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We use a specific geometric method to determine speed limits for the implementation of quantum gates in
controlled quantum systems that have a specific class of constrained control functions. We achieve this by
applying a recent theorem of Shen, which provides a connection between time optimal navigation on Riemannian
manifolds and the geodesics of a certain Finsler metric of Randers type. We use the lengths of these geodesics
to derive the optimal implementation times (under the assumption of constant control fields) for an arbitrary
quantum operation (on a finite dimensional Hilbert space), and explicitly calculate the result for the case of a
controlled single spin system in a magnetic field and a swap gate in a Heisenberg spin chain.
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I. INTRODUCTION

There is much interest in establishing methods for de-
termining physical speed limits for the implementation of
quantum information processing (QIP) tasks, both for practical
engineering considerations and for determining fundamental
limits to computation. Many of these approaches employ
geometrical techniques. Here we apply geometric methods
to a specific problem, which we show to be related to the
Zermelo navigation problem. We use this method to determine
a quantum speed limit (QSL) for quantum gates, in a system
with pure state and a finite dimensional state space under the
influence of a constrained control Hamiltonian.

A. Recent work on quantum speed limits

Recent work on the QSL falls into several categories,
including: (i) bounds on orthogonality times, (ii) time optimal
quantum gates, and (iii) fundamental questions about compu-
tation. The orthogonality time (also called passage time [1])
is the optimal time for a system to evolve from one state to an
orthogonal state.

Work on bounds on orthogonality times includes
Refs. [1–11]. Specifically Refs. [1,5,6] include a role for
differential geometry in analyzing this aspect of the QSL.
Reference [7] analyzes the case of an open driven system
and obtains a bound also comparable to the Margolus-Levitin
bound for nonunitary dynamics; a specific model, the damped
Jayes-Cummings model, is analyzed. Reference [8] produces
an interesting result generalizing the Margolus-Levitin bound
to systems with nonunitary dynamics. Reference [9] illustrates
an application of the Pontryagin minimum principle to the
optimal control of SU(2) operators; closed form solutions are
obtained as are interesting diagrammatic representations of the
optimal trajectories. Reference [10] illustrates the absence of a
speed limit for quantum systems described by non-Hermitian,
PT-symmetric Hamiltonians in a situation where Hermitian
quantum mechanics is subject to a finite speed limit. Reference
[11] discusses the Margolus-Levitin bound in non-Hermitian
quantum systems. Numerical methods in quantum optimal
control are considered in Ref. [12], and the Margolus-Levitin
bound is shown to be achievable using the Krotov method
for deriving control schemes. The well-known time energy
uncertainty relation is also a bound on orthogonality time in

closed, time-independent systems; a good review of this can
be found in Ref. [13], and a geometric derivation of the bound
in Ref. [5]. A good discussion of a geometric derivation of the
time energy uncertainty relation can be found in Ref. [1].

Work on time optimal quantum gates includes
Refs. [14–19]: Reference [14] discusses time optimal imple-
mentation of a number of two qubit gates and also discusses
experimental implementations of such gates. Work on open-
dissipative systems for implementing quantum gates can be
found in Ref. [15]. Some works on this topic based on
geometry include Refs. [16,17]. Reference [16] discusses the
use of sub-Riemannian metrics on the unitary group with
application to two and three qubit systems; special focus on
NMR experiments is given. Reference [17] analyzes the use of
metric structure (in the sense of metric spaces, not differential
geometry) in determining the QSL for implementing quantum
gates. Reference [18] connects the QSL for orthogonality times
and the QSL for implementing quantum gates. Reference
[19] produces a result based on a variational principle for
a Lagrangian on U(N ); this work also shows how optimal
control schemes can be obtained via differential geometry.

For work on the wider relevance to computer science,
Refs. [20,21] are most notable. Reference [20] discusses
the role of the Margolus-Levitin bound in the context of
the ultimate physical limits to computation. Reference [21]
illustrates an application of Finsler geometry to quantum
optimal control and the design of quantum circuits.

