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Strong driving of a single spin using arbitrarily polarized fields
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The strong-driving regime occurs when a quantum two-level system is driven with an external field whose
amplitude is greater than or equal to the energy splitting between the system’s states and is typically identified
with the breaking of the rotating wave approximation (RWA). We report an experimental study in which the
spin of a single nitrogen-vacancy (NV) center in diamond is strongly driven with microwave fields of arbitrary
polarization. We measure the NV center spin dynamics beyond the RWA and characterize the limitations of this
technique for generating high-fidelity quantum gates. Using circularly polarized microwave fields, the NV spin
can be harmonically driven in its rotating frame regardless of the field amplitude, thus allowing rotations around
arbitrary axes. Our approach can effectively remove the RWA limit in quantum-sensing schemes and assist in
increasing the number of operations in QIP protocols.
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I. INTRODUCTION

The nitrogen-vacancy (NV) center is one of the leading
platforms for QIP applications [1,2] and room-temperature
quantum metrology [3,4]. Additionally, it serves as a probe
for the classical and quantum dynamics of a mesoscopic bath
of spins [5,6]. These applications provide great motivation
for controlling, and specifically shortening, the manipulation
duration of the spin. In QIP, shortening of the gate duration
allows an increase in the number of quantum gates applied
during the coherence time, T2, and thus scales up the
computational performance [7]. Ultimately, the elementary
gate duration defines the processing clock speed [8]; for
systems on parity for the number-of-operations figure of
merit, it distinguishes between “slow” systems, such as cold
trapped atoms and nuclear spins, and “fast” systems, such
as semiconductor quantum dots and superconducting flux
qubits. In quantum metrology, designed rotations of qubits
are used to map the signal (the phase between eigenstates) to a
measurable population difference. Specifically, in dynamical
decoupling (DD)–based quantum sensing schemes, the qubit
may be driven continuously or pulsed at intervals, allowing
suppression of noise sources with a slower spectrum than
the driving speed or interpulse spacing [9–11]. Thus, the
maximum driving speed or pulse duration places an upper
bound on the ability to shift the sensing frequencies higher
and away from the dominant low-frequency noise [12] and
limits the bandwidth of these schemes.

For these goals, and crucially in room-temperature applica-
tions, the NV spin is usually manipulated with an oscillatory
microwave (MW) field, Bx(t) = B1 cos(ωt) (where B1 and ω

are the field amplitude and frequency, respectively), resonant
with the energy splitting of the spin �ωL, i.e. ω = ωL. Then,
in a frame rotating with the MW field, the spin is driven by a
constant magnetic field, B+ = B1/2 (corotating field), and an
additional rotating field, B− = (B1/2)e2iωt (counter-rotating
field). As long as γB1 is small compared to ω (where γ is the
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magnetic moment of the spin), the counter-rotating field can
be neglected, an approximation known as the rotating wave ap-
proximation (RWA). In this regime, the gate time depends lin-
early on the inverse of the applied magnetic field amplitude B1.

However, when the driving amplitude is increased so that
γB1 becomes comparable to the spin’s Larmor frequency ωL,
the dynamics manifest complexities due to an interplay of the
two fields: the gate fidelity degrades, the rotation (gate) time
no longer scales linearly with 1/B1, and the dynamics show a
pronounced sensitivity to the phase of Bx(t) with respect to the
pulse edges [13]. In this regime, known as the strong-driving
regime, various solutions to regaining control of the system
dynamics have been proposed, including anharmonic pulses
[14,15], Landau-Zener-assisted transitions [16], and transi-
tions through an ancillary level in a �-type configuration [17].

