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Wigner time delay for tunneling ionization via the electron propagator
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Recent attoclock experiments using the attosecond angular streaking technique enabled the measurement of
the tunneling time delay during laser-induced strong-field ionization. One of the theoretical models for the
tunneling time delay is the Wigner time delay, which is the asymptotic time difference between the quasiclassical
and the Wigner trajectories. The latter is derived from the derivative of the phase of the electron steady-state
wave function with respect to energy. Here, we present an alternative method for the calculation of the Wigner
trajectory by using the fixed-energy propagator. The developed formalism is applied to the nonrelativistic regime
as well as to the relativistic regime of the tunnel-ionization process from a zero-range potential. Finally, it is
shown that the Wigner time delay is measurable in the near-threshold-tunneling regime within the current state of
the momentum spectroscopy via detecting the induced electron momentum shift in a mixture of two gas species.
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I. INTRODUCTION

The tunneling of an electron through a potential barrier
is a typical quantum-mechanical phenomenon. It has been
the focus of both theoretical and experimental attention since
the formulation of quantum mechanics [1]. In particular the
issue of whether the motion of a particle under a barrier
is instantaneous or not is a long-standing and controversial
problem in physics since MacColl’s first attempt to consider
it in 1932 [2] (for a review, see [3–6]). Recent interest in this
problem has been renewed due to a unique opportunity offered
by attosecond angular streaking techniques for measuring the
tunneling time delay during laser-induced tunnel ionization
[7–11]. This novel experimental technique offers the measure-
ment of tunneling time with unprecedented resolution of tens
of attoseconds [12].

For the generic problem of the tunneling time delay, due to
the lack of a well-defined time operator in quantum mechanics,
different definitions have been proposed, and the discussion of
their relevance still continues [13–29]. These definitions can
be grouped in two main categories: the operational approach,
where various time operators are introduced and/or used
[15,18,19,26,27,29], and the functional approach, where the
tunneling time delay can be inferred from the information
carried by the wave function [13,14,16,20–23,28]. In the
former approach, generally, a quantum clock is attached to
the particle, and the delay is inferred with some suitable
measurement operators [17–19]. For instance, the precessing
spin in a magnetic field can serve as a clock when a magnetic
field is applied within the barrier region [17]. A well-known
example for the latter approach is the Wigner time delay
concept, where the phase shift of the wave function due to
tunneling is linked to the tunneling time delay [13,14,16].
This concept was first introduced in the context of quantum
scattering using the group velocity of the electron wave packet
or, in physical terms, following the peak of the wave-packet
motion. The close relationship of the Wigner time delay to
the concept of the dwell time of a particle in a given spatial
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region has been proven [16]; that is, the Wigner time delay is
the difference between the interacting and the free dwell time
[23]. Generally, the results obtained for the tunneling time
delay depend significantly on the definition used and reflect
different physical aspects of the process, which could lead to
controversies in physical interpretations [21,22,28] and even
to questioning causality [30].

Rather than discussing the mentioned controversies, in this
paper we propose a theoretical method for the calculation
of the Wigner time delay and discuss its correspondence to
the measurement of the attoclock experiment [10]. In the
attoclock experiment the photoelectron momentum distribu-
tion is registered in the laser field of elliptical polarization
(close to circular). Taking into account that there is a direct
mapping of the time moment of the electron appearance in
the continuum to the photoelectron emission angle at the
detector, from the attoclock measurement one can deduce
the time delay between the peak of the laser field (when the
formation of the tunneling wave packet should be maximal)
and the peak of the electron wave packet appearance in the
continuum [31]. As the attoclock measurement follows the
peak of the photoelectron distribution, it is quite natural to
describe the mentioned time delay by the concept of the Wigner
time delay, which is based on the time difference between the
quasiclassical and the Wigner trajectories at a remote distance.
A mathematical definition of the Wigner trajectory can be
given via the derivative of the phase of the steady-state wave
function of the tunneling particle with respect to energy.

