unitary operator, ρSE(0) and ρSE(t)
denote the initial state and the state at time t , respectively.
That is, a unitary operator does not exist to map the reduced
state ρS(0) ≡ TrEρSE(0) to ρS(t) ≡ TrEρSE(t). To describe
the dynamics of an open system, one used to assume that the
combined system is initially in the product states,

ρSE(0) = ρS ⊗ ρE, (1)

where ρE is a fixed density operator of the environment,
and ρS is an arbitrary density operator of the open system.
In this case, the reduced dynamics of the open system can
always be expressed as the Kraus representation, ρS(t) =∑

μ Kμ(t)ρS(0)K†
μ(t), where Kμ(t) are called Kraus operators

[1–6], dependent on the environment state ρE . It is trace
preserving if

∑
μ K†

μ(t)Kμ(t) = I . A map from ρS(0) to ρS(t)
is completely positive (CP) if and only if it can be expressed
as the Kraus representation. Therefore, the reduced dynamics
of the open system is a CP map if ρSE(0) ∈ {ρS ⊗ ρE}.

However, an open system may not be initially in a product
state. Instead, many quantum systems of interest are initially
correlated with its environment and the reduced dynamics with
initial correlations has attracted much attention [7–25]. In the
presence of initial correlations, the evolution of an open system
may not have the Kraus representation that is valid to all
the initial states, because an additional inhomogeneous part
appears [7]. To describe the reduced dynamics with the Kraus
representation, it is necessary to specify the initial correlations
of the system with its environment [7–10]. There has been
a growing interest in investigating the families of the initial
states for which the reduced dynamics can be described by a
CP map [11,13,22,24,25]. Particularly, it was recently proved
that if the initial states are with the structure

ρSE(0) =
∑

α

pα

∣∣χS
α

〉〈
χS

α

∣∣ ⊗ ρE
α , (2)
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where ρE
α is a fixed density operator on the environment

space, {|χS
α 〉〈χS

α |} is a fixed complete set of orthogonal
projectors, and pα is an arbitrary non-negative number sat-
isfying

∑
α pα = 1, then the reduced dynamics can always be

expressed as the Kraus representation for the family of states
{∑α pα|χS

α 〉〈χS
α | ⊗ ρE

α } with variable pα [11]. Therefore,
the reduced dynamics of the open system is a CP map
if ρSE(0) ∈ {∑α pα|χS

α 〉〈χS
α | ⊗ ρE

α }. Clearly, this work has
relaxed the requirement of product states and extended the
Kraus representation to a family of separable states with
vanishing discord [26,27].

Further extension was given in Ref. [13], where it was
stated that ρS(0) → ρS(t) is a CP map if the initial system-
environment state ρSE(0) has vanishing discord, i.e., can be
written as

ρSE(0) =
∑

α,k

�S
αkρ

SE�S
αk, (3)

where {�S
αk} are one-dimensional projectors onto the eigen-

vectors of ρS
α , and

∑
k �S

αk = �S
α (see Ref. [13] for details).

It had been thought that vanishing quantum discord was
necessary and sufficient condition for CP maps, but the authors
of Ref. [22] illustrated that vanishing quantum discord is not
necessary for CP maps by presenting a counterexample, i.e., a
family of separable states,

ρSE(0) = p1

3
(|0〉〈0| ⊗ ρE

0 + |1〉〈1| ⊗ ρE
1 + |+〉〈+| ⊗ ρE

+ )

+
N0∑

i=2

pi |i〉〈i| ⊗ ρE
i , (4)

where ρE
i (i = 0,1, . . . ,N0,+) are fixed density operators and∑N0

i=1 pi = 1. ρSE(0) has nonvanishing discord except for
the special cases of p1 = 0 or ρE

0 = ρE
1 = ρE

+ . This implies
that the initial states for which the reduced dynamics can be
described by a completely positive map are beyond the family
defined by Eqs. (2) as well as (3).