B. Our geometric approach

Here we apply geometric methods, specifically meth-
ods of Finsler geometry, to the problem of determining
the QSL for quantum gates. We impose the constraint
Tr(Ĥ 2

c ) = 1/α (where α is a positive constant) on the control
Hamiltonian in a controlled quantum system; this constraint
is also considered in Ref. [19]. Note that our approach is not
restricted to this particular constraint, however: It would be
possible to reformulate the analysis performed here if the set
of allowed control Hamiltonians was the unit ball of any norm
arising from an inner product on su(N ). The bounds obtained
here are bounds on physical times, not on any notion of circuit
complexity.

Our method is based specifically on the known exact
correspondence between navigation data for the problem of
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Zermelo navigation and Randers metrics [22] (in contrast to
other work applying Finsler geometry to QIP). We provide
a general solution and then evaluate the speed limit in the
specific cases of a single spin system in a magnetic field and
a swap gate in a Heisenberg spin chain with time-independent
control fields.

II. ZERMELO NAVIGATION AND RANDERS METRICS

Mathematically, the relevant form of the Zermelo naviga-
tion problem (Ref. [23], as cited in Ref. [22]) considered here
comprises the following:

(1) A Riemannian manifold (M,g), which is taken to be
compact and connected.

(2) A vector field W on M such that W is “small” according
to the metric g, that is, gp(Wp,Wp) < 1 for all points p on
M . In local coordinates, gij (x)Wi(x)Wj (x) < 1, for all points
with local coordinates given by x.

The navigator on the manifold M is taken to move with
unit speed according to the metric g. W is interpreted as a
“wind” that is “pushing” the navigator around, thus altering
their speed (according to g) in a way that may depend on the
location of the navigator (that is, the wind need not be the
same everywhere). The constraint on W ensures that progress
can always be made: The wind can never blow the navigator
backwards. The requirement to move with unit speed can be
interpreted as “full speed ahead” at all times. The problem of
time optimal navigation then is to determine the direction in
which to navigate at each point on the manifold, in order to
reach some given point in minimal time.

Shen [24] illuminates a deep connection between this
problem of time optimal navigation on a Riemannian manifold
and a specific class of Finsler metrics [25], namely, the Randers
metrics. A Randers metric is a Finsler metric that can be cast
as the sum of a Riemannian metric and a linear term [26].

Shen [22,24] shows that, under the influence of a “wind,”
the time optimal trajectories are given by the geodesics of the
following Randers metric:

‖X‖ = − gp(X,Wp)

1 − gp(Wp,Wp)

+
√

gp(X,Wp)2 + (1 − gp(Wp,Wp))gp(X,X)

1 − gp(Wp,Wp)
,

(1)

where this formula defines the length of any tangent vector
X ∈ TpM . Shen also shows that these geodesic lengths are
the optimal times for making a journey between any two
points on M . For physical clarification: The unit sphere of
the Riemannian metric encodes all the information about how
quickly the navigator can move in a given direction (in the
absence of any wind) at a point on M by singling out the
allowed tangent vectors to trajectories. The metric is time
independent throughout this work.

III. NAVIGATION ON THE SPECIAL UNITARY GROUP

We take Shen’s result, and apply it to the case of QIP, to
derive quantum speed limits. In order to implement a certain

QIP task in a controlled quantum system, we consider the
dynamics of the system (more precisely, the time evolution
operator Ût ) as given by the Schrödinger equation

dÛt

dt
= −iĤt Ût = −i(Ĥ0 + Ĥc(t))Ût . (2)

Here Ĥt is the time-dependent Hamiltonian, decomposed
into the sum of Ĥ0, a “drift” time-independent Hamiltonian,
representing the system’s dynamics in the absence of external
influences, and Ĥc, the control Hamiltonian that represents the
effect of the (potentially) time-dependent influence of control
fields on the dynamics. For more details see Ref. [27].