Recently, an intuitive picture of the relativistic regime of the
laser-induced tunnel ionization was developed in Refs. [32,33].
It was shown that the tunneling picture applies also in the
relativistic regime with a modification that the energy levels
become position dependent. This modification accounts for the
electron kinetic-energy change during the tunneling connected
with the electron motion along the laser field due to the effect
of the magnetic-field-induced Lorentz force. Furthermore, as
a relativistic feature of tunnel ionization, it was shown that the
spin asymmetry in the tunnel ionization from the ground state
is negligibly small [34].

The Wigner time delay for the tunnel-ionization process
was investigated in Ref. [33], where the Wigner trajectory is
calculated by explicitly extracting the phase of the continuum
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wave function, which is a rather cumbersome procedure,
especially in the relativistic regime. In this paper, we present an
alternative method for the calculation of the Wigner trajectory
in terms of the phase of the fixed energy propagator. This
method provides an easier way to calculate the Wigner time
delay and the Wigner trajectory in particular cases. We apply
the developed formalism in the nonrelativistic regime of tunnel
ionization from a zero-range atomic potential under the effect
of a constant and uniform electric field and in the relativistic
regime under the effect of a constant and uniform crossed field.
The latter field configuration corresponds to the relativistic
quasistatic regime of strong-field ionization when the Keldysh
parameter γ = ω

√
2Ip/E0 is small (γ � 1) [35], where Ip

is the atomic ionization potential and ω and E0 are the laser
frequency and the field amplitude, respectively.

In this paper we also discuss the observability issue of the
Wigner delay time. A method for the detection of the Wigner
delay time is proposed by employing the electron momentum
shift induced by the time delay in a mixture of two gas species.

Atomic units (a.u.) and the metric convention g = (+,

−,−,−) are used throughout the paper.

II. THE WIGNER TIME DELAY FOR TUNNEL
IONIZATION

For the generic problem of tunneling time delay for tunnel
ionization, we will apply the Wigner time delay [13,14,16],
which is defined as follows:

τw = lim
x→∞[tw(x) − t c(x)] , (1)

where tw(x) and t c(x) stand for the Wigner trajectory and
the quasiclassical trajectory, respectively. The quasiclassical
trajectory t c(x) is first instantaneous under the barrier, and
emerges with a zero initial momentum, and then obeys the
Newton’s law outside the tunneling barrier. The Wigner
trajectory defined in Refs. [13,14,16] can be generalized to
a tunnel-ionization problem as

tw(x) = ∂�(x,ε)

∂ε

∣∣∣∣
ε=ε0

, (2)

where �(x,ε) is the phase of the steady-state wave function
of the tunneled electron ψ(x), with ε0 = −Ip for the non-
relativistic regime of tunnel ionization, whereas ε0 = c2 − Ip

for the relativistic regime, with the ionization energy of the
ground state of the hydrogenlike ion Ip = c2 − √

c4 − c2κ2,
where κ = Z is the atomic momentum with the charge Z of a
hydrogenlike ion and c is the speed of light.

Since the typical tunnel-ionization time is much shorter
than the laser period, which is implied by the Keldysh
condition, γ � 1, the quasistatic approximation can be applied
by approximating the full space-time-dependent laser as a
constant and uniform crossed field during the ionization
process. Therefore, the ionization problem is reduced to a
time-independent one, and the wave function is given by the
solution of the time-independent Schrödinger equation,

Hψ(x) = εψ(x) , (3)

with H being the Hamiltonian and ε being the energy
eigenvalue.