Here we tackle the strong-driving problem using an
approach discussed in an early work by Bloch and Siegert
[18]. A spin subjected to two orthogonal, resonant MW
fields, Bx = B1 cos(ωLt) and By = B1 cos(ωLt + φ), will ro-
tate harmonically if φ = ±π/2. Under this condition, the two
orthogonal fields can equivalently be described as circularly
polarized MW radiation. When the radiation polarization
coincides with the spin transition (i.e., when the angular
momentum of the radiation field matches the change in spin
number), manipulation with a field solely corotating with the
spin occurs, leading to full-contrast rotations. The other case,
namely, driving a transition with the counter-rotating field
(of opposite handedness or polarization), can be viewed as
a driving field with a 2ωL detuning. Only in the strong-driving
regime can rotation of the spin occur, albeit with degraded
contrast. Recently, this approach was demonstrated with an
ensemble of 1H nuclear spins (I = 1/2) in an ultralow-field
NMR setup [19]. Here, we investigate this approach using
experiments on a single NV center, an electronic spin in
a diamond with total spin S = 1. For an S = 1 system, it
is possible to address more than one transition spectrally,
enabling polarization selective transitions [20]. We drive the
NV center with arbitrarily polarized MW radiation, address
one of the two-level systems (TLSs), and study its dynamics
in the strong-driving regime, namely, when the Rabi frequency
is higher than the Larmor frequency.
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The paper is organized as follows. In Sec. II we describe
the experimental setup and present a theoretical description
of the general Hamiltonian of the NV S = 1 ground state
under two MW fields. Section III discusses the dynamics in
a low magnetic field, characterized by selective excitation
within a dense spectrum of resonances. In Sec. IV we
experimentally demonstrate the strong-driving regime for
various polarizations and compare the dynamics under linear
versus circular polarization. In Sec. V we discuss the results
and elaborate on the effect of an axial MW component on
the NV dynamics, i.e., a MW field applied parallel to the NV
dipole axis.

II. EXPERIMENTAL SETUP FOR POLARIZED
MW RADIATION

The experiments were conducted at room temperature,
with single NV centers in a type IIa diamond with a (100)
surface. To excite NV centers with arbitrarily polarized MW
pulses [20] of short duration, we designed a low-Q MW
antenna. The antenna comprises two thin copper wires in
a cross-configuration, stretched over the diamond surface
[Fig. 1(a)]. The wires are connected to two independent MW
sources, switches, and amplifiers and are phase-locked to
each other. Alternatively, one can apply the fields through
an arbitrary waveform generator to gain full control over the
MW parameters. With this setup we were able to manipulate
individual NV centers, located at distances of ∼10–50 μm
from the wire crossing, with Rabi frequencies up to 100 MHz.
We have found that the position of the NV center with respect
to the wires affects the driving performance (see Sec.V). The
ideal scenario is illustrated in Fig. 1(a), where the two fields
and the NV axis form an orthogonal system.

The Hamiltonian of the NV-center spin, S, in the presence of
two orthogonal driving fields, Bx and By , of equal magnitude
and a constant external magnetic field, Bext, can be written as

H = DS2
z − γBextSz + �ei(ωt+φg )ε̂ · S + H.c., (1)

where D = (2π ) 2.87 GHz is the zero-field splitting, γ = (2π )
2.8 MHz/G is the NV magnetic moment, ε̂ = (1,eiφ,0) defines
the MW polarization, and H.c. stands for Hermitian conjugate.
Here, ω, �, and φ are the MW frequency, NV Rabi frequency
(� = γBx = γBy), and relative MW phase, respectively. The
phase φg is a global phase shared by both fields. In the rotating
frame, Eq. (1) is rewritten as (see Appendix A)

H ′ =
⎡
⎣	− 0 0

0 0 0
0 0 	+

⎤
⎦ + �√

2

⎡
⎣ 0 ε− 0

ε∗
− 0 ε+
0 ε∗

+ 0

⎤
⎦

+ �√
2

⎡
⎣ 0 ε+e−2iωt 0

ε∗
+e2iωt 0 ε−e2iωt

0 ε∗
−e−2iωt 0

⎤
⎦ , (2)

where ε± = e∓iφg (1 − ie∓iφ)/2. Here ω±
L = D ± γBext are

the transition frequencies, and 	± = ω±
L − ω their detuning

from the MW frequency [Fig. 1(b)]. The second and third terms
in Eq. (2) represent the corotating and counter-rotating terms,
respectively. Note that Eqs. (1) and (2) hold for arbitrarily
(elliptically) polarized fields, however, we assume that the z

component of the MW field is 0. We refine this treatment

FIG. 1. (Color online) Experimental setup and broadband mag-
netometry with polarized fields. (a) Microwaves (MWs) transmitted
by two crossed wires placed on the diamond surface create orthogonal
magnetic fields and, for certain NV positions, allow an arbitrary MW
field. (b) Energy scheme of the NV ground state at a low magnetic
field. Notations are defined in the text. (c–e) Experimental spectra
of Ramsey signals produced with MW π/2 pulses of right-handed
circular polarization (c), left-handed circular polarization (d), and
linear polarization (e). Black arrows in (c–e) mark the frequencies
|	±| and |	+ − 	−| at the applied magnetic field.

in Sec. V, in discussing the influence of an MW field with
nonzero axial component.