In order to implement a desired computation in such a
system, Ût (the time evolution operator acting on the system’s
states) must be driven from the identity Î at t = 0 to Ô, the
operator representing the desired time evolution (that is, the
desired transformation of the state space). As Ût contains
the information about the dynamics of every state of the
system, physically achieving a desired transformation of all
states of a system is tantamount to achieving the Ût which
represents this transformation.

In the case of a closed finite dimensional quantum system,
the physical states can be identified with the set of rays in CN

(for some N ∈ N); these form a complex projective space [28].
Furthermore, the set of all possible time evolutions (ignoring
global phases; for more clarification of this, and a discussion
of a common mathematical error, see the footnote in Ref. [29])
is the Lie group SU(N ), see Ref. [30] for details. That is, the
set of all possible time evolution operators acting on CN is
SU(N ).

We now pose the question: When can the problem of finding
optimal implementation times and trajectories on SU(N ) be
posed as a special case of the Zermelo navigation problem
solved by Shen?

Up to a constant multiple, there is only one bi-invariant Rie-
mannian metric on SU(N ) [31], the left (or right) translation
of the Killing form on su(n), which is given by α Tr(Â†B̂)
∀Â,B̂ ∈ su(N ) (for some fixed α ∈ R+) [30]. There is no
freedom to choose this aspect of the problem, except for the
constant multiple α, if bi-invariance is desired. We use the
bi-invariant metric here because of its familiarity, and because
this constraint has been treated before [19]. Other, right only,
invariant metrics could be considered. (See Sec. IX for further
discussion.)

One must also consider which vector field plays the role
of the non-time-dependent “wind.” We set ŴÛ = −iĤ0Û by
examining the Schrödinger equation and observing that this
vector field on SU(N ) describes the dynamics of the system in
the absence of control fields. This is the right translation of a
vector at the identity and is thus a right invariant vector field.
The form of this Ŵ is in fact simplifying when substituted into
Eq. (1). In order to meet the small wind premise of the theorem
(that is, gp(Wp,Wp) < 1 for all points p), we require

α Tr
(
Ĥ 2

0

)
< 1. (3)

In order to meet the premise that g is the metric with respect
to which the navigator (when not affected by the wind) has a
velocity of exactly 1, we impose the following on the control

012303-2



ZERMELO NAVIGATION AND A SPEED LIMIT TO . . . PHYSICAL REVIEW A 90, 012303 (2014)

Hamiltonian:

α Tr
(
Ĥ 2

c (t)
) = 1 (for all t). (4)

Hence the constant α is determined by Ĥc(t). It is in this sense
that the metric arises from a physical constraint on the system’s
Hamiltonian; that is, an allowed set of Hamiltonians which are
permitted to serve as tangent vectors to trajectories of the time
evolution operator on SU(N ). The unit ball of the metric at
each point on the group is the set of allowed tangent vectors
to curves, and the tangent vector to a trajectory of Ût which
solves the Schrödinger equation is given by −iĤt Ût as per the
Schrödinger equation.

Not all physical constraints need to correspond to some
Riemannian metric: The set of allowed Hamiltonians (which,
when multiplied by i could serve as tangent vectors to
trajectories of the time-evolution operator) may simply not
correspond to the unit balls of any Riemannian metric. In
such a case this method of Zermelo navigation would not be
applicable. Further work is needed before we can extend such a
method to scenarios in which the manifold under consideration
initially possesses a Finsler metric rather than a Riemannian
one. This would require a generalization of Shen’s theorem to
Finsler manifolds. Here we stay with the original formulation.

To summarize, we set up a navigation problem with the
following elements:

(1) the special unitary group SU(N ) playing the role of the
differentiable manifold M

(2) the metric arising (by right translation) from the Killing
form as the Riemannian structure of this manifold

(3) the time evolution operator Ût playing the role of the
navigator whose tangent vectors are unit vectors according to
the Riemannian structure of M

(4) the drift Hamiltonian Ĥ0 playing the role of the
wind W .