The tunnel-ionization process has a distinguished feature
that may lead to an important simplification in the original
definition of the Wigner trajectory equation (2). Since some
portion of the bound state is already under the barrier even
before the tunneling starts, the quasiclassical trajectory and
the Wigner trajectory have to coincide initially at the matching
point of the bound state and the continuum state xm, which can
be identified with the following initial condition:

tw(xm) = ∂�(xm,ε)

∂ε

∣∣∣∣
ε=ε0

= 0 . (4)

Furthermore, the exact wave function of the tunnel-ionization
process can be written as

ψ(x � xm) = A(x) exp[i�(x)] = T ψc(x) , (5)

where A(x) is the amplitude of the exact wave function, the
transmission coefficient T = |T | exp[i�T ], and the continuum
wave function ψc(x) = Ac(x) exp[i�c(x)]. The continuity of
the wave function implies that

�(xm) = �c(xm) + �T . (6)

As a consequence, the original definition of Eq. (2) can be
written in terms of the phase of the continuum wave function
as

tw(x) = ∂�c(x,ε)

∂ε

∣∣∣∣
ε=ε0

− ∂�c(xm,ε)

∂ε

∣∣∣∣
ε=ε0

, (7)

where we have used the initial condition of Eq. (4). Since the
expression of Eq. (7) is written solely in terms of the phase of
the continuum wave function, the exact Wigner trajectory for
tunnel ionization can be calculated using the continuum wave
function, rather than the exact wave function.

The investigation of the Wigner time delay in Ref. [33] is
based on Eq. (7). Although expression (7) provides a great
simplification in comparison to the original definition (2), it
is still a rather cumbersome procedure to extract the phase
of the continuum wave function, especially in the relativistic
regime. Therefore, we will present an alternative method for
the calculation of the Wigner trajectory in terms of the phase of
the fixed-energy propagator, as we discuss in the next section.

III. THE PHASE OF THE FIXED-ENERGY PROPAGATOR

Our approach for the Wigner trajectory follows from the
relation between the space-time propagator

K(x,x ′; t.t ′) = 〈x|U (t,t ′)|x ′〉 (8)

and the fixed-energy propagator (the retarded Green’s function
of the time-independent Schrödinger equation)

G(x,x ′; ε) = 〈x| 1

ε − H + iεF

|x ′〉 , (9)

with the time evolution operator U (t,t ′) and the standard
Feynman iε prescription, εF > 0 [36]. First, the space-time
propagator can be written as

K(x,x ′; t) = i

2π

∫ ∞

−∞
dε exp(−iεt)G(x,x ′; ε) , (10)

where we set the initial time to zero, t ′ = 0. Then, the fixed-
energy propagator is split into its phase φ and its amplitude a

012116-2



WIGNER TIME DELAY FOR TUNNELING IONIZATION . . . PHYSICAL REVIEW A 90, 012116 (2014)

such that the space-time propagator reads

K(x,x ′; t) = i

2π

∫ ∞

−∞
dε a(x,x ′,ε) exp[−iεt + iφ(x,x ′,ε)] .

(11)

The propagator (11) connects the space points x and x ′ in a
time interval t , and its value will be maximal when the phase
of the fixed-energy propagator φ(x,x ′,ε) fulfills the stationary
phase condition

t − ∂φ(x,x ′,ε)

∂ε
= 0 . (12)

Then a trajectory which fulfills condition (12) with a certain
energy of the incoming wave ε0 maximizes the propagator. In
other words, the trajectory given by the relation

tw(x,x ′) = ∂φ(x,x ′,ε)

∂ε

∣∣∣∣
ε=ε0

(13)

traces the maximum of the propagator. In fact, the trajectory
(13) is nothing but the definition of the so-called Wigner
trajectory previously given in Eq. (2). In contrast to the original
definition (2), definition (13) has an additional argument
x ′, which indicates the initial propagation point. Therefore,
since the trajectory starts at the matching point xm, the
Wigner trajectory for a tunnel-ionization process may be
written as

tw(x) = ∂φ(x,xm,ε)

∂ε

∣∣∣∣
ε=ε0

, (14)

with the initial condition tw(xm) = 0. Here, it should be
underlined that the phase for the tunnel-ionization process
is the phase of the exact propagator for the binding potential
combined with the electromagnetic field, which is, in general,
difficult to derive. However, since we are interested in the
propagation from the matching point xm to infinity, we need
solely the propagator for the electromagnetic field. Then, with
the same analogy of the derivation of Eq. (7), the Wigner
trajectory in terms of the phase of the continuum propagator
φc(x,x ′,ε) can be written as

tw(x) = ∂φc(x,xm,ε)

∂ε

∣∣∣∣
ε=ε0

− ∂φc(xm,xm,ε)

∂ε

∣∣∣∣
ε=ε0

, (15)

so that the Wigner trajectory can be calculated by employing
the propagator in the electromagnetic field only.