The author of Ref. [24] used a quantum date-processing
inequality to investigate the existence of CP maps for initial
system-environment correlations, and provided a complete
characterization of the correlations that lead to CP reduced
dynamics. It is shown that initial system-environment corre-
lations always give rise to CP reduced dynamics if and only
if a backward flow of information from the environment to
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the system cannot occur. By introducing a reference system
R, choosing a fixed tripartite state ρRSE with the conditional
mutual information [I (R : E|S)ρ] being zero, and steering
states of SE with linear maps on R, a family of states ρSE(0)
can be obtained, where the reduced dynamics of the states
in the family is CP for any system-environment interaction.
More recently, the authors of Ref. [25] suggested a complete
and consistent mathematical framework for the analysis of CP
maps for correlated initial states. The problem of CP reduced
dynamics is attracting broad interest.

It should be noted that the Kraus operators are necessarily
dependent on the structure of initial states when the initial
states are extended to the states with initial correlations. This
is different from the case of the product states defined by
Eq. (1), where the Kraus operators are only dependent on the
environment states but independent of the structure of system
states. For example, the Kraus operators for the family defined
by Eq. (2) are dependent on ρE

α as well as |χS
α 〉〈χS

α |; and the
Kraus operators for the family defined by Eq. (4) are dependent
on ρE

0 , ρE
1 , ρE

+ , ρE
i , as well as |0〉〈0|, |1〉〈1|, |+〉〈+|, |i〉〈i|.

However, such a CP map can sufficiently describe the reduced
dynamics of the states in the family under consideration,
although it is not applicable to the states outside the family.
This is useful to the cases where the initial states of a quantum
system are restricted to a certain family.

Completely positive maps play a fundamental role in the
open quantum system’s theory and are useful for quantum
information processing [4,5]. Therefore, a full-out under-
standing on the initial correlations for which the reduced
dynamics can be described by CP maps is instructive and
necessary. In this paper, we offer an alternative perspective to
describe the families of the initial states for which, for any
system-environment interaction, there always exists a CP map
describing the reduced system dynamics for all states in each
family. We will show that those families can be described
within the framework of direct-sum decomposition of state
space. The merits of this framework are (1) all the previous
results that are with an explicit expression, such as those given
by Eqs. (1)–(4), can be put into the framework; (2) more
general families of the initial states for which the reduced
dynamics is a CP map can be easily obtained by using the
framework.

This paper is organized as follows. In Sec. II, we apply
the framework of direct-sum decomposition of state space to
the classification of initial states, and show that the previous
results can be put into the framework. In Sec. III, we extend the
families of the initial states for which the reduced dynamics can
be described by a CP map to a more general expression with
the framework of direct-sum decomposition of state space.
Section IV is the conclusion.

II. CP MAPS WITHIN THE FRAMEWORK OF
DIRECT-SUM DECOMPOSITION OF SPACE

Before proceeding further, we first specify some notations
used in this paper. HS and HE are used to represent the
state space of an open system with N dimensions and that
of its environment with M dimensions, respectively. {|νS

i 〉,i =
1,2, . . . ,N} and {|μE

i 〉, i = 1,2, . . . ,M} denote the basis of
HS and HE , respectively. A direct-sum decomposition of

the state space HS is denoted as HS
1 ⊕ HS

2 ⊕ · · · ⊕ HS
N0

,
where the αth subspace HS

α , α = 1,2, . . . ,N0, is with dα

dimensions, and N0 is the total number of the subspaces in
the decomposition. There is

∑N0
α=1 dα = N . �S

α is used to
represent the projector of the αth subspace. They satisfy the
relations �S

α�S
β = δαβ�S

α , and
∑N0

α=1 �S
α = IN . We further use

ρS
α , ρE

α , and ρSE
α to denote the density operators defined on

the αth subspace HS
α , on the environment space HE , and on

the direct product space HS
α ⊗ HE , respectively. For simplic-

ity, we also use {|νS
αi〉,i = 1,2, . . . ,dα} to denote the basis of

the subspace HS
α , which is a subset of {|νS

i 〉,i = 1,2, . . . ,N}.
There is then �S

α = ∑dα

i=1 |νS
αi〉〈νS

αi |, and ρS
α can be expressed

as ρS
α = ∑dα

i,j=1 ρS
αij |νS

αi〉〈νS
αj |, where ρS

αij are parameters.
With these notations and relations, we start to extend the

previous results. To make our result clear, we state it as two
theorems.