The tangent vector to any curve on SU(N ) at the point
Û is given by iÂÛ for some Â satisfying Â† = Â. That is,
the tangent vector is the right translation by Û of some iÂ ∈
su(N ). Thus, in the special case of navigation on SU(N ) with
W as described, the relevant Randers metric can be shown
(after some algebra) to be

‖iÂÛ‖opt = 1

ρ − 1

Tr(ÂĤ0)

Tr
(
Ĥ 2

0

)
×

(
1 ±

√
1 + (ρ − 1)

Tr
(
Ĥ 2

0

)
Tr(Â2)

( Tr(ÂĤ0))2

)
, (5)

where iÂÛ ∈ TÛ SU(N ),

ρ := Tr
(
Ĥ 2

c (t)
)

Tr
(
Ĥ 2

0

) > 1, (6)

and the choice of ± is made to ensure positivity. Equation (5)
depends on Ĥc(t) only through ρ [ρ is not time dependent as
Tr (Ĥ 2

c (t)) is not time dependent, see Eq. (4)]. Equation (5)
has no dependence on Û ; this metric is right invariant. This
is a simple consequence of the fact that both g and W are
right invariant in this application.

Note that Tr(Ĥ 2
0 ) has a fairly clear physical interpretation.

We denote the eigenvalues and corresponding eigenstates of

Ĥ0 by En and |n〉, respectively. The physical meaning of this
quantity can be extracted via the following derivation:

Tr(Ĥ 2
0 ) =

∑
n

En
2. (7)

Setting |ψun〉 = 1√
N

∑
n |n〉, the uniform superposition state,

one observes the following:

〈ψun|Ĥ 2
0 |ψun〉 = 1

N

∑
n

En
2 = 1

N
Tr

(
Ĥ 2

0

)

and thus

Tr
(
Ĥ 2

0

) = N〈ψun|Ĥ 2
0 |ψun〉,

which is a multiple of the expectation of Ĥ 2
0 in the uniform

superposition state. Thus the requirement that α Tr(Ĥ 2
0 ) <

1 corresponds to constraining this physical quantity (and
similarly for the control Hamiltonian).

IV. THE SPEED LIMIT

The geodesic lengths of the metric in Eq. (5) provide the
speed limit for implementing a desired quantum gate in any
quantum system meeting the premises above. The minimal
time to traverse a path from the identity Î to some desired
operator Ô is the length of the geodesics of Eq. (5) connecting
the two points on SU(N ).

As Eq. (5) is a right-invariant (but not bi-invariant) Finsler
metric on a compact connected Lie group, its geodesics
(through the identity) are not necessarily the one-parameter
subgroups [32]. By Stone’s theorem [33], the one-parameter
subgroups are exactly the curves of the form Ût = exp(−itÂ)
for some constant Â such that Â† = Â. There may be some
situations where such a curve is a geodesic; such geodesics
are called homogeneous geodesics. A necessary and sufficient
condition for a vector in the Lie algebra of a connected Lie
group with a left (or right, but not both) invariant Finsler metric
to exponentiate to a geodesic is known [34]; investigating
applications of this to QIP is the focus of further work.

A. Time-independent control Hamiltonians

In the derivation so far, the control Hamiltonian Ĥc(t)
is time dependent [although Tr(Ĥ 2

c ) is time independent,
Eq. (4)]. From now on, we restrict ourselves to cases where
the control Hamiltonian is not a function of time. This
results in the total Hamiltonian being time independent;
thus all possible trajectories of the time evolution operator
are one-parameter subgroups (generated by Â say), since
these solve the Schrödinger equation: dÛt/dt = −iÂÛt .