Before going further, we want to comment on the existence
of the fixed-energy propagator for tunnel ionization. In
the quasistatic limit γ � 1, there exists a gauge-invariant
energy operator for time-independent fields, which allows
us to identify the tunneling barrier and hence the classically
forbidden and allowed regions without any ambiguity [33].
Furthermore there exists a certain gauge where the corre-
sponding Hamiltonian coincides with the energy operator.
This gauge is the length gauge (Göppert-Mayer gauge) for
the nonrelativistic (relativistic) regime of tunnel ionization
[33]. As a consequence, it is always possible to define a
fixed-energy propagator for a tunnel-ionization process, and
hence, we will calculate the fixed-energy propagator within
the aforementioned gauge.

The phase of the fixed-energy propagator can be inferred
by the inverse Fourier transform of the space-time propagator
as

G(x,x ′; ε) = −i

∫ ∞

0
dt exp(iεt − εF t)K(x,x ′; t) . (16)

Thus, the alternative method for the calculation of the
Wigner trajectory via Eq. (14) or Eq. (15) employs the
phase of the fixed-energy propagator, rather than the phase
of the wave function as in the original Wigner method [see
Eq. (2) or Eq. (7)]. The advantage of our method is that the
calculation and investigation of the phase of the fixed-energy
propagator is relatively easier in certain cases. Moreover, if the
fixed-energy propagator (16) is calculated by the saddle-point
approximation, then the Wigner trajectory (15) coincides with
the quasiclassical trajectory t c(x), which indicates that the
Wigner trajectory, well defined in terms of the phase of
the fixed-energy propagator, goes beyond the quasiclassical
description. This further allows us to calculate an analytical
formula for the Wigner time delay, which is done in Sec. IV.

In the following sections, we apply the developed formalism
in the nonrelativistic regime as well as in the relativistic
regime of tunnel ionization from a zero-range potential.
Moreover, the Wigner time delay is investigated in two distinct
regimes: the deep-tunneling and the near-threshold-tunneling
regimes. The former regime corresponds to a tunnel-ionization
process with a small tunneling probability and mathematically
is identified by the condition (E0/Ea)2/3 � 1 in the case of
a zero-range atomic potential with the atomic field Ea =
(2Ip)2/3 (see the paragraph after Eq. (127) in Ref. [33]).
In the opposite case, when the parameter (E0/Ea)2/3 is not
much less than or is comparable to 1, the ionization is in the
near-threshold-tunneling regime. However, to avoid over-the-
barrier ionization and to secure the regime as tunneling, it
is required that the energy bandwidth of the tunneling state
ε ∼ 1/τK , with the Keldysh time τK = γ /ω, is less than
the ionization energy ε < Ip. This condition imposes an
additional restriction on the laser field, which for a zero-range
potential reads

E0

Ea

< 1 . (17)

In the following, we use E0/Ea = 1/7 for the deep-tunneling
regime and E0/Ea = 1/2 for the near-threshold-tunneling
regime, which fulfills the above-mentioned conditions.

A. Nonrelativistic case: In a constant and uniform electric field

Let us apply the developed formalism first in the nonrela-
tivistic regime of tunnel ionization from a zero-range potential
by neglecting the magnetic field of the laser and considering
solely the electric-field component

E = E0 x̂ . (18)

