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Experimental implementation of an eight-dimensional Kochen-Specker set and observation of its
connection with the Greenberger-Horne-Zeilinger theorem
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For eight-dimensional quantum systems there is a Kochen-Specker (KS) set of 40 quantum yes-no tests that is
related to the Greenberger-Horne-Zeilinger (GHZ) proof of Bell’s theorem. Here we experimentally implement
this KS set using an eight-dimensional Hilbert space spanned by the transverse momentum of single photons.
We show that the experimental results of these tests violate a state-independent noncontextuality inequality. In
addition, we show that, if the system is prepared in states that are formally equivalent to a three-qubit GHZ and
W states, then the results of a subset of 16 tests violate a noncontextuality inequality that is formally equivalent to
the three-party Mermin’s Bell inequality, but for single eight-dimensional quantum systems. These experimental
results highlight the connection between quantum contextuality and nonlocality for eight-dimensional quantum
systems.
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I. INTRODUCTION

The Kochen-Specker (KS) theorem [1,2] shows that, for
any quantum system of dimension 3 or higher, the predictions
of quantum theory (QT) cannot be reproduced with any
theory that assumes the measurement results to be predefined
and independent of other compatible measurements, i.e.,
noncontextual hidden variable (NCHV) theories [3]. Bell’s
theorem [4] shows that, for entangled quantum states, the
predictions of QT violate Bell inequalities satisfied by any
theory that assumes the results of local measurements to be
independent of measurements on spatially separated parts.

The proofs of both theorems are different. In the case of the
KS theorem, the original proof consisted in a set of quantum
yes-no tests, represented by rank-1 projectors, for which yes
or no results cannot be assigned satisfying that, for every
set of jointly measurable projectors, one and only one of the
projectors can have assigned the result yes. The proof works for
any quantum state of the system. In the case of Bell’s theorem,
the proof requires composite systems prepared in an entangled
state and consists on the violation of a Bell inequality.

However, Kernaghan and Peres noticed that, for eight-
dimensional quantum systems, there is a KS set of 40 yes-
no quantum tests [5] that is related [6,7] to Greenberger-
Horne-Zeilinger’s (GHZ) proof of Bell’s theorem without
inequalities [8], which can be reformulated as a violation of
Mermin’s Bell inequality [9] (which has been experimentally
tested in, e.g., Refs. [10,11]).

Every Bell inequality can be converted into a noncon-
textuality (NC) inequality (i.e., one satisfied by any NCHV
theory) involving sequential measurements (of compatible
observables) on a single system rather than spacelike separated
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measurements (of compatible observables) on a composite sys-
tem, and preserving both the compatibility relations existing in
the Bell scenario and the maximum quantum violation. To see
this, recall that two observables A and B are compatible if there
exists an observable MA,B whose outcome set is the Cartesian
product of the outcome sets of A and B and such that, for all
states, the outcome probability distributions of A and B are
recovered as marginals of the outcome probability distribution
of MA,B . If some observables are compatible then there exists
a joint probability distribution for them. In scenarios where
A and B are measured on separated systems, as in Bell
inequality scenarios, constructing MA,B is immediate once
one has local devices for measuring A and B. In scenarios
where arbitrary A and B are measured on the same system
the problem is not so simple [12]. However, if A and B are
sharp quantum observables (i.e., quantum observables in von
Neumann’s sense [13]), QT provides a prescription to build
a measurement device for each of them [14]. Then, a device
for MA,B is simply one consisting of the devices for A and B

placed sequentially in any order [15].
The aim of this article is to observe that, for different states,

the violations of a NC inequality derived from Mermin’s Bell
inequality coincide with those predicted by QT for an experi-
ment with spacelike measurements. Then, we experimentally
show that this experiment is connected with Kernaghan and
Peres’s KS set.

