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We study informationally overcomplete measurements for quantum state estimation so as to clarify their
tomographic significance as compared with minimal informationally complete measurements. We show that
informationally overcomplete measurements can improve the tomographic efficiency significantly over minimal
measurements when the states of interest have high purities. Nevertheless, the efficiency is still too limited to be
satisfactory with respect to figures of merit based on monotone Riemannian metrics, such as the Bures metric and
quantum Chernoff metric. In this way, we also pinpoint the limitation of nonadaptive measurements and motivate
the study of more sophisticated measurement schemes. In the course of our study, we introduce the best linear
unbiased estimator and show that it is equally efficient as the maximum likelihood estimator in the large sample
limit. This estimator may significantly outperform the canonical linear estimator for states with high purities. It
is expected to play an important role in experimental designs and adaptive quantum state tomography besides its
significance to the current study.
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I. INTRODUCTION

Quantum state estimation is a procedure for inferring
the state of a quantum system from generalized measure-
ments [1,2]. A central problem in quantum state estimation
is to determine the state of a quantum system as efficiently
as possible with suitable measurements and data processing.
In practice, the set of accessible measurements is usually
determined by experimental settings, which are not easy to
modify. Given an ensemble of identically prepared quantum
systems, the simplest measurement schemes consist of iden-
tical and independent measurements on individual copies. A
measurement is informationally complete (IC) if every state is
determined completely by the measurement statistics [3–5].
Such a measurement has at least d2 outcomes for a d-
level quantum system. An IC measurement is minimal if
it has exactly d2 outcomes and informationally overcom-
plete (IOC) otherwise. A prominent example of minimal IC
measurements are symmetric informationally complete (SIC)
measurements [6–9], whereas measurements composed of
complete sets of mutually unbiased bases (MUB) [10–12] are
IOC. Note, however, that the later measurements are minimal
IC among combinations of projective measurements. Another
example of IOC measurements is the covariant measurement,
whose outcomes consist of all pure states weighted by the
Haar measure. The efficiencies of minimal IC measurements
and special IOC measurements, such as mutually unbiased
measurements, have been studied extensively in the litera-
ture [9–28]. Still we often hear the basic question: which
one is more efficient for state estimation, SIC or MUB? Even
little is known about general IOC measurements [21,29]. In
particular, it is not so clear what is the efficiency limit of
IOC measurements, whether such measurements are useful
in improving the tomographic efficiency over minimal IC
measurements, and when and to what extent if the answer
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is positive. These general questions are the main motivations
behind the present study, which extends some recent work
presented in the author’s thesis [27].

To answer the questions raised in the previous paragraph,
we need to choose suitable figures of merit and estimators.
Among common choices of figures of merit are the mean-
square error (MSE) with respect to the Hilbert-Schmidt (HS)
distance and its generalization—weighted mean-square errors
(WMSEs), which include the mean-square Bures distance
(MSB) as a special case. In traditional linear state tomog-
raphy, the estimator is constructed in terms of measurement
frequencies and reconstruction operators [1,17,18,26,27]. The
set of canonical reconstruction operators is optimal if these
operators are required to be independent of the measurement
statistics [17,26,27]. However, such a choice generally cannot
make full use of the information provided by an IOC measure-
ment. To make a fair comparison among various measurements
entails considering reconstruction operators that are optimal in
the pointwise sense, which may depend on the measurement
statistics. A similar problem has been addressed by D’Ariano
and Perinotti [30] (see also Refs. [31,32]), who derived the
set of optimal reconstruction operators with respect to the
MSE in estimating certain observables. The situation is not
so clear concerning other figures of merit, such as the WMSE
corresponding to a generic weighting matrix, say, the MSB.
Furthermore, several basic questions are not well understood.
For example, by how much can the efficiency be improved with
the optimal reconstruction operators instead of the canonical
choice?