Next we discuss the dynamics of Eq. (2) in the “low-field”
case, where the transitions are nearly degenerate with respect
to the Rabi frequency, but the RWA is applicable (|	±| �
� � ω). Then we discuss the dynamics in the “high-field”
case, where the transitions are well separated and the Rabi
frequency exceeds the transition frequency (|	−| � ω � �),
allowing investigation of a TLS driven beyond the RWA limit.

III. SELECTIVE EXCITATION WITH POLARIZED FIELDS

To characterize the performance of the MW structure
we performed broadband Ramsey magnetometry at a low
magnetic field, where the |−1〉 and |+1〉 states are nearly
degenerate [21]. For low-amplitude driving (� � ω) one may
use the RWA, i.e., assume that the ε±e±2iωt components
oscillate many times during the rotation of the spin and, thus,
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are averaged to 0. Equation (2) then becomes

H RWA =
⎡
⎣ 	− (�/

√
2)ε− 0

(�/
√

2)ε∗
− 0 (�/

√
2)ε+

0 (�/
√

2)ε∗
+ 	+

⎤
⎦ . (3)

Here we see that (�/
√

2)ε+ drives the |0〉 ←→ |+1〉 transi-
tion, and (�/

√
2)ε− drives the |0〉 ←→ |−1〉 transition.

First, the NV is optically pumped to the |0〉 state. Then
an MW π/2 pulse with arbitrary polarization (arbitrary φ)
manipulates the NV spin to the state |ψ〉 = (1/

√
2)[|0〉 +

iε−|−1〉 + iε∗
+|1〉]. This state can be obtained with the evolu-

tion operator U = exp(iH RWAt), for rotation time t satisfying
(t · �/

√
2) = π/4, in the limit � � |	±|. Then, after a

free-evolution time τ , the state becomes |ψ〉 = (1/
√

2)[|0〉 +
iε−ei	−τ |−1〉 + iε∗

+ei	+τ |1〉], and an additional π/2 pulse
with the same polarization gives the final probability of being
in the |0〉 state,

P0(τ ) = 1
2 [1 − |ε−|2 cos(	−τ ) − |ε+|2 cos(	+τ )

− |ε−|2|ε+|2(1 − cos[(	+ − 	−)τ ])]. (4)

The second and third terms oscillate at the MW frequency de-
tuning from the |0〉 ←→ |−1〉 and |0〉 ←→ |+1〉 transitions,
respectively. The last term oscillates at the frequency sepa-
ration between the | ± 1〉 states and is detuning independent.
Using Fourier analysis of P0(τ ), one can infer the polarization
parameters (|ε±|2) directly, by observing the intensity of each
frequency component.

In the experiments, a static axial magnetic field of 4.6 G was
used to split the |±1〉 states by 26 MHz, and “hard” π/2 pulses
which efficiently excited both transitions were applied [� =
(2π )114 MHz; note that � remained much smaller than ωL �
(2π )3 GHz]. By varying the relative phase between the wires,
various polarizations could be engineered; left-handed circular
polarization [driving the |0〉 → |−1〉 transition; Fig. 1(c)],
right-handed circular polarization [driving the |0〉 → |+1〉
transition; Fig. 1(d)], and linear polarization [Fig. 1(e)] . In
all spectra there is an additional (2π )2.16-MHz splitting due
to a hyperfine interaction with the NV host nitrogen nuclear
spin. From the relative amplitudes in the spectral footprint,
we deduce that |ε−|2 = 0.98, 0.03, and 0.47 (with an error of
±0.05) for Figs. 1(c), 1(d), and 1(e), respectively.