For that, we start by experimentally implementing Ker-
naghan and Peres’s KS set of tests using eight-dimensional
quantum systems encoded in the transverse momentum of
single photons and observe the state-independent quantum
violation of a noncontextuality inequality associated to the
40 KS tests. Then, we show that, if the system is prepared
in a quantum state that is a single-system version of a GHZ
state or in a state that is a single-system version of a W state,
the results of a subset of 16 KS tests violate a NC inequality
which is formally equivalent to Mermin’s Bell inequality, but
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TABLE I. Vectors representing the Kernaghan and Peres KS set of yes-no tests. The 40 vectors are shown in groups of eight elements which
correspond to the eigenvectors of the commuting operators in Mermin’s proof of quantum state-independent contextuality [6,7]. x1 denotes
σ (1)

x ⊗ I ⊗ I , where σ (1)
x is the Pauli x matrix for qubit 1 and I is the two-dimensional identity matrix. xzx denotes σ (1)

x ⊗ σ (2)
z ⊗ σ (3)

x .

zxx,xxz,xzx,zzz z1,z2,z3,zzz x1,z2,z3,xxz x1,z2,x3,xzx x1,x2,x3,zxx

1: (0,1,1,0,1,0,0,−1) 9: (1,0,0,0,0,0,0,0) 17: (1,0,1,0,1,0,1,0) 25: (0,0,1,−1,0,0,−1,1) 33: (0,0,0,0,1,−1,−1,1)
2: (1,0,0,1,0,1,−1,0) 10: (0,1,0,0,0,0,0,0) 18: (0,1,0,1,0,1,0,1) 26: (0,0,1,1,0,0,−1,−1) 34: (0,0,0,0,1,1,−1,−1)
3: (1,0,0,1,0,−1,1,0) 11: (0,0,1,0,0,0,0,0) 19: (1,0,−1,0,1,0,−1,0) 27: (1,−1,0,0,−1,1,0,0) 35: (0,0,0,0,1,−1,1,−1)
4: (0,1,1,0,−1,0,0,1) 12: (0,0,0,1,0,0,0,0) 20: (0,1,0,−1,0,1,0,−1) 28: (1,1,0,0,−1,−1,0,0) 36: (0,0,0,0,1,1,1,1)
5: (1,0,0,−1,0,1,1,0) 13: (0,0,0,0,1,0,0,0) 21: (1,0,1,0,−1,0,−1,0) 29: (0,0,1,−1,0,0,1,−1) 37: (1,−1 − 1,1,0,0,0,0)
6: (0,1,−1,0,1,0,0,1) 14: (0,0,0,0,0,1,0,0) 22: (0,1,0,1,0,−1,0,−1) 30: (0,0,1,1,0,0,1,1) 38: (1,1,−1,−1,0,0,0,0)
7: (0,−1,1,0,1,0,0,1) 15: (0,0,0,0,0,0,1,0) 23: (1,0,−1,0,−1,0,1,0) 31: (1,−1,0,0,1,−1,0,0) 39: (1,−1,1,−1,0,0,0,0)
8: (−1,0,0,1,0,1,1,0) 16: (0,0,0,0,0,0,0,1) 24: (0,1,0,−1,0,−1,0,1) 32: (1,1,0,0,1,1,0,0) 40: (1,1,1,1,0,0,0,0)

for single eight-dimensional quantum systems. Moreover, for
both states, the experimental violations of the NC inequality
are in agreement with those predicted by QT for experiments
with spacelike separated measurements.

In the sense explained before, our results provide exper-
imental evidence of the connection between Bell and KS
theorems and support the conclusion that quantum nonlocality
and its limits are actually given by quantum contextuality
and its limits. This may pave the way toward a deeper
understanding of QT.

II. THE KERNAGHAN-PERES KS SET

The KS set introduced by Kernaghan and Peres [5] has 40
eight-dimensional vectors. Two yes-no tests that cannot both

FIG. 1. (Color online) (a) The Kernaghan and Peres KS set of
40 quantum yes-no tests. Each test is represented by a straight line.
The results of two tests cannot both be 1 when the lines are parallel
or when there is a dot in their intersection. The initial state and the
16 KS tests violating the Bell inequality are indicated by a green
line (the upper horizontal line) and 16 red (gray) lines, respectively.
(b) Mermin’s proof of state-independent quantum contextuality.
There are ten observables represented as nodes in a pentagram. ZXX

denotes observable σz ⊗ σx ⊗ σx on a system of three qubits, where
σz represents the Pauli z matrix. Compatible observables are in the
same line. Each of the 40 KS tests in (a) is the projection on a common
eigenstate of 4 of the observables in (b). For example, states 1–8 in (a)
are the common eigenstates of the observables in the horizontal line
in (b) and similarly for the other lines. The impossibility of assigning
noncontextual results −1 or 1 to the observables in (b) in agreement
with the predictions of QT leads to the impossibility of assigning
noncontextual results 1 or 0 to the yes-no tests in (a).

give result 1 (corresponding to “yes”; result 0 corresponds to
“no”) are represented by orthogonal vectors. Table I shows
these 40 vectors. The relations of orthogonality between the
40 vectors are represented in Fig. 1(a).