Theorem 1. If the initial states of the combined system are
with the structure,

ρSE(0) =
N0∑

α=1

pαρS
α ⊗ ρE

α , (5)

where ρE
α is a fixed density operator on the environment space

HE , ρS
α is an arbitrary density operator on the subspaceHS

α , and
pα is an arbitrary non-negative number satisfying

∑N0
α=1 pα =

1, then the reduced dynamics of the open system can be
described by a CP map as long as ρSE(0) ∈ {∑N0

α=1 pαρS
α ⊗

ρE
α }.

As mentioned above, CP maps are necessarily dependent
on the structure of initial states when the states are with
initial correlations. Therefore, the theorem are based on
the framework of direct-sum decomposition of state space,
HS

1 ⊕ HS
2 ⊕ · · · ⊕ HS

N0
. It means that each subspace HS

α is
fixed, but ρS

α being with variable parameters ρS
αij can take

every density operator in the subspace. The reduced dynamics
for all the states defined with the same decomposition HS

1 ⊕
HS

2 ⊕ · · · ⊕ HS
N0

can be described by a CP map.
We now prove the theorem. To this end, we examine the

relation between ρS(t) = TrEρSE(t) and ρS(0) = TrEρSE(0).
Note that ρE

α can be written as ρE
α = ∑

j λαj |φE
αj 〉〈φE

αj |, where
λαj and |φE

αj 〉 are the eigenvalues and eigenvectors of ρE
α . By

definition, we have

ρS(t) = TrE[USE(t)ρSE(0)USE†(t)]

=
∑

αi

pα

〈
μE

i

∣∣USE
(
ρS

α ⊗ ρE
α

)
USE†∣∣μE

i

〉

=
∑

αij

λαjpα

〈
μE

i

∣∣USE
(
ρS

α ⊗ ∣∣φE
αj

〉〈
φE

αj

∣∣)USE†∣∣μE
i

〉

=
∑

αij

λαjpα

〈
μE

i

∣∣USE
∣∣φE

αj

〉
ρS

α

〈
φE

αj

∣∣U †
SE

∣∣μE
i

〉
,

where |μE
i 〉, i = 1,2, . . . ,M , are a complete set of basis on

HE . Here, we have used USE to present USE(t) for the sake
of brevity. Since the density operator ρS

α belongs to the sub-
space HS

α and �S
α is the projector on this subspace, we have

�S
αρS

β�S
α = δαβρS

α and hence �S
αρS(0)�S

α = pαρS
α , where

ρS(0) = TrEρSE(0) = ∑
α pαρS

α . By using these relations, we
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further get

ρS(t) =
∑

αij

λαj

〈
μE

i

∣∣USE
∣∣φE

αj

〉
�S

αρS(0)�S
α

〈
φE

αj

∣∣USE†∣∣μE
i

〉
.

Let

Kαij (t) = √
λαj

〈
μE

i

∣∣USE
∣∣φE

αj

〉
�S

α, (6)

with α = 1,2, . . . ,N0 and i,j = 1,2, . . . ,M . It is easy to verify
that

∑
αij K

†
αij (t)Kαij (t) = IN . We finally obtain the Kraus

representation,

ρS(t) =
∑

αij

Kαij (t)ρS(0)K†
αij (t). (7)

Therefore, the reduced dynamics of the open system is a CP
map for the family of initial states defined by Eq. (5). The
above proof shows that Kαij (t) are independent of ρS

α and pα ,
but they are dependent on �S

α , λαj and |φE
αj 〉. �S

α are completely
determined by the given framework HS

1 ⊕ HS
2 ⊕ · · · ⊕ HS

N0
.

It is worth noting that the previous results expressed by
Eqs. (1) and (2) can be taken as special cases of Theorem 1 with
special direct-sum decompositions HS

1 ⊕ HS
2 ⊕ · · · ⊕ HS

N0
.