Suppose our desired operator Ô is reached at time T .
Setting Ô = exp(−iT Â), taking logs, and rearranging yields
Â = i

T
ln(Ô). The tangent vector to a geodesic connecting the

identity Î to Ô is given by i
T

ln(Ô). To evaluate the length
L[ÛT ] of a curve Ût on SU(N ) according to the Finsler metric
of Eq. (5), ‖iÂÛt‖, one integrates the length of the tangent
vector to the curve along the length of the curve. As curve
lengths are independent of parametrization, one can find the
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length of this curve by evaluating

L[ÛT ] =
∫ T

t=0

∥∥∥∥dÛt

dt

∥∥∥∥
opt

dt

=
∫ T

t=0
‖ − iÂÛt‖optdt, (8)

from which one obtains the optimal time

Topt = 1

ρ − 1

i Tr (Ĥ0 ln(Ô))

Tr
(
Ĥ 2

0

)
×

(
1 ±

√
1 + (ρ − 1)

Tr
(
Ĥ 2

0

)
Tr(( ln(Ô))2)

(Tr (Ĥ0 ln(Ô)))2

)
. (9)

Tr (Ĥ0 ln(Ô)) is always purely imaginary, and thus the expres-
sion evaluates to a real result, despite the presence of i. Again,
the choice of ± is made to ensure positivity. Note that this is
an equality on the optimal time, not an inequality, under the
assumptions of the problem.

We have

lim
ρ→∞ Topt = 0.

Recall that ρ = Tr (Ĥ 2
c (t))/ Tr(Ĥ 2

0 ) > 1, and that Ĥ0 is given
(it is prescribed by the physics of the system) before any
choice of Ĥc can be made. So as ρ → ∞, Tr (Ĥ 2

c (t)) → ∞
necessarily. Intuitively, as the radius of the set of allowed
control Hamiltonians Ĥ 2

c (t) diverges, all Hamiltonians become
allowed. With no limitations on which control Hamiltonians
are allowed, there is no speed limit.

Note that the constraint on the control Hamiltonian does not
allow us to take the limit that the control Hamiltonian tends to
zero without violating the assumption that the “wind” is small
relative to control, so we cannot use it to find optimal times in
the drift-only case.

Explicit comparison of this limit to existing known bounds
is difficult, since the premises used to obtain Eq. (9) are not
exactly those of any of the other known bounds cited above.
However, one can deduce what the relationship must be. The
length of any curve on SU(N ) gives the optimal time for
traversal by Ût of a system subject to the aforementioned
premises. Thus we have found the optimal time [Eq. (9)]
for traversing any trajectory achievable with time-independent
controls. Thus any other correct, comparable bound (i.e., for
the same system with the same premise) must be equal to
ours, or less tight. The same goes for any bound obtained
for any other trajectory of Ût by using Eq. (5) and any other
comparable bound as the length gives the optimal time. This
shows that Randers geometry can be used to produce exact
speed limit results in driven systems; it is unknown to the
authors whether or not such a bound (applying to arbitrary
curves) can be obtained without the use of Randers geometry.

V. EXAMPLE I: A SINGLE SPIN IN A MAGNETIC FIELD

The result in Eq. (9) can be used to calculate bounds on
orthogonality times in specific time-independent controlled
quantum systems and thus assess their capacity for QIP, as in
Ref. [2]. For concreteness, the case of a single spin in a mag-
netic field is used as an example. Setting Ĥ0 = Bxσ

x + Byσ
y

represents the effects of an external magnetic field outside
the control of an experimenter. Setting Ĥc = Dxσ

x + Dyσ
y +

Dzσ
z represents the effects of another external magnetic field

that an experimenter can control.
The requirement that α Tr(Ĥ 2

c ) = 1 [Eq. (4)] can be
evaluated by applying the Clifford algebra (of R3 with the
standard euclidean metric) property of the Pauli matrices σ k

[35], that (Dkσ
k)2 = ( 
D · 
D)Î . This implies

Tr
(
H 2

c

) = Tr(Dkσ
k)2

= Tr (( 
D · 
D)Î ) = 2 
D · 
D
= 2

(
D2

x + D2
y + D2

z

) = 1

α
. (10)

Let D2 := D2
x + D2

y + D2
z . Then D2 = 1/2α.