III. A NC INEQUALITY VIOLATED BY ANY
EIGHT-DIMENSIONAL QUANTUM STATE

To show that the 40 tests prove the KS theorem for any
eight-dimensional quantum state, we consider the following
inequality satisfied by any NCHV theory:

� =
40∑

i=1

P (�i = 1)
NCHV
� 4, (1)

where P (�i = 1) is the probability of obtaining result 1 when
performing test �i = |vi〉〈vi |, and |vi〉 are the KS vectors
explicitly given in Table I. Inequality (1) follows from the
observation that, in any theory assigning a noncontextual result
1 or 0 to each of the 40 tests �i , the maximum number of results
1 that can be assigned satisfying the relations of orthogonality
in Fig. 1(a) is 4.

However, in QT, for any initial quantum state,

�
Q= 5. (2)

Therefore, state-independent quantum contextuality can be
experimentally observed by showing that different initial
eight-dimensional quantum states violate inequality (1).

IV. A NC INEQUALITY FORMALLY EQUIVALENT TO
MERMIN’S INEQUALITY

For three-qubit systems, Mermin’s Bell inequality [9] for
local hidden variable (LHV) theories states that

κ = 〈zxx〉 + 〈xzx〉 + 〈xxz〉 − 〈zzz〉 LHV
� 2, (3)

where 〈zxx〉 is the mean value of the product of measuring
observable z (with possible results −1 or +1) on qubit 1, x on
qubit 2, and x on qubit 3. Inequality (3) can be rewritten as

S = κ

2
+ 2 = P (z1 = 1,x2 = 1,x3 = 1) + . . .

+P (z1 = −1,z2 = −1,z3 = −1)
NCHV
� 3, (4)
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TABLE II. The 16 yes-no tests in the NC Mermin inequality.

z1,z2,z3,zzz x1,z2,z3,xxz x1,z2,x3,xzx x1,x2,x3,zxx

10: (0,1,0,0,0,0,0,0) 17: (1,0,1,0,1,0,1,0) 26: (0,0,1,1,0,0,−1,−1) 34: (0,0,0,0,1,1,−1,−1)
11: (0,0,1,0,0,0,0,0) 20: (0,1,0,−1,0,1,0,−1) 27: (1,−1,0,0,−1,1,0,0) 35: (0,0,0,0,1,−1,1,−1)
13: (0,0,0,0,1,0,0,0) 22: (0,1,0,1,0,−1,0,−1) 29: (0,0,1,−1,0,0,1,−1) 37: (1,−1 − 1,1,0,0,0,0)
16: (0,0,0,0,0,0,0,1) 23: (1,0,−1,0,−1,0,1,0) 32: (1,1,0,0,1,1,0,0) 40: (1,1,1,1,0,0,0,0)

where P (z1 = 1,x2 = 1,x3 = 1) is the probability of obtaining
result 1 when z is measured on qubit 1, x is measured on qubit
2, and x is measured on qubit 3. The 16 probabilities in S

are the probabilities of the 12 events in which the product of
the results of zi , xj , and xk , with i �= j �= k �= i, is 1 and the
probabilities of the four events in which the product of the
results of z1, z2, and z3 is −1.

On the other hand, notice that a three-qubit system is an
eight-dimensional quantum system. Therefore, one can see
that S is the sum of 16 probabilities that also appear in
inequality (1), and thus S constitutes a new NC inequality that
is the single-particle equivalent of Mermin’s Bell inequality.
Table II shows the 16 yes-no tests appearing in this NC
inequality. The reason why the NC Mermin inequality state
projections coincide with the states of the Kernaghan-Peres
KS set follows from three observations: first, that GHZ’s proof
of Bell’s theorem [8] can be converted into a violation of a Bell
inequality [9]; second, that GHZ’s proof can be extended into
a proof of state-independent quantum contextuality [6,7] [this
last proof is shown in Fig. 1(b)]; and third, that this last proof
is connected to a proof of the KS theorem [5] (see Fig. 1).