Indeed, if we let N0 = 1 and d1 = N , Eq. (5) becomes
ρSE(0) = ρS ⊗ ρE , which is just the well-known result
Eq. (1). If we let N0 = N and d1 = d2 = · · · = dN = 1, since
ρS

α must be equal to �S
α in one-dimensional subspaces, Eq. (5)

becomes ρSE(0) = ∑N
α=1 pα�S

α ⊗ ρE
α . It is just the result

expressed by Eq. (2) as �S
α can be equivalently expressed as

|χS
α 〉〈χS

α | in the case of one-dimensional subspaces. In general
cases, if one or more dα 	= 1, the family defined by ρSE(0) =∑N0

α=1 pαρS
α ⊗ ρE

α contains more states than that defined by
ρSE(0) = ∑N

α=1 pα|χS
α 〉〈χS

α | ⊗ ρE
α . This is because that ρS

α in
the former family can be taken all the states in the subspace
HS

α while its counterpart in the latter family is constrained
by ρS

α = ∑βα+dα

β=βα+1 cβ |χS
β 〉〈χS

β |, where 0 � cβ � 1, satisfying
∑βα+dα

β=βα+1 cβ = 1, and βα = ∑α−1
i=1 di with β1 = 0. It is also

worth noting that if we interpret the framework of direct-sum
decomposition of state space in the notion of block diagonal
matrix in Ref. [13] and match the αth subspace HS

α with the
αth block �α , then Theorem 1 can lead to the result expressed
by Eq. (3).

We now take a concrete example as an illustration of
Theorem 1. We consider a 4 × 2 combined system. |νS〉, ν =
1,2,3,4, and |μE〉, μ = 1,2, are used to denote the basis of HS

and HE , respectively. Two subspaces HS
1 and HS

2 are defined
by �S

1 = |1S〉〈1S | + |2S〉〈2S | and �S
2 = |3S〉〈3S | + |4S〉〈4S |,

respectively. Let ρE
1 = |1E〉〈1E | and ρE

2 = |2E〉〈2E |. Then, the
family of initial states defined by Eq. (5) is given as

ρSE(0) = (1 − p)ρS
1 ⊗ |1E〉〈1E | + pρS

2 ⊗ |2E〉〈2E |, (8)

where 0 � p � 1, and ρS
1 and ρS

2 can take all the states in the
subspaces HS

1 and HS
2 , respectively. According to the theorem,

the reduced dynamics for all the states expressed as Eq. (8)
with variable p, ρS

1 , and ρS
2 can be described by a CP map.

The Kraus representation reads

ρS(t) =
2∑

α,i,j=1

Kαij (t)ρS(0)K†
αij (t), (9)

with ρS(0) = (1 − p)ρS
1 + pρS

2 , where the nonzero Kraus
operators are given by Eq. (6) (see Appendix A).

III. EXTENSION OF CP MAPS TO GENERAL
STRUCTURE OF INITIAL STATES

Theorem 1 concerns only the family of initial states with
vanishing discord. All the density operators in each subspace
{HS

α ⊗ HE} in Theorem 1, i.e., the terms on the right side of
Eq. (5), are with the product form ρS

α ⊗ ρE
α . An interesting

question is: Does there still exist a CP map if the density
operators in some subspaces cannot be written as the product
form? In other words, can the reduced dynamics for a state
set including nonvanishing discord states or entangled states
be described by a CP map? We find that it can be done if
the nonproduct density operators are fixed. In this section, we
extend the family of initial states to that including the separable
states with nonvanishing discord as well as entangled states.
We state this extension as Theorem 2.

Theorem 2. If the initial states of the combined system are
with the structure,

ρSE(0) =
n∑

α=1

pαρSE
α +

N0∑

α=n+1

pαρS
α ⊗ ρE

α , (10)

where ρSE
α is a fixed density operator with nonvanishing

discord on the direct product space HS
α ⊗ HE , ρE

α is a fixed
density operator on the environment space HE , ρS

α is an
arbitrary density operator on the subspace HS

α , and pα is
an arbitrary non-negative number satisfying

∑N0
α=1 pα = 1,

then the reduced dynamics of the open system can be
described by a CP map as long as ρSE(0) ∈ {∑n