IV. STRONG DRIVING WITH ARBITRARY
POLARIZATIONS

After characterizing the MW polarization, we experi-
mentally investigated the strong-driving regime for different
applied polarizations. A TLS was prepared using a high
axial magnetic field of ∼0.1 mT. At this field one finds
ω−

L = (2π )30 MHz and ω+
L = (2π )5710 MHz. For a field

resonant with ω−
L , the far-detuned higher energy transition

can be neglected, and the reduced Hamiltonian of the TLS
|0〉,|−1〉 [derived from Eq. (2)] is

H = �√
2

[
0 ε− + ε+e−2iω−

L t

ε∗
− + ε∗

+e2iω−
L t 0

]
, (5)

where (�/
√

2)ε− is the corotating component of the MW
field, and (�/

√
2)ε+e−2iω−

L t is the counter-rotating component.

Specifically, for φ = π/2, one obtains the Hamiltonian H =
(�/

√
2)σx , where σx is the Pauli matrix, and the prefactor

√
2

is a remnant of the S = 1 nature of the NV system. (The spin
interacts more strongly than a true TLS.) This Hamiltonian is
exact and independent of the driving-field magnitude, even for
� � ω−

L , i.e., beyond the RWA limit. The dynamics derived
from this Hamiltonian are harmonic oscillations with Rabi
frequency �. We note that our experiments were conducted
with Rabi frequencies of the order of tens of megahertz but,
in principle, could be performed in the gigahertz regime with
the proper hardware [13]. The approximation leading from
Eq. (2) to Eq. (5) breaks only at � ∼ 2D � (2π )6 GHz. For
these values parasitic excitations to the |+1〉 state will interfere
with the dynamics.

A. Optimization of the relative phase φ

As described above, experimental control of the MW
polarization is obtained by tuning the relative phase φ between
the wires. To further illustrate this control, we performed
Rabi oscillations for various relative phases (Fig. 2). We
started with a parametric scan in the weak-driving regime.
The NV spin was driven with both wires, each with amplitude
� = 0.15ω−

L ([(2π )5.9 MHz], and the relative phase between
the sources was scanned [Fig. 2(a)]. At the optimal phase
relation, φ = π/2, the NV spin is driven most efficiently,
resulting in Rabi oscillations at double the frequency 0.3ω−

L

[Fig. 2(a); dashed (red) line], corresponding to driving with the
corotating field, and the counter-rotating term is suppressed
completely (ε− = 1, ε+ = 0). In contrast, at φ = 3π/2 the
spin remained untouched [Fig. 2(a); dotted (green) line], as the
MW has the opposite polarization to drive the spin transition.
Here, the corotating field does not exist (ε− = 0, ε+ = 1),
and the counter-rotating field can be neglected via the RWA
(� � ω+

L ). In contrast, in the strong-driving regime the spin
is also driven by the counter-rotating field [Fig. 2(b)]. Here,
we set � = 0.7ω−

L for each wire, and only at φ = π/2
(representing left-handed circular polarization, σ−) were pure
harmonic oscillations observed, demonstrating Rabi flops with
� = 1.4ω−

L . Hereafter, we denote the ratio of the Rabi fre-
quency to the Larmor frequencyλ = �/ω−

L . For other phases,
more complex dynamics were observed, accompanied by
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FIG. 2. (Color online) Rabi oscillations with MW fields of vari-
ous polarizations. Simulated (upper panels) and experimental (lower
panels) Rabi oscillations with various phase differences between the
wires, in (a) the weak-driving and (b) the strong-driving regimes. In
the simulation, an average of 300 initial phases φg was used.
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high-frequency components and lower contrast; specifically, at
φ > π , the dynamics are governed by the counter-propagating
field and one notices an increase in the oscillation frequency
with low contrast.

For both cases, a numerical model based on Eq. (5) repro-
duces the results very well. For all noncircular polarizations,
the phase of the MW with respect to the pulse rising edge
plays an important role in the dynamics. For example, with
linearly polarized MW radiation, the effective driving field
is �̃ = √

2�e−i(ω−
L t−π/4) cos(ω−

L t − φg), representing a field
with time-dependent magnitude and orientation. Assuming a
square pulse shape (the rise and fall times of the experimental
pulses were ∼1 ns), one finds that for φg = 0, the field
is �̃ = √

2� cos(ω−
L t), and both fields (co- and counter-

rotating) start with the maximal amplitude in the same
direction (in the rotating frame), effectively rotating the spin
instantaneously. In contrast, for φg = π/2, the effective field
is �̃ = √