As we argued in the previous section, the Wigner trajectory can
be calculated using the propagator solely for a electric field.
Since in the quasistatic limit the Lagrangian is a quadratic
function of the coordinate and velocity, the classical path
dominates the Feynman path integral [37–39], and the exact
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FIG. 1. (Color online) Comparison of the Wigner (red solid line)
and the classical trajectories (blue dashed line) for nonrelativistic
tunnel ionization from a zero-range potential under the effect of a
constant and uniform electric field; (a) the deep-tunneling regime
with E0/Ea = 1/7 and (b) the near-threshold-tunneling regime with
E0/Ea = 1/2. The vertical black line indicates the exit coordinate,
and the applied parameter is κ = 1.

space-time propagator can be given by

K(x,x ′; t) =
√

−∂2Sc

(2πi) ∂x∂x ′ exp[i Sc(x,x ′,t)] , (19)

with Sc being the classical action, which is the action
evaluated along the classical trajectory. Then, the fixed-energy
propagator solely for the electric field in the length gauge
Aμ = (−xE0,0) can be written as

G(x,0; ε)

= −i√
2πi

∫ ∞

0
dt

exp
(

ix2

2t
+ iE0tx

2 − iE2
0 t3

24 + iεt − εF t
)

√
t

.

(20)

Here, the matching point for the tunnel ionization from a zero-
range potential can be set equal to zero, i.e., xm = 0 [40].
Then using definition (15), we obtain the Wigner trajectory
(see Fig. 1). The classical trajectory, on the other hand, is

x(t) = xe + 1
2E0t

2 , (21)

where the initial velocity at the tunnel exit is zero and the
tunnel exit point is given by xe = Ip/E0.

Now, we can compare the classical trajectory (21) with
the Wigner trajectory (15) for nonrelativistic tunnel ionization
from a zero-range potential. We did a comparison for the deep-
tunneling regime and the near-threshold-tunneling regime with
the applied parameter κ = 1. Figure 1 demonstrates that for

the deep-tunneling regime the Wigner time delay vanishes,
while for the near-threshold-tunneling regime it persists and is
detectable at remote distances. The results are consistent with
Ref. [33].

B. Relativistic case: In a constant and uniform crossed field

In this section, we consider the relativistic tunnel ionization
from a zero-range potential. As shown in Ref. [34], the spin
asymmetry is negligibly small in the tunnel-ionization case.
Therefore, we neglect the spin interaction when investigating
the Wigner time delay in the relativistic regime.

In the quasistatic limit of the relativistic tunnel ionization,
the laser field can be approximated by a constant and uniform
crossed field:

E = E0 x̂ , B = E0 ŷ , k̂ = ẑ , (22)

with k̂ being the propagation direction. The (3 + 1)-
dimensional relativistic space-time propagator can be calcu-
lated within the proper time method [41–44]. As in the case
of the nonrelativistic regime we calculate the corresponding
space-time propagator solely for the crossed field (22). Then
the propagator in the Göppert-Mayer gauge Aμ = −xE0 kμ

can be written as follows [45]:

K(xα,0) = − i

2
exp

(
iE0

2c
εμxμ kνx

ν

)∫ ∞

0
dτ

1

(2πτ )2

× exp

(
−i

xμxμ

2τ
− iτ

24c2
xμFμ

ν F ν
ρ xρ

− ic2τ

2
− εF τ

)
, (23)

with the wave vector kμ = (1,0,0,1), the polarization vector
εμ = (0,1,0,0), and Fμν being the field strength tensor, where
the summation convention was used, and further, we set the
initial space-time point x ′μ = 0, similar to the nonrelativistic
case.

The propagator with a fixed energy and a fixed transversal
momentum along the laser polarization direction can be
calculated via the Fourier transform

G(x,0; ε,pz,py)

=
∫

dt dz dy K(xα,0) exp(iεt − ipzz − pyy) , (24)

which can be given by

G(x; ε,pz,py) = − (−1)3/4

2c

∫ ∞

0
dτ

1√
2π τ

exp

{
ix2

2τ

− iτ
(
c2 + p2

y + p2
z

)
2

+ iτ [cE0pzx + ε(ε − E0x)]

2c2

− iτ 3E2
0(ε − cpz)2

24c4
− εF τ

}
. (25)