α=1 pαρSE
α +∑N0

α=n+1 pαρS
α ⊗ ρE

α }.
Clearly, Theorem 2 is a generalization of Theorem 1. In

expression (10), the number n may take 0,1, . . . ,N0, where
the case of n = 0 is just corresponding to Theorem 1. To
prove the theorem, we examine the relation between ρS(t)
and ρS(0). From Eq. (10), we have ρS(0) = TrEρSE(0) =∑n

α=1 pαTrEρSE
α + ∑N0

α=n+1 pαρS
α . By definition, we have

ρS(t) = TrE[USE(t)ρSE(0)USE†(t)]

=
n∑

α=1

M∑

i=1

pα

〈
μE

i

∣∣USEρSE
α USE†∣∣μE

i

〉

+
N0∑

α=n+1

M∑

i=1

pα

〈
μE

i

∣∣USEρS
α ⊗ ρE

α USE†∣∣μE
i

〉
, (11)

where |μE
i 〉, i = 1,2, . . . ,M , are a complete set of basis

of HE .
To calculate the first term in the last line of Eq. (11), we

use the spectral decomposition, ρSE
α = ∑

L ηαL|
SE
αL 〉〈
SE

αL |,
where ηαL and |
SE

αL 〉 represent the eigenvalues and
eigenvectors of ρSE

α . Besides, since ρSE
α belongs

to the space HS
α ⊗ HE and therefore the reduced

density operator TrEρSE
α belongs to HS

α , we then have∑dα

i=1〈νS
αi |TrEρSE

β |νS
αi〉 = δαβ , where {|νS

αi〉} represents the

basis of HS
α with

∑dα

i=1 |νS
αi〉〈νS

αi | = �S
α . It further leads

to
∑dα

i=1〈νS
αi |ρS(0)|νS

αi〉 = ∑dα

i=1〈νS
αi |TrEρSE(0)|νS

αi〉 = pα .
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By using these relations, we get

pα

〈
μE

i

∣∣USEρSE
α USE†∣∣μE

i

〉

=
dα×M∑

L=1

pαηαL

〈
μE

i

∣∣USE
∣∣
SE

αL

〉〈

SE

αL

∣∣USE†∣∣μE
i

〉

=
dα×M∑

L=1

dα∑

k=1

[
ηαL

〈
μE

i

∣∣USE
∣∣
SE

αL

〉〈
νS

αk

∣∣ρS(0)
∣∣νS

αk

〉

×〈

SE

αL

∣∣USE†∣∣μE
i

〉]
. (12)

For the second term in the last line of Eq. (11), by following
the approach used in the proof of Theorem 1, we have

pα

〈
μE

i

∣∣USEρS
α ⊗ ρE

α USE†∣∣μE
i

〉

=
M∑

j=1

λαjpα

〈
μE

i

∣∣USEρS
α ⊗ ∣∣φE

αj

〉〈
φE

αj

∣∣USE†∣∣μE
i

〉

=
M∑

j=1

λαjpα

〈
μE

i

∣∣USE
∣∣φE

αj

〉
ρS

α

〈
φE

αj

∣∣U †
SE

∣∣μE
i

〉

=
M∑

j=1

λαj

〈
μE

i

∣∣USE
∣∣φE

αj

〉
�S

αρS(0)�S
α

〈
φE

αj

∣∣USE†∣∣μE
i

〉
,

(13)

where λαj and |φE
αj 〉 are the eigenvalues and eigenvectors

of ρE
α .

Substituting Eqs. (12) and (13) into (11), we have

ρS(t) =
n∑

α=1

M∑

i=1

dα×M∑

L=1

dα∑

k=1

[
ηαL

〈
μE

i

∣∣USE
∣∣
SE

αL

〉〈
νS

αk

∣∣

× ρS(0)
∣∣νS

αk

〉〈

SE

αL

∣∣USE†∣∣μE
i

〉]

+
N0∑

α=n+1

M∑

i,j=1

[
λαj

〈
μE

i

∣∣USE
∣∣φE

αj

〉
�S

αρS(0)�S
α

× 〈
φE

αj

∣∣USE†∣∣μE
i

〉]
. (14)