2� sin(ω−
L t). Here, the field has zero amplitude at

t = 0, and the spin starts to rotate much more slowly, drawing
a different trajectory on the Bloch sphere. Conventionally,
and in our experiments too, the trigger of the MW switch
is not synchronized with the MW source phase, leading to
a randomized initial phase φg over all acquisitions (each
sequence was repeated ∼105 times for sufficient photon
statistics). Therefore, the simulated signal plotted in Fig. 2
is the averaged signal of 300 repetitions of the dynamics
under Eq. (5) with uniformly distributed, global phases. In the
weak-driving regime the initial MW phase is unimportant and
the repeated acquisitions are essentially identical. For more
details on the global phase dependence, see Appendix B.

B. Strong driving with linear and circular fields

After optimizing the relative phase for circular polarization
(φ = π/2) and for linear polarization (φ = 0), we compare
the performance of the two polarizations for manipulating the
spin in the strong-driving regime. Specifically we compare
the ability to steer the spin from the north pole of the Bloch
sphere, |0〉, to the south pole, |−1〉, i.e., to perform a π pulse.

Figures 3(a), 3(b), and 3(c) show the spin dynamics for
λ ∼ 0.5, 1.0, and 1.5, respectively. For extracting the spin
projections on the |0〉 and |−1〉 states, we have calibrated
the photoluminescence level for both states using a relatively
weak MW power, ensuring that decoherence mechanisms are
not influencing the dynamics. (Typically, the difference in the
photoluminescence for these states was ∼35%.) A qualitative
difference is observed in the spin dynamics as the driving
field exceeds the Larmor frequency; the oscillations become
anharmonic for linear fields while remaining harmonic for
circular fields. We extract two quantities from the measured
signals: the time of the first minimum of the signal, tm, and
the |0〉-state population at this time. The former corresponds
to a π -pulse duration for ideal harmonic driving, and the
latter corresponds to the π -pulse fidelity. We note that our
fidelity definition is not the formal one, in which the process
fidelity for any arbitrary state is estimated via quantum
process tomography [22]. Instead, the probability of being
in the |−1〉 state after the applied gate on the |0〉 state can
sufficiently characterize both the efficiency and the challenges
in performing these operations in the strong-driving regime.
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FIG. 3. (Color online) Rabi oscillations with linearly and circu-
larly polarized driving fields. (a–c) Rabi oscillations for various
amplitudes of the MW field: experimental data shown as squares
for linear fields and as circles for circular fields. Data are presented
for (a) λ �0.5, (b) λ �1, and (c) λ �1.5. Solid lines are cosine fits
to the circular polarization data and simulated signals from Eq. (5)
for the linear polarization data. (d) Experimental comparison of π

pulse fidelity for linearly (squares) and circularly (circles) polarized
fields. Linear polarization data are modeled with a curve calculated
according to Eq. (5) with no fit parameters [solid (blue) curve].
Circular polarzation data are modeled with an additional axial MW
field of amplitude 15%–35%� [dashed (red) curves]. (e) Effective
Rabi frequency vs field amplitude for linearly (squares) and circularly
(circles) polarized fields. The ideal dependence for harmonic driving
is represented by the dotted line. “A” and “B” labels correspond to
Fig. 5(d).

Figure 3(d) shows the fidelity of the π pulse as a
function of the effective Rabi strength (defined as half of
the inverse of the π -pulse duration, i.e., �eff = 1/2tm). For
linear polarization the π -pulse fidelity decreases substantially
when λ � 1 [Fig. 3(d); squares], as predicted by a model
based on the Schrödinger equation with Eq. (5) [Fig. 3(d);
solid line]. In contrast, for circular polarization the fidelity
is 93% at λ = 1. Importantly, the harmonic behavior of the
driven spin is still observed for a Rabi frequency twice the
Larmor frequency. In principle, the fidelity should not decrease
even in the strong-driving regime, however, for high λ values
the experimental values show a monotonic reduction in the
π -pulse fidelity. This behavior can be partly reproduced by
simulations, if an additional field which is applied parallel
to the NV axis is included. This is illustrated by the five
dashed lines in Fig. 3(d), for which we added to Eq. (5) an
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FIG. 4. (Color online) Strong driving of an NV center with a large axial MW field. Simulation of Rabi oscillations [ω−
L = (2π )37.8 MHz,

�x = �y = 1.408ω−
L ] with (a) �z = 0 and (b) �z = 1.67�x . (c) Experimental Rabi oscillations for a single NV center with ω−

L and �x,y equal
to the values in the simulations and with a strong axial component.

additional term, H‖ = Sz·�z cos(ω−
L t), where Sz is the spin

operator in the z axis, and �z is the MW projection on the
z axis. The improved agreement between experiment and
simulation for values of �z/� = 20%–30% implies that this
could be a dominant mechanism for the degraded performance
of circularly polarized radiation as the field amplitude is
increased.