In order to be able to plot the Wigner trajectory, we have
to define py as well as pz in Eq. (25). First, one can set
py = 0 without loss of generality for the maximal tunneling
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FIG. 2. Tunneling probability vs the kinetic momentum along
the propagation direction of the crossed field at the tunnel entry
(dashed line) and at the tunnel exit (solid line). In the case of tunnel
ionization from a zero-range potential, the values are independent
from the barrier suppression parameter E0/Ea , and the transversal
momentum transfer is Ip/c. The applied parameters are E0/Ea = 1/7
and κ = 90.

probability. However, in contrast to the nonrelativistic tunnel-
ionization process, the existence of a magnetic field leads to
a nonzero value for pz for the maximal tunneling probability,
which is a consequence of the fact that there is a momentum
transfer along the propagation direction of the laser in the
relativistic regime [32,33]. To determine the value of pz for
the maximal tunneling probability, we calculate the tunneling
probability for a given energy ε0 = c2 − Ip as

|T |2 = |G(xe; ε0,pz)|2
|G(0; ε0,pz)|2

, (26)

where the quasiclassical tunnel exit point xe can be calculated
via the condition

(c2 − Ip − xeE0)2 = c2

(
pz − xe

E0

c

)2

+ c4 , (27)

which yields

xe = I 2
p − c2

(
2Ip + p2

z

)
2E0(c2 − Ip − cpz)

. (28)

The transition probability (26) is maximal at a transversal
momentum pz = −2Ip/(3c). This indicates that during the
tunneling there is a momentum transfer along the propagation
direction of the crossed field (see Fig. 2). The kinetic
momentum qz(x) = pz − xE0/c with the maximal tunneling
probability at the tunneling entry is qz(0) = pz ∼ −2Ip/(3c),
whereas at the exit it is qz(xe) ∼ Ip/(3c). As a consequence,
the momentum transfer along the laser propagation direction
is Ip/c. Furthermore, in contrast to tunnel ionization from a
Coulomb potential case, the momenta at the entry and the exit,
and hence the momentum transfer, are independent from the
barrier suppression parameter E0/Ea for a zero-range potential
[32,33].

For the comparison of the Wigner trajectory with the
classical one, we need to evaluate the classical equations of
motion. Let us calculate the classical trajectory for a relativistic
particle via the proper time parametrization τ . The classical
equations of motion are governed by

ẍ(τ )μ = −1

c
Fμ

ν (x)ẋ(τ )ν . (29)
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FIG. 3. (Color online) Comparison of the Wigner (red solid line)
and the classical trajectories (blue dashed line) for relativistic
tunnel ionization from a zero-range potential under the effect of a
constant and uniform crossed field; (a) the deep-tunneling regime
with E0/Ea = 1/7 and (b) the near-threshold-tunneling regime with
E0/Ea = 1/2. The vertical black line indicates the exit coordinate,
and the applied parameter is κ = 90.

For a constant and uniform crossed field (22), the solutions are
given by

1

c
x0(τ ) = τ

6c3

√
c2 + vz

2
0

(
6c2 + E2

0τ
2
) − E2

0τ
3vz0

6c3
, (30)

x1(τ ) = E0τ
2

2c

(
vz0 −

√
c2 + vz

2
0

) + xe , (31)

x3(τ ) = E2
0τ

3

6c2

(√
c2 + vz

2
0 − vz0

) + τvz0 , (32)

with the initial conditions xμ(0) = (0,xe,0) and ẋμ(0) =
(
√

c2 + vz
2
0,0,vz0), where we used the Lorentz invariant

relation for the four-velocity ẋμẋμ = c2. Moreover, the initial
velocity along the propagation direction of the crossed field
can be written as vz0 = c qz(xe)/

√
c2 + qz(xe)2, with qz(xe) =

pz − xeE0/c, and the tunnel exit is given by

xe = − Ip

E0

(
18c2 − 5Ip

18c2 − 6Ip

)
, (33)

where we have used pz = −2Ip/(3c) in Eq. (28).
Similar to the previous case, we compared the Wigner

trajectory with the classical trajectory in the two distinct
regimes with the applied parameter κ = 90 (see Fig. 3). While
in the deep-tunneling regime the Wigner time delay vanishes,
for the near-threshold-tunneling regime the delay is detectable.
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FIG. 4. (Color online) The scaled Wigner time delay τwIp vs the
barrier suppression parameter E0/Ea for a certain ionization energy
Ip . The black solid curve indicates the numerical calculation for
Eq. (37), whereas the red dashed curve is for the asymptotic simple
expression (38).