Let

KαiLk(t) = √
ηαL

〈
μE

i

∣∣USE
∣∣
SE

αL

〉〈
νS

αk

∣∣, α = 1, . . . ,n, (15)

and

Kαij (t) = √
λαj

〈
μE

i

∣∣USE
∣∣φE

αj

〉
�S

α, α = n + 1, . . . ,N0,

(16)

with i,j = 1,2, . . . ,M , k = 1,2, . . . ,dα and
L = 1,2, . . . ,dα × M . It is easy to verify that∑n

α=1

∑
i,L,k K

†
αiLkKαiLk + ∑N0

α=n+1

∑
i,j K

†
αijKαij = ∑n

α=1∑
k |νS

αk〉〈νS
αk| + ∑N0

α=n+1 �α = ∑N0
α=1 �α = IN . We finally

obtain the Kraus representation,

ρS(t) =
n∑

α=1

M∑

i=1

dα×M∑

L=1

dα∑

k=1

KαiLk(t)ρS(0)K†
αiLk(t)

+
N0∑

α=n+1

M∑

i,j=1

Kαij (t)ρS(0)K†
αij (t). (17)

Therefore, the reduced dynamics of the open system is a
CP map if ρSE(0) ∈ {∑n

α=1 pαρSE
α + ∑N0

α=n+1 pαρS
α ⊗ ρE

α }, as
defined by Eq. (10). We should stress that the density operators
ρSE

α and ρE
α in the theorem must be fixed. ρS

α can take all the
density operators in the subspace HS

α , and pα is an arbitrary
non-negative number satisfying

∑N0
α=1 pα = 1. The reduced

dynamics for all the initial states expressed by Eq. (10) with
variable ρS

α and pα but fixed ρSE
α and ρE

α can be described by
a CP map defined by Eqs. (15)–(17). Besides, we would like
to point out that the dependence of KαiLk(t) on |νS

αk〉 does not
weaken the validity of the CP map. {|νS

αk〉,k = 1,2, . . . ,dα} is
the basis of the subspace HS

α . Although the basis of HS
α is not

unique, Kraus operators obtained by using a different basis
are equivalent up to a unitary transformation, and therefore
different choices of the basis give the same CP map.

It is worthy of noting that the result expressed by Eq. (4) can
be taken as a special case of Theorem 2. If we defineHS

1 andHS
α

by �S
1 = |0〉〈0| + |1〉〈1| and �S

α = |α〉〈α|, α = 2,3, . . . ,N0,
and let ρSE

1 = (|0〉〈0| ⊗ ρE
0 + |1〉〈1| ⊗ ρE

1 + |+〉〈+| ⊗ ρE
+ )/3

and ρS
α = |α〉〈α|, then Eq. (10) becomes Eq. (4). Therefore, all

the previous results described by Eqs. (1)–(4) can be taken as
special cases of Theorem 2, as the results described by
Eqs. (1)–(3) can be obtained from Theorem 1, which is a
special case of Theorem 2 at n = 0. Besides, since the reduced
dynamics of product states can always be described as a CP
map, the term

∑n
α=1 pαρSE

α in Eq. (10) of Theorem 2 can
be recast as a more general form if HS

α = HS
α1 ⊗ HS

α2, i.e.,
if the αth subspace can be written as a tensor product of
two smaller subspaces. Indeed, it is easy to verify that the
theorem is still valid if Eq. (10) is replaced by ρSE(0) =∑n

α=1 pαρS
α1 ⊗ ρSE

α2 + ∑N0
α=n+1 pαρS

α ⊗ ρE
α , where ρS

α1 is an
arbitrary density operator on the subspace HS

α1 and ρSE
α2 is a

fixed density operator with nonvanishing discord on the space
HS

α2 ⊗ HE .
Considering that all the families defined by Eqs. (1)–(4) do

not include any entangled state, we would like to present two
more examples, which are related to entangled states. First,
if we let n = N0, Eq. (10) reduces to ρSE(0) = ∑N0

α=1 pαρSE
α ,

and all the states in this family are entangled as long as each
ρSE

α is taken to be entangled. As an example, we continue to
consider a 4 × 2 combined system. The two subspaces H1 and
H2 are still defined by �S