Similarly, the requirement that α Tr(Ĥ0
2) < 1 [Eq. (3)] can

be evaluated:

Tr
(
H 2

0

) = Tr ((Bxσ
x + Byσ

y)2) = 2B2 <
1

α
, (11)

where B2 := B2
x + B2

y . Equations (10) and (11) give B2 < D2;
the control field overcomes the drift field.

We choose some particular operation Ô and calculate its
optimal implementation time. Setting Ô = (0 −1

1 0 ) gives a gate
that sends each of the two computational basis states to an
orthogonal state. We then find the optimal implementation
time thus:

(1) ρ = D2/B2

(2) ln(Ô) = ln (0 −1
1 0 ) = ( 0 − π

2
π
2 0 ) = −i π

2 σy

(3) Tr ( ln(Ô)Ĥ0) = −πiBy

(4) Tr(( ln(Ô))2) = −π2/2.
Combining these terms and substituting into Eq. (9) yields

Topt = π

2

By

(D2 − B2)

(
1 ±

√
1 + D2 − B2

B2
y

)
. (12)

When By < 0, the drift field is helping the desired operation
Ô; the −ve root is chosen. When By > 0, the drift field
is opposing the desired operation; the +ve root is chosen,
resulting in a larger Topt. The optimal time depends on D2,
the strength of the control field, and B2, the strength of the
external magnetic field. The specific values of Dx , Dy , and Dz

(the orientation of the control field) that achieve this optimum
time need to be calculated separately.

The metric of Eq. (5) could have been used to calculate
optimal times for traversing any curve in SU(N ), not just the
time-independent trajectories (i.e., one-parameter subgroups)
of Eq. (9). These trajectories were chosen for simplicity and
for their physical relevance as piecewise constant controls are
frequently adopted in optimal control theory [27]. To find a
speed limit for Ût to traverse some other curve on SU(N ), one
would find the length of the curve according to Eq. (5).

VI. EXAMPLE II, A SWAP GATE IMPLEMENTED IN A
HEISENBERG SPIN CHAIN

Another example of using Eq. (9) to extract a QSL is the
speed limit for implementing a swap gate in a Heisenberg
model spin chain. Again the speed limit formula here refers
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to the optimal implementation time obtainable with constant
control functions.

The matrix for a swap gate, re-phased to make it special
unitary, is [36]:

Ô = eiπ/4

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠. (13)

This gate acts (up to a phase) by swapping two one qubit states:
Ô|ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉. The drift Hamiltonian for a two
spin “chain” with (arbitrary spin coupling) is [37]

Ĥ0 = λxσ
x ⊗ σx + λyσ

y ⊗ σy + λzσ
z ⊗ σ z. (14)

One easily computes the required quantities:

ln(Ô) = πi

4

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ (15)

and thus

Tr(( ln(Ô))2) = −3π2

4
(16)

Tr
(
Ĥ 2

0

) = 4
λ · 
λ =: 4λ2 (17)

Tr
(
Ĥ 2

c

) = 1/α (18)

and thus

ρ = 1

4αλ2
. (19)

One can also compute

Tr (Ĥ0 ln(Ô)) = πi(λx + λy + λz). (20)

From these it follows that

Topt =−πα(λx + λy + λz)

1 − 4αλ2

(
1±

√
1+ 3(1−4αλ2)

4α(λx +λy + λz)2

)
,

(21)

where the ± is chosen, as before, to ensure the positivity of
the time.

These calculations provide some evidence that this method
could be extended to three qubit gates, and perhaps higher,
before intractable computations are incurred. For three qubit
gates in a similar spin chain, calculations would all be of simi-
lar length to those performed here, except for the calculation of
the matrix logarithm. Also, many good numerical algorithms
exist for performing such calculations [38] for when they
become intractable symbolically, allowing the method to be
applied to much larger systems.