IV. HOW TO MEASURE THE WIGNER TIME DELAY

In this section, we discuss a possible experimental setup
for the measurement of the Wigner time delay. Figures 1(b)
and 3(b) indicate that the Wigner time delay is inversely
proportional to ionization energy Ip. Consequently, an optimal
experimentally feasible delay can be obtained within the
nonrelativistic configuration.

The Wigner time delay τw previously defined in Eq. (1) can
be simplified analytically in the following way. First, it can be
written in terms of the phase of the fixed-energy propagator as

τw = lim
x→∞

(
∂φc(x,xm,ε0)

∂ε
− ∂φc(xm,xm,ε0)

∂ε

−∂φSP
c (x,xm,ε0)

∂ε
+ ∂φSP

c (xm,xm,ε0)

∂ε

)
. (34)

Here, we have used the definition of the Wigner trajectory
(15) and identify the quasiclassical trajectory as the saddle-
point-approximated Wigner trajectory t c(x) = twSP (x), where
the symbol SP indicates that the fixed-energy propagator (16)
is calculated with the saddle-point approximation.

Then, using the expressions

lim
x→∞

∂φc(x,xm,ε0)

∂ε
= lim

x→∞
∂φSP

c (x,xm,ε0)

∂ε
, (35)

∂φSP
c (xm,xm,ε0)

∂ε
= 0 , (36)

the Wigner time delay reads

τw = −∂φc(xm,xm,ε0)

∂ε
. (37)

Now if we plot the Wigner time delay (37) in terms of
different barrier suppression parameters E0/Ea for a certain
ionization energy Ip for a zero-range potential, we observe the
following. First, the delay is negligible for very small E0/Ea

values, which corresponds to the deep-tunneling regime. Then,
it increases as the E0/Ea value increases in a certain region
which can be identified as the near-threshold-tunneling regime
(see the black solid curve in Fig. 4). Finally, after a peak
around a value E0/Ea < 1, it gradually decreases, which
can be interpreted as the contribution of the over-the-barrier

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

FIG. 5. (Color online) Comparison of the Wigner (red solid line),
the classical (blue dashed line), and the classical with a nonzero
initial momentum p0 (black dotted line) trajectories for nonrelativistic
tunnel ionization from a zero-range potential in the near-threshold-
tunneling regime. It is shown that the Wigner trajectory coincides
with the classical trajectory with a nonzero initial momentum along
the tunneling direction. The vertical black line indicates the exit
coordinate, and the applied parameters are E0/Ea = 1/2 and κ = 1.

ionization to the ionization process. This also agrees with
condition (17).

Furthermore, since the Wigner time delay converges for
large values of E0/Ea as shown in Fig. 4, we can do an
asymptotic expansion for Eq. (37) around a large E0/Ea value,
and hence, we obtain the following simple Wigner time-delay
formula for a zero-range potential in the nonrelativistic regime:

τw ≈ − 35/6√π

E
4/3
0 �[1/6]2

(
E

2/3
0 �[1/6] − 2Ip31/3√π

)
, (38)

where �[x] is the gamma function. The validity of Eq. (38)
in the near-threshold-tunneling regime can also be seen in the
comparison in Fig. 4.