1 = |1S〉〈1S | + |2S〉〈2S | and �S
2 =

|3S〉〈3S | + |4S〉〈4S |, respectively. Let ρSE
1 = |
SE

11 〉〈
SE
11 | and

ρSE
2 = |
SE

21 〉〈
SE
21 |, where |
SE

11 〉 = (|1S1E〉 + |2S2E〉)/√2
and |
SE

21 〉 = (|3S1E〉 + |4S2E〉)/√2. Then, the initial states
defined by Eq. (10) are given as

ρSE(0) = p
∣∣
SE

11

〉〈

SE

11

∣∣ + (1 − p)
∣∣
SE

21

〉〈

SE

21

∣∣, (18)

where 0 � p � 1. The reduced dynamics for all the states
with variable p can be described by a CP map. The Kraus
representation reads

ρS(t) =
2∑

α,i,k=1

4∑

L=1

KαiLk(t)ρS(0)K†
αiLk(t), (19)

with ρS(0) = [p|1S〉〈1S | + p|2S〉〈2S | + (1 − p)|3S〉〈3S | +
(1 − p)|4S〉〈4S |]/2, where the nonzero Kraus operators are
given by Eq. (15) (see Appendix B). Second, we consider a
general case with 1 � n � N0 − 1. In this case, the family
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of the initial states for which the reduced dynamics can
be described by a CP map may consist of separable states
with vanishing discord, separable states with nonvanishing
discord, and entangled states. For example, we consider
a 6 × 2 combined system. |νS〉, ν = 1,2, . . . ,6, and |μE〉,
μ = 1,2, are used to denote the basis of HS and HE ,
respectively. The three subspaces HS

1 , HS
2 , and HS

3 are defined
by �S

1 = |1S〉〈1S | + |2S〉〈2S |, �S
2 = |3S〉〈3S | + |4S〉〈4S |,

and �S
3 = |5S〉〈5S | + |6S〉〈6S |, respectively. Let

ρSE
1 = (|1S1E〉〈1S1E | + | +S +E〉〈+S +E |)/2, ρSE

2 =
(|3S1E〉 + |4S2E〉)(〈3S1E| + 〈4S2E |)/2, and ρE

3 = |2E〉〈2E |,
where |+〉 = (|1〉 + |2〉)/√2. Then, the initial states defined
by Eq. (10) are given as

ρSE(0) =
2∑

i=1

piρ
SE
i + p3ρ

S
3 ⊗ |2E〉〈2E |, (20)

where p1 + p2 + p3 = 1, and ρS
3 is an arbitrary state in the

subspace HS
3 . The reduced dynamics for all the states with

variable p1, p2, p3, and ρS
3 can be described by a CP map. The

Kraus representation reads

ρS(t) =
2∑

α,i,k=1

4∑

L=1

KαiLk(t)ρS(0)K†
αiLk(t)

+
2∑

i,j=1

K3ij (t)ρS(0)K†
3ij (t), (21)

with ρS(0) = p1(|1S〉〈1S | + |+S〉〈+S |)/2 + p2(|3S〉〈3S | +
|4S〉〈4S |)/2 + p3ρ

S
3 , where the nonzero Kraus operators are

given by Eqs. (15) and (16) (see Appendix C).
It is also interesting to compare our result with that given in

Ref. [24]. The author of that paper provides a general condition
of the initial system-environment correlations for which there
always exists a corresponding CP map describing the reduced
system dynamics, while we give an explicit expression of the
initial states for which the reduced dynamics can be described
by a CP map. The condition given in that paper is based
on the tripartite system consisting of the open system, its
environment, and the reference system, while our discussion is
based on the bipartite system consisting of the open system and
its environment only. If a reference system adds to our bipartite
system, the initial sates defined in our theorems will fulfill the
condition in that paper. In this sense, our result is consistent
with the physical insight first put forward in Ref. [24], and the
families of the initial states described in the bipartite scenario
can be derived from that in the tripartite scenario.