In this paper, we determine the set of optimal reconstruction
operators in the pointwise sense and derive the best linear
unbiased estimator (BLUE), using the MSE matrix as a
benchmark. The BLUE is as efficient as the maximum like-
lihood estimator (MLE) [1,33–35] in the large sample limit.
Compared with the ML approach, our approach has the merit
that it is parametrization independent and is thus often much
easier to work with and easier for deriving analytical results.
Also, it can help clarify the differences between canonical
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state reconstruction and optimal reconstruction since the two
alternatives are treated in a unified framework. Our approach
is simpler than the one studied in Ref. [30], but the result
has wider applicability. In particular, it is applicable to study
tomographic efficiencies with respect to a variety of figures
of merit, including various WMSEs, such as the MSE and
MSB, as well as the volume of the uncertainty ellipsoid, which
is pertinent to constructing good region estimators [36–38].
Furthermore, the current work provides a stepping stone for
exploring quantum state estimation with more sophisticated
measurement schemes, such as adaptive measurements [27].
What is more remarkable is that certain results presented here
prove to be useful for studying information theoretic analogs
of uncertainty and complementarity relations [39].

Based on the above work, we show that covariant mea-
surements are optimal among all nonadaptive measurements
in minimizing the average WMSE based on any unitarily
invariant distance, including the MSE and the MSB. Compared
with minimal IC measurements, covariant measurements can
improve the tomographic efficiency significantly when the
states of interest have high purities. However, the efficiency
is still too limited to be satisfactory with respect to the scaled
MSB, which diverges at the boundary of the state space in
the large-sample limit. This divergence is also persistent for
any scaled WMSE based on a monotone Riemannian metric
[40–42] as long as the measurement is nonadaptive, in sharp
contrast with the intuitive belief that states with high purities
are easier to estimate than states with low purities. These
general conclusions are further corroborated by extensive
study of qubit state estimation with IOC measurements. Our
work not only clarifies the power of IOC measurements com-
pared with minimal IC measurements, but also pinpoints the
limitation of nonadaptive measurements, thereby motivating
the exploration of more sophisticated measurement schemes,
which we hope to address in the future.

The rest of the paper is organized as follows. In Sec. II, we
discuss optimal state reconstruction for IOC measurements
in comparison with canonical reconstruction and illustrate
the matter with SIC and MUB measurements. In Sec. III,
we clarify the efficiency advantage of IOC measurements
over minimal IC measurements as well as the limitation of
nonadaptive measurements. In Sec. IV, we focus on qubit state
estimation with IOC measurements. Section V summarizes
this paper.

II. OPTIMAL STATE RECONSTRUCTION
FOR INFORMATIONALLY OVERCOMPLETE

MEASUREMENTS

In this section we study optimal state reconstruction for gen-
eral IC measurements with emphasis on IOC measurements,
in preparation for the discussions in the rest of the paper. In
particular, we determine the BLUE for any IC measurement
and show that it is as efficient as the MLE in the large sample
limit as long as the states of interest are not on the boundary
of the state space. As an application of this result, we clarify
the relative merits of SIC and MUB measurements in quantum
state estimation. To this end, we first need to review the basic
framework of linear state tomography [1,17,18,26,27].

A. Linear state tomography

A generalized measurement is composed of a set of
outcomes represented mathematically by positive operators
�ξ that sum up to the identity 1 [43] (this simplified description
is enough for us since we are only concerned with the mea-
surement statistics, not the state after the measurement). Given
an unknown state ρ, the probability of obtaining the outcome
�ξ is given by the Born rule: pξ = tr(�ξρ). Following the
convention in Refs. [26,27] (see also Refs. [30,44]), the
probability can be expressed as an inner product 〈〈�ξ |ρ〉〉
between the operator kets |�ξ 〉〉 and |ρ〉〉, where the double
ket notation is used to distinguish them from ordinary kets.
A measurement is IC if every state is determined by the
measurement statistics, namely, the set of probabilities pξ .
This amounts to the requirement that the frame superoperator

F = d
∑

ξ

|�ξ 〉〉〈〈�ξ |
tr(�ξ )

(1)

is invertible [17,26,30], where the factor d is introduced for
the convenience of later discussions.