Now, when we prepare an eight-dimensional system in one
specific vector of the KS set, that is, an initial state for which
the first KS test gives result 1 (the GHZ state), and perform the
projections for the 16 KS tests in the NC Mermin inequality,
we obtain that

S
Q= 4, (5)

maximally violating NC inequality (4). The observation of
such a violation constitutes an experimental observation that
there is a connection between quantum contextuality and
nonlocality for systems of dimension 8. This is due to the
aforementioned relation between inequalities (1), (3), and (4).
Here it is important to clarify that the advantage of performing
the tests of inequalities (1) and (4) with tripartite entangled
states is that a single experiment can refute LHV and NCHV
theories, simultaneously. However, as we show in the next
section, single eight-dimensional systems suffice for observing
the connection between the KS and GHZ theorems.

V. EXPERIMENT

In our experiment, the eight-dimensional quantum states are
encoded in the linear transverse momentum of single photons
transmitted by diffractive apertures addressed in spatial light
modulators (SLMs) [16,17]. The dimension of the quantum
states is defined by the number of paths available for the
photon transmission [18–21]. In our case, we have an aperture
composed of eight parallel slits, and the state of the transmitted

photons is given by [18,19]

|�〉 = 1√
N

7
2∑

l=− 7
2

√
tle

iφl |l〉, (6)

where |l〉 represents the state of a photon transmitted by the lth
slit [18]. tl (φl) is the transmissivity (phase) defined for each
slit, and N is the normalization constant.

The experimental setup is depicted in Fig. 2. A single-mode
continuous-wave (CW) laser operating at 690 nm is combined
with an acousto-optic modulator (AOM) to produce attenuated
optical pulses with a mean photon number of μ = 0.14. The
first two SLMs, SLM1 and SLM2, are used to prepare the initial
state, |�ini〉. SLM1 (SLM2) displays an amplitude (phase)
mask of eight slits with the gray level of the used pixels
properly set for the generation of the desired initial state. The
slits are 2 pixels wide, with a separation of 1 pixel between
them, where each pixel is a square with a side length of 32 μm.
The projections onto the vectors of the KS set are carried out
using a second pair of SLMs, SLM3 and SLM4, and a pointlike
avalanche photodetector (APD). The masks of these last
modulators have the same dimension as the ones used by SLM1
and SLM2. The only difference between them is that of the gray
levels used, now set according to the amplitudes and phases
of the 40 KS vectors. After the SLM4, the attenuated laser
beam is focused at the detection plane. The pointlike detector
is constructed using a pinhole in front of a conventional bulk
APD, which is then positioned at the center of the interference

FIG. 2. (Color online) Experimental setup. A CW laser, an AOM,
and calibrated attenuators (not shown for clarity) are used to produce
faint optical pulses. The weak coherent states are transversally
expanded by a telescope and sent through four transmissive SLMs
placed in series, and with each LCD at the image plane of the previous
one. SLM1 and SLM2 are used to prepare initial eight-dimensional
quantum states encoded in the linear transverse momentum of single
photons. The generated states are then used to test inequalities (1)
and (4) after performing, on each of them, the 40 KS vector
projections. The KS projections are carried out using SLM3, SLM4,
and a pointlike APD (see the main text for details).
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pattern. In this configuration, the probability of single-photon
detection at the APD is proportional to |〈vi |�ini〉|2 [20–23].

During the implementation of the KS tests, the modulations
performed by SLM1 and SLM2 remain fixed producing the
quantum state to be used in the test. The AOM, SLM3,
SLM4, and APD are connected to a field programmable gate
array (FPGA) electronics unit, which synchronizes the optical
pulse generation, the masks displayed in both SLMs, and the
detection time of the APD. This synchronization allows us to
project, for each optical pulse, the prepared state into a different
KS vector. The projection is randomly chosen by using a true
random number generator (RNG) connected to the FPGA. For
each initial state considered, the setup automatically runs for
17 h (with more than 2 × 106 detected pulses) in order to
minimize statistical fluctuations and unambiguously certify its
quantum behavior (see Appendix A).