VII. ACHIEVING THE LIMIT IN LARGE SPIN CHAIN AND
SPIN LATTICE SYSTEMS

The method described in this paper assumes that any control
Hamiltonian Ĥc(t) satisfying the constraint Tr (Ĥc(t)2) = 1/α

can be implemented. For large quantum systems, specifically
larger spin chains and lattices, this will almost never be the
case. For example, in the three spin chain case, consider the
term σx ⊗ Î ⊗ σx . This term represents the spin-spin coupling
of non-neighboring spins, an interaction term that produces
dynamics not equivalent to that produced by any external field.
Thus any optimal times for such a model calculated using
this approach would be theoretical optimal times only. They
would provide only a bound on speed limits achievable by
physically possible control Hamiltonians. The authors do not
know of a driven, finite dimensional quantum system for which
σx ⊗ Î ⊗ σx is a plausible term in the control Hamiltonian.
(See the future work section for discussion of modifications of
the method taking into account systems that are not completely
controllable.)

VIII. SUMMARY

We have obtained a closed form expression Eq. (9) for
the optimal implementation times for an arbitrary quantum
operation on a finite dimensional Hilbert space in the presence
of a specific constraint on the time-independent control
Hamiltonian: that it is constant in size (in the specific sense
above) and stronger than the drift Hamiltonian. We have done
this by finding a Randers metric with a special property. The
metric of Eq. (5) has the property that the length of any
curve on SU(N ) is the optimal traversal time (for Ût ) for a
quantum system subject to the constraints discussed. This is in
contrast to other methods that typically compute the optimal
time for the optimal trajectories, or for only the trajectories
achievable with time-independent Hamiltonians. Our method
applies to all trajectories whose lengths can be computed.
Finding the geodesics of Eq. (5) would find the globally
(over all paths with fixed endpoints) time optimal trajectories:
However, these curves may not be trajectories achievable with
time-independent Hamiltonians.

IX. FURTHER WORK

The examples illustrate the method in the case of constant
controls. It appears that the calculations, at least in the case of
constant controls, are tractable by hand for a variety of two and
three qubit gates. The obstacle to applying the result to a much
larger system will be the calculation of matrix logarithms of
large matrices, especially in cases when there are interaction
terms in the Hamiltonian.

We plan to solve the geodesic equation for the metric in
Eq. (5) in order to determine speed limits for traversing more
general curves than the time-independent trajectories alone.
This would produce an explicit QSL formula for any trajectory
of Ût with a time-dependent Hamiltonian as the length of any
curve according to Eq. (5) gives the optimal time for Ût to
traverse it in the presence of the constraint discussed. Finding
the geodesic vectors and thus the homogeneous geodesics
of Eq. (5) would determine exactly when time-independent
controls are in fact time optimal, and we hope to do this using
the results in Ref. [34] and elsewhere.

We also intend to generalize to navigation problems on
SU(N ) where the metric representing the constraint is a Finsler
metric rather than a Riemannian one. This work will be based
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on the general formalism in Ref. [24], particularly §3: Eq. (12)
and following results. We will also investigate using a different
Riemannian metric to start with, that is, a different physical
constraint. The right translation of any inner product on su(N )
would produce such a metric, so there is a rich source of exam-
ple quadratic constraints that can be studied this way. The in-
vestigation of the geodesics of general right invariant Randers
metrics on SU(N ) can be approached by applying the Euler-
Poincaré equation [39], which should provide a first order dif-
ferential equation satisfied by the optimal Hamiltonian (the one
that drives the Ût along a geodesic). Lagrange multiplier meth-
ods can be used to further constrain the control Hamiltonian
so that some terms in the control, i.e., the ones that physically
cannot be implemented, are set to zero along trajectories.

We are also investigating the use of Koprina metrics [40],
which provide other solutions to the navigation problem under
different assumptions. These metrics correspond to the case
of the drift and control Hamiltonians being equal is size and
thus could facilitate an analysis of the potential of low power
quantum devices.
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