An additional figure of merit for the manipulation perfor-
mance is how the driving speed changes with the applied
MW amplitude [Fig. 3(e)]. Here, for a linearly polarized MW
field at λ > 1.2 multiple minima appear in the fluorescence
signal (see Appendix B). As a consequence, the time of the
first minimum changes abruptly at these values, shifting from
the predicted behavior of � = �eff = 1/2tm to higher values
[Fig. 3(e); squares], in agreement with our numerical model
[Fig. 3(e), solid line; the ideal behavior is depicted as the
dotted black line]. In contrast, for circular polarization the
π -pulse duration follows the ideal behavior [Fig. 3(e); circles],
with a small deviation towards higher values. Again, this is
partly explained by including an axial field [dashed (red) line],
calculated with �z/� = 20%).

V. DISCUSSION

The comparison of the experiments and simulations in
Fig. 3 indicates that an axial MW field could play an important
role in our driving scheme. This might not be the only
mechanism for the performance degradation: Although the
wires were isolated (i.e., no direct Ohmic short was present),
we have witnessed a small inductive cross talk between the
wires. (When the power was applied through one of the wires,
a 90◦ phase-shifted signal appeared in the other wire.) We
estimate this leakage to be bounded by a few percent according
to the direct measurement of the output signals, but it results
in some ellipticity of the MW field.

Whereas the residual cross talk between the wires cannot
be mitigated very easily in our setup, the axial projection of
the MW field can be varied simply by measuring NV centers
at various positions relative to the cross-wires. We selected an
NV center with a high axial component of the MW field, for
which a scan of Rabi flops as a function of the relative phase
between the wires is shown in Fig. 4. Here, without an axial
component of the MW field, one would expect to obtain the

results in Fig. 4(a), where at 0◦ (representing σ− polarization)
the spin is driven by harmonic oscillations by the corotating
field. In contrast, the experiment shows a qualitatively different
behavior, where for phases in the range 0–90◦, the oscillation
frequency remains relatively constant, and the shape is clearly
anharmonic [the solid (blue) line in Fig. 4 is a guide for the
eye]. Moreover, at the cancellation point (180◦), the spin is
still rotated at a Rabi frequency about one-fifth of the applied
� [Fig. 4(c)]. Remarkably, a numerical simulation based on
Eq. (5) with axial component Sz�z reproduces these features,
elucidating the importance of axial driving for this NV center
[Fig. 4(b)]. At the cancellation point, for instance, the spin is
likely to be driven via multiple Landau-Zener transitions [16],
rather than by conventional Rabi flops.

Thus, the performance of our current design of a polarized
MW antenna (cross-wire configuration) in the strong-driving
regime is sensitive to the projection of the MW field on
the NV-center axis. Although axial driving is important for
realizing Landau-Zener-like transitions [16,23,24], it is also
accompanied by a reduction in the oscillation contrast.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have studied the dynamics of a single spin
under resonant, polarized MW radiation. The relative phase of
two MW sources was utilized as a knob to adjust the MW
polarization. We have demonstrated high-fidelity selective
excitation within a dense spectrum of resonances, allowing in-
dividual excitation of adjacent transitions (	 ∼ 26 MHz) with
fast pulses of � �114 MHz. This is of importance near level
crossings, where conventionally one would have to decrease
the driving power to avoid leakage of population to neighbor-
ing states or use optimal control solutions [2,25]. Here, the
selection rules obtained with circularly polarized light allow
selective excitation of degenerate transitions and can be used
to determine both the sign and the magnitude of the external
magnetic field [26]. We showed that under circular MW fields,
the spin experiences pure harmonic oscillations regardless of
the applied field strength, specifically even above the RWA
limit (in our case more than twice the Larmor frequency).
Importantly, although in the strong-driving regime, the spin is
still rotated in its rotating frame, allowing for universal control
around the Bloch sphere by controlling the global phase of
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the MW fields φg . This enables the use of complex dynamical
decoupling schemes [27], with a sub-Larmor-period intrapulse
duration. Moreover, in continuous wave sensing schemes
such as dressed-state magnetometry [28] and Hartmann-Hahn
double resonance [29], the spin must be maintained in its
dressed state. Here, our scheme overcomes the upper limit to
detection frequencies set by the Larmor frequency.