State-independent quantum contextuality is observed
through the violation of inequality (1) for five differ-
ent types of initial quantum states. Namely, a GHZ
state [〈GHZ| ≡ 1

2 (0,1,1,0,1,0,0,−1)] [8], a W state [〈W | ≡
1√
3
(0,1,1,0,1,0,0,0)] [24], a state that is equivalent to a

product of a two-qubit maximally entangled state and a
pure state of one qubit [〈β| ≡ 1

2 (0,0,1,1,−1,−1,0,0)], a state
equivalent to a product of a two-qubit partially entangled state
and a pure state of one qubit [〈η| ≡ 1√

6
(1,1,1,1,1,1,0,0)], and

a product state [〈�prod| ≡ (1,0,0,0,0,0,0,0)]. In Fig. 3 we
compare the theoretical and the experimental results for all
the 40 projection probabilities appearing in � when the initial
state of the system is the GHZ state. The similarity, F , of
the recorded and theoretical probability distributions reaches
FGHZ = 0.93 ± 0.03 [25] (see Appendix B for details of the
other four initial states).

FIG. 3. (Color online) Probabilities of result 1 for the 40 KS tests
in � when the initial state is the GHZ state. The 40 KS tests are
grouped in five bases, as in Fig. 1(a). The theoretical predictions for
an ideal experiment are shown in the upper right corner. F is the
similarity of the recorded and theoretical probability distributions.

Due to intrinsic experimental imperfections in real experi-
ments, the mean values of the recorded probabilities that were
supposed to be null, in an ideal experiment, do not vanish.
Thus, it is necessary to modify the noncontextual limit of
inequality (1) to proper demonstrate quantum contextuality. In
this work we follow the approach of [26]. The idea is simple:
first one takes from the experimental data the mean value
of the recorded probabilities that were supposed to be null
(i.e., ε). To measure it, one needs to perform the so-called
exclusivity tests, where one of the KS vectors is used as
the initial state and the remaining orthogonal measurements
are performed. To properly estimate the value of ε, we have
performed a total of 184 exclusivity tests and obtained that
ε = 0.0140 ± 0.0012 (see Appendix C for some examples of
the exclusivity tests performed). Then, since the inequality [26]
involves a sum of all the KS vector projection probabilities,
one has a noncontextual upper bound given by �clas

upper =
4(1 − ε) + 40ε, where the noncontextual limit of 4 is achieved
with probability 1 − ε, and all the 40 KS tests give false
positive results with probability ε. In our case, �clas

upper = 4.52.
The results obtained for the five initial states considered
are shown in Fig. 4(a). All of them clearly violate the
noncontextual limit, demonstrating the impossibility of non-
contextual hidden variables models explaining our results. The
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FIG. 4. (Color online) (a) Experimental results for �. The dotted
line “Noncontextual limit (ideal)” indicates the maximum possible
value of � for noncontextual hidden variable theories in an ideal
experiment in which the exclusivity relations between the KS tests
are perfect. The dotted line “Noncontextual limit” indicates the
value when experimental imperfections are taken into account, and
similarly for the quantum limits. (b) Experimental results for S.
The measured violations for the GHZ and W states are within the
theoretical predictions for an ideal experiment, namely, SGHZ = 4.0
and SW = 3.5, respectively.
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quantum limit when errors are taken into account is similarly
obtained [26].

For the GHZ [8] and the W [24] states we also record
the corresponding violation of the noncontextual limit of the
NC Mermin inequality. The obtained violations are shown
in Fig. 4(b). For the GHZ state the measured value was
S = 3.98 ± 0.19. For the |W 〉 state, the violation was S =
3.46 ± 0.1. In the case of the GHZ state, the observed violation
demonstrates that, if the answer to one of the KS tests is
positive, no noncontextual hidden variable model can explain

the obtained results of the 16 KS tests in the NC Mermin
inequality. Notice that our experiment is a test of a NC
inequality formally equivalent to a Bell inequality in the
sense of previous tests on single systems [27]. It is for this
reason that the noncontextual limit of inequality (4) must be
modified to take errors into account, using the same argument
used to correct the noncontextual limit of inequality (1).
In our case, the experimental value, ε = 0.0140, modifies
the noncontextual limit to 3.18. Figure 4(b) shows that the
experimental results violate this limit.
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VI. CONCLUSIONS

Recent experiments have shown that KS sets of quan-
tum tests can be used to experimentally reveal quantum
state-independent contextuality for quantum systems of a
given dimension. Previous experiments have shown this for
quantum systems of dimension 3 [28] and 4 [26]. Here
we have implemented a KS set in dimension 8 and shown
how to use it to reveal eight-dimensional quantum state-
independent contextuality through the violation of a NC
inequality.