For the parameters E0/Ea = 1/2 and κ = 1 the Wigner
time delay amounts approximately to τw ≈ 10 as. Although
it is very challenging for direct measurement, this delay is
measurable in the photoelectron momentum spectrum in the
following way. First, we note that, for a Wigner trajectory,
there exist not only a time spent under the barrier but also a
nonzero initial momentum at the tunnel exit along the tunneling
direction. While the former retards the Wigner trajectory, the
latter advances it. In the deep-tunneling regime their effects
cancel each other, and we have the vanishing Wigner time
delay. Nonetheless, in the near-threshold-tunneling regime the
effect of the latter is bigger than the former, which leads
to a negative Wigner time delay. We can further map this
delay to an effective initial momentum for the quasiclassical
trajectory so that it later coincides with Wigner trajectory (see
the dotted black curve in Fig. 5). Moreover, the effective initial
momentum can be estimated as

p0 ≈ −E0 τw

≈ 35/6√π

E0
1/3�[1/6]2

(
E0

2/3�[1/6] − 2Ip31/3√π
)
, (39)

which depends on E0 as well as Ip. Then, the final momentum
of the ionized electron from a zero-range potential at a detector
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can be given by

pf (E0,Ip) = pc(E0) + p0(E0,Ip) , (40)

with pc(E0) being the classical momentum, which the electron
gains in the electric field so that it only depends on the external
field E0 for a zero-range potential.

In fact, inferring the time delay via the momentum spectrum
of the ionized electron lies at the heart of attosecond angular
streaking techniques [7–11], which map the experimentally
measured momentum of the ionized electron to the phase
of the electric field θi . Then, the time delay is defined as
θi/ω, with ω being the laser frequency. Here, in contrast
to the attoclock technique, we propose to employ the Ip

dependency of the final momentum of the ionized electron.
Namely, we consider a tunnel-ionization scenario for a
gas mixture of two different species of ions with different
ionization energies. Since the corresponding final momenta
of the ionized electrons depend on the ionization energy Ip,
there will be two different momentum peaks in the spectrum
for the same field strength E0, which is a signature of
the Wigner time delay. Furthermore, the difference can be
estimated as

pf ≈ 0.73

E
1/3
0

Ip . (41)

For instance, when a mixture of helium and neon gases is used,
Ip ≈ 3 eV, and laser intensity is 1015 W/cm2 (E0 ≈ 0.2),
one has pf ≈ 0.1 a.u., which is in the measurable range
of current momentum spectroscopy techniques [46]. This
estimation is valid in the case of a zero-range potential. In the
realistic Coulomb potential case a more careful investigation is
inevitable because the classical momentum pc will also depend
on the ionization energy due to the Coulomb focusing effect,

which makes it harder to determine the momentum difference
due to the time delay.

V. CONCLUSION

In this paper, we present an alternative method for calcu-
lating the Wigner trajectory which employs the fixed-energy
propagator. The developed method is applied to nonrelativistic
as well as relativistic tunnel ionization from a zero-range
potential. We compare the quasiclassical trajectory with the
Wigner trajectory for the ionization processes in the deep-
tunneling regime as well as in the near-threshold-tunneling
regime and calculate the Wigner time delay. It is shown that
the Wigner time delay is detectable in the latter case, and the
results are in accordance with those of Ref. [33].

Furthermore, we mapped the Wigner time delay to the initial
momentum along the tunneling direction. This implies that in
the deep-tunneling regime the time spent under the barrier of
the electron is compensated by its initial velocity at the tunnel
exit, and hence we obtain a vanishing Wigner time delay. In
the near-threshold-tunneling regime, however, this is not the
case and the Wigner trajectory overtakes the classical one so
that we observe a negative Wigner time delay.

Finally, we have proposed an experimental method for the
detection of the Wigner time delay in a mixture of different
atomic species. The method is based on the dependence of
the Wigner time delay on the atomic ionization energy. In this
scheme the difference of the Wigner time delay for the different
atoms in a two-component gas mixture can be measured as the
difference in momentum of two peaks which will appear in the
photoelectron spectrum.
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in Physics Vol. 734 (Springer, Berlin, 2007), pp. 333–353.

[25] Y. Ban, E. Y. Sherman, J. G. Muga, and M. Büttiker, Phys. Rev.
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