Our current design suffers from the influence of an axial
component of the MW field. More versatile stuctures, for
example, using two wires to generate each magnetic field
Bx,y component, could mitigate this problem by allowing
cancellation of the axial field without supressing the transverse
component. Spin manipulation with an axial field is strongly
connected to Landau-Zener transitions [16] and coherent
destruction of tunneling [24] and, therefore, is interesting in
and of itself. Moreover, our ability to control the magnetic

field in all three directions can assist in constructing the Berry
Hamiltonian [30] for acquiring controlled geometric phases
with a single spin in a diamond without rotating the sample
[31].
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APPENDIX A: DERIVATION OF EQ. (2)

We derive the MW terms in the Hamiltonian Eq.(2). The interaction term of the NV spin S, with MW field of frequency ω,
Rabi frequency �, and relative phase φ, is

HMW = �(cos(ωt)Sx + cos(ωt + φ)Sy),

where the transverse spin operators are

Sx = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦ , Sy = 1√

2

⎡
⎣ 0 −i 0

i 0 −i

0 i 0

⎤
⎦ .

We move into the MW rotating frame using the transformation H ′ = i dU
dt

U † − U †HU with U = exp(iAt) and A is given by

A =
⎡
⎣ω 0 0

0 0 0
0 0 ω

⎤
⎦ .

Then the transformation operators are

U =
⎡
⎣eiωt 0 0

0 1 0
0 0 eiωt

⎤
⎦ , U † =

⎡
⎣e−iωt 0 0

0 1 0
0 0 e−iωt

⎤
⎦ ,

and the spin operators transform according to

U †SxU = 1√
2

⎡
⎣e−iωt 0 0

0 1 0
0 0 e−iωt

⎤
⎦

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦

⎡
⎣eiωt 0 0

0 1 0
0 0 eiωt

⎤
⎦ = 1√

2

⎡
⎣ 0 e−iωt 0

eiωt 0 eiωt

0 e−iωt 0

⎤
⎦ ,

U †SyU = 1√
2

⎡
⎣e−iωt 0 0

0 1 0
0 0 e−iωt

⎤
⎦

⎡
⎣0 −i 0

i 0 −i

0 i 0

⎤
⎦

⎡
⎣eiωt 0 0

0 1 0
0 0 eiωt

⎤
⎦ = 1√

2

⎡
⎣ 0 −ie−iωt 0

ieiωt 0 −ieiωt

0 ie−iωt 0

⎤
⎦ .

The terms in the Hamiltonian are calculated as

� cos (ωt) U †SxU = �
1

2
(eiωt + e−iωt )

1√
2

⎡
⎣ 0 e−iωt 0

eiωt 0 eiωt

0 e−iωt 0

⎤
⎦ = �

2
√

2

⎡
⎣ 0 1 + e−2iωt 0

1 + e2iωt 0 1 + e2iωt

0 1 + e−2iωt 0

⎤
⎦ ,

cos(ωt + φ)U †SyU = �
1

2
(ei(ωt+φ) + e−i(ωt+φ))

1√
2

⎡
⎣ 0 −ie−iωt 0

ieiωt 0 −ieiωt

0 ie−iωt 0

⎤
⎦

= �

2
√

2

⎡
⎣ 0 −i(eiφ + e−i(2ωt+φ)) 0

i(ei(2ωt+φ) + e−iφ) 0 −i(ei(2ωt+φ) + e−iφ)
0 i(eiφ + e−i(2ωt+φ)) 0

⎤
⎦ ,
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and combining the two terms, we write the Hamiltonian in the MW rotating frame H ′
MW = U †[� cos(ωt)Sx + cos(ωt +

φ)Sy]U :