The KS set we have implemented is particularly important
because it connects KS and GHZ proofs of no hidden variables.
Specifically, GHZ’s proof can be seen as a state-dependent
version of the proof of the KS theorem. Here we have
experimentally shown this connection by preparing eight-
dimensional single systems in a state that is formally equivalent
to a GHZ state and observing a violation of a NC inequality
that is a single-system version of Mermin’s inequality. Our
results also show how highly sophisticated theoretical tools
can be translated into actual experiments to test fundamental
aspects of QT.
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APPENDIX A: MEASUREMENT PROCESS AND RESULTS

The measurements performed for the five different initial
states, namely, |GHZ〉, |W 〉, |�prod〉, |η〉, and |β〉, are shown in
Figs. 5 and 6. As explained in the main text, the experimental
setup projects the initial state randomly onto one of the 40 KS
vector states of Table I. For each optical pulse, a random
projection is implemented using a field programmable gate
array (FPGA) electronics unit. The FPGA synchronizes the
optical pulse generation, the masks displayed in SLM3 and
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FIG. 7. (Color online) (a–d) The probabilities of result 1 for the 40 KS tests performed for the |W 〉, |�prod〉, |η〉, and |β〉 states, respectively.
The fidelities, F, between the recorded and the expected probability distributions are 0.97 ± 0.01, 0.92 ± 0.02, 0.98 ± 0.01, and 0.95 ± 0.02,
respectively.
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FIG. 8. (Color online) (a–d) The projection probabilities for the KS vectors orthogonal to the |�v27 〉, |�v34 〉, |�v36 〉, and |�v40 〉 states,
respectively. The mean values of the probabilities shown are 0.016 ± 0.002,0.011 ± 0.001,0.011 ± 0.001, and 0.017 ± 0.001, respectively.

SLM4, and the detection time of the APD. The detected counts
are sent from the FPGA to a computer for real time estimation
of the probabilities of each projection and the corresponding
errors. The error bars were calculated taking into account the
Poissonian distribution for the single counts recorded. The
experimental setup automatically runs for 17 h (with more
than 2 × 106 detected pulses), for each initial state, in order
to minimize statistical fluctuations and unambiguously certify
the quantum behavior of the considered states. The results
shown in Fig. 4 correspond to the last experimental points of
Figs. 5 and 6.

APPENDIX B: PROBABILITIES FOR THE KS TESTS

In Fig. 7 we compare the theory and the experimental results
for the probabilities of obtaining result 1 for the 40 KS tests,
while considering the following initial states: |W 〉, |�prod〉,
|η〉, and |β〉. The probabilities are obtained by normalizing
the corresponding counts with respect to the total number of
photons being detected per base, while working with a fixed

detection time. Note, however, that the total number of photons
being registered in an overcomplete basis must be estimated
independently of the KS tests (in our case, by using addi-
tional measurement configurations), such that the violation
of the noncontextual inequality for � is not intrinsically
imposed.

APPENDIX C: TESTS OF EXCLUSIVITY

Some pairs of yes-no tests in the KS set have to satisfy that
their results cannot be simultaneously 1. In Fig. 8 we show
the results of some of the tests performed to check whether
the KS yes-no tests actually satisfy the expected relations of
exclusivity. The mean value of the recorded probabilities that
were supposed to be null is ε = 0.0140 ± 0.0012. This is the
parameter used to correct the noncontextual upper bounds,
as explained in the main text. For testing exclusivity, one of
the KS vectors is used as the initial state and the projection
probabilities on each of the 23 KS vectors that are expected to
be orthogonal are recorded.
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Sánchez-López, J. Appl. Phys. 94, 3697 (2003).
[18] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken,
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