IV. CONCLUSION

In conclusion, we put forward an alternative perspective to
investigate CP maps of an open system interacting with its
environment. The structure of the initial states are described
within the framework of direct-sum decomposition of state
space. Within the framework, we have identified the families of
the initial states for which the reduced dynamics can always be
described by a CP map, regardless of what the unitary operators
USE(t) are. Our main finding is described by Theorem 1 and
Theorem 2, while Theorem 1 can be regarded as a special case
of Theorem 2. It shows that the reduced dynamics of the open

system is CP if the combined system is initially in the family
of states defined by Eq. (10). All the previous results described
by Eqs. (1)–(4) can be taken as special cases of Theorem 2. We
have further illustrated the theorem with some examples: all
the initial states in a family being with vanishing discord, all
the initial states in a family being with nonvanishing discord,
and the initial states in a family consisting of separable states
with vanishing discord, separable states with nonvanishing
discord, and entangled states. Our work significantly extends
the previous results.
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APPENDIX A: THE NONZERO KRAUS
OPERATORS OF EXAMPLE ONE

The nonzero Kraus operators in Eq. (9) are

K111(t) = 〈1E|USE|1E〉�S
1 ,

K121(t) = 〈2E|USE|1E〉�S
1 ,

(A1)
K211(t) = 〈1E|USE|2E〉�S

2 ,

K221(t) = 〈2E|USE|2E〉�S
2 .

APPENDIX B: THE NONZERO KRAUS
OPERATORS OF EXAMPLE TWO

The nonzero Kraus operators in Eq. (19) are

K1111(t) = 〈1E|USE
∣∣
SE

11

〉〈1S |,
K1112(t) = 〈1E|USE

∣∣
SE
11

〉〈2S |,
K1211(t) = 〈2E|USE

∣∣
SE
11

〉〈1S |,
K1212(t) = 〈2E|USE

∣∣
SE
11

〉〈2S |,
(B1)

K2111(t) = 〈1E|USE
∣∣
SE

21

〉〈3S |,
K2112(t) = 〈1E|USE

∣∣
SE
21

〉〈4S |,
K2211(t) = 〈2E|USE

∣∣
SE
21

〉〈3S |,
K2212(t) = 〈2E|USE

∣∣
SE
21

〉〈4S |.

APPENDIX C: THE NONZERO KRAUS
OPERATORS OF EXAMPLE THREE

The nonzero Kraus operators in Eq. (21) are

K1111(t) =
√

3

2
〈1E |USE

∣∣
SE
11

〉〈1S |,

K1112(t) =
√

3

2
〈1E |USE

∣∣
SE
11

〉〈2S |,

K1211(t) =
√

3

2
〈2E |USE

∣∣
SE
11

〉〈1S |,
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K1212(t) =
√

3

2
〈2E|USE

∣∣
SE
11

〉〈2S |,

K1121(t) = 1

2
〈1E |USE

∣∣
SE
12

〉〈1S |,

K1122(t) = 1

2
〈1E |USE

∣∣
SE
12

〉〈2S |,

K1221(t) = 1

2
〈2E |USE

∣∣
SE
12

〉〈1S |,

K1222(t) = 1

2
〈2E |USE

∣∣
SE
12

〉〈2S |,

K2111(t) = 〈1E |USE
∣∣
SE

21

〉〈3S |,

K2112(t) = 〈1E |USE
∣∣
SE

21

〉〈4S |,
K2211(t) = 〈2E |USE

∣∣
SE
21

〉〈3S |,
K2212(t) = 〈2E |USE

∣∣
SE
21

〉〈4S |,
K311(t) = 〈1E |USE|2E〉�S

3 ,

K321(t) = 〈2E |USE|2E〉�S
3 . (C1)

Here, |
SE
11 〉 = (3|1S1E〉 + |1S2E〉 + |2S1E〉 + |2S2E〉)/2

√
3,

|
SE
12 〉 = (−|1S1E〉 + |1S2E〉 + |2S1E〉 + |2S2E〉)/2, and

|
SE
21 〉 = (|3S1E〉 + |4S2E〉)/√2, which are obtained from

the spectral decompositions, ρSE
1 = 3

4 |
SE
11 〉〈
SE

11 | + 1
4 |
SE

12 〉
〈
SE

12 |, and ρSE
2 = |
SE

21 〉〈
SE
21 |.
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