H ′
MW = �

2
√

2

⎡
⎢⎣

0 1 + e−2iωt 0

1 + e2iωt 0 1 + e2iωt

0 1 + e−2iωt 0

⎤
⎥⎦

+ �

2
√

2

⎡
⎢⎣

0 −i(eiφ + e−i(2ωt+φ)) 0

i(ei(2ωt+φ) + e−iφ) 0 −i(ei(2ωt+φ) + e−iφ)

0 i(eiφ + e−i(2ωt+φ)) 0

⎤
⎥⎦

= �√
2

⎡
⎢⎣

0 ε− 0

ε∗
− 0 ε+
0 ε∗

+ 0

⎤
⎥⎦ + �√

2

⎡
⎢⎣

0 e−2iωt ε+ 0

e2iωt ε∗
+ 0 e2iωt ε−

0 e−2iωt ε∗
− 0

⎤
⎥⎦ ,

where in the last row we assigned ε± = e∓iφg (1 − ie∓iφ)/2.

APPENDIX B: GLOBAL PHASE DEPENDENCE IN
LINEAR POLARIZATION DATA

Figures 3(d) and 3(e) present the analysis of Rabi oscilla-
tions with a linear polarized MW field: the population transfer
at the first minimum point in the signal decreases substantially
as the Rabi frequency increases, and the π -pulse duration
(the evolution time until the first minimum) changes when
the RWA is exceeded. In contrast, in Ref. [13] it is found
that close-to-unity population transfer can occur also in the
strong-driving regime and that the π -pulse duration is very
hard to predict. The contradiction arises from the experimental
technique which was used in our work, namely, averaging
many realizations of the MW phase at the pulse rising edge,
φg . In [13]–[15], the MW phase was synchronized to the
pulse edge. While our technique suppresses the sensitivity to
imperfections in the driving system, it introduces a systematic
reduction in the driving performances. It is worth mentioning
that there is no systematic deterioration when applying strong
circular MW fields. Here we describe the global-phase
dependence using numerical simulations, compared with the
measured Rabi oscillation signals. Figures 5(a)–5(c) show
the associated dynamics for various field strengths and for
various φg values. At λ = 0.1 [Fig. 5(a)], the influence of
the counter-rotating term is negligible and the dynamics is
identical for any φg at the appropriated rotating frame [dashed
(red) curves]. Then the spin rotates around a big circle on
the Bloch sphere. At λ = 0.33 [Fig. 5(b)], the dynamics
changes for each φg , but the averaged time trace still resembles
harmonic oscillations [solid (blue) curve]. This demonstrates
the robustness of the averaging technique. At the higher
Rabi frequency λ = 1.2 [Fig. 5(c)], the counter-rotating term
influences the spin rotations markedly, and for each φg the
dynamics is complete different; while for a given φg , complete
population transfer from 〈σZ〉 = +1 to 〈σZ〉 = −1 can occur
[Fig. 5(c); thick dashed (red) curve] for the ensemble average
of many φg , the population transfer does not exceed 60%,
demonstrating the downside of this technique. When averaging
many φg realizations, the principal minimum point of the
signal, which marks the π -pulse operation, changes into a
multiple-minimum structure, as shown in Fig. 5(d). Circles
and rectangles are experimental values measured at λ = 1.2

and 1.4, respectively. Solid lines are the results of a numerical
simulation averaging 300 different φg values. From the Bloch
sphere representation it is clear that at these values the averaged
spin state becomes mixed (red and blue curves) compared
to the rotation in the weak-driving regime (green curve). In
Fig. 5(d), we have labeled points A and B, which are addressed
in the text and in Fig. 3.

FIG. 5. (Color online) Global phase dependence in the strong-
driving regime. (a–c) Rabi oscillations for increasing Rabi-frequency
values, λ = 0.1 (a), λ = 0.33 (b), and λ = 1.2 (c). Left: Bloch sphere
representation of the spin state. Right: The spin’s z component as
a function of the driving duration. Dashed (red) curves are various
realizations of φg , and the solid (blue) curve is an averaged trajectory
over 300 realizations. (d) Comparison between experimental values
(circles and squares) and numerical simulations for high λ values (1.2,
and 1.4, respectively); the green curve represents Rabi oscillations in
the weak-driving regime and serves as a guide for the eye.
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