For an IC measurement, we can find a set of reconstruction
operators �ξ with the property

∑
ξ |�ξ 〉〉〈〈�ξ | = I, where I

is the identity superoperator. Then any state can be recovered
from the set of probabilities pξ as ρ = ∑

ξ pξ�ξ . In practice,
the probabilities pξ need to be replaced by the frequencies
fξ since the number N of measurements is finite. The
estimator based on these frequencies ρ̂ = ∑

ξ fξ�ξ is thus
different from the true state. Nevertheless, the requirement∑

ξ |�ξ 〉〉〈〈�ξ | = I on the reconstruction operators guarantees
that the estimator is unbiased, that is, E(ρ̂) = ρ. In general,
these frequencies obey a multinomial distribution with the
scaled covariance matrix (that is the covariance matrix multi-
plied by the number of measurements) �ξζ = pξδξζ − pξpζ .
The scaled MSE matrix (or covariance matrix) of the estimator
ρ̂ is then determined by the formula of error propagation [26],

C(ρ) =
∑
ξ,ζ

|�ξ 〉〉�ξζ 〈〈�ζ | =
∑

ξ

|�ξ 〉〉pξ 〈〈�ξ | − |ρ〉〉〈〈ρ|.
(2)

Denote by 	ρ = √
N (ρ̂ − ρ) the scaled deviation of the

estimator from the true state. Then the scaled MSE with respect
to the HS distance reads

E(ρ) := E
( ‖	ρ ‖2

HS

) = Tr{C(ρ)} =
∑

ξ

pξ tr
(
�2

ξ

) − tr(ρ2).

(3)

Here “Tr” denotes the trace of a superoperator, and “tr” of an
ordinary operator.

The set of reconstruction operators is not unique except
for a minimal IC measurement, such as a SIC measurement.
In linear state tomography, usually the set of reconstruction
operators, once chosen, is independent of the measurement
statistics. In that case, the set of canonical reconstruction
operators

|�ξ 〉〉 = dF−1|�ξ 〉〉
tr(�ξ )

(4)

is the best choice in the sense of minimizing the MSE
averaged over unitarily equivalent true states [17,18,26,27].
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The resulting estimator is called canonical linear estimator
(CLE). The situation is different if reconstruction operators
are allowed to depend on the measurement statistics, which is
the focus of the next section.

B. Best linear unbiased estimator

In this section we determine the set of optimal reconstruc-
tion operators in the pointwise sense and derive the BLUE.

The following lemma is crucial to achieving our goal. Its
proof is relegated to Appendix A.

Lemma 1. Suppose A and B are two m × n matrices such
that AB† is the projector on the support of B† (that is the range
of B). Then AA† � (BB†)+, and the inequality is saturated if
and only if A = B†+ = (BB†)+B. If, in addition, AB† = 1,
then AA† � (BB†)−1, and the inequality is saturated if and
only if A = (BB†)−1B.

Here A+ denotes the (Moore-Penrose) pseudoinverse of A

(the arithmetics of pseudoinverses can be found in Ref. [45]).
Given Eq. (2), Lemma 1 applied to the matrices

(|�1〉〉p1/2
1 ,|�2〉〉p1/2

2 , . . .) and (|�1〉〉p−1/2
1 ,|�2〉〉p−1/2

2 , . . .)
with respect to a suitable operator basis yields

C(ρ) � F(ρ)−1 − |ρ〉〉〈〈ρ|, (5)

where

F(ρ) =
∑

ξ

|�ξ 〉〉 1

pξ

〈〈�ξ | (6)

is also called the frame superoperator, which generalizes the
definition in Eq. (1). To avoid unnecessary technicality, we
assume that ρ has full rank and thus pξ > 0 for all ξ ; rank-
deficient states can be treated in suitable limits. The inequality
is saturated if and only if the reconstruction operators are of
the form

|�ξ 〉〉 = p−1
ξ F(ρ)−1|�ξ 〉〉, (7)

in which case we get the BLUE along with the scaled MSE
matrix

C(ρ) = F(ρ)−1 − |ρ〉〉〈〈ρ|. (8)

According to the Aitken theorem, a generalization of the
Gauss-Markov theorem, the BLUE is a special instance
of weighted linear least square estimators for which the
weighting matrix is the inverse of the covariance matrix of the
measurement statistics [46] (note that the weighting matrix
here is different from the one in the definition of WMSE).

The scaled WMSE of the BLUE for a given weighting
matrix W reads

EW (ρ) = Tr{WF(ρ)−1} − 〈〈ρ|W|ρ〉〉. (9)

It reduces to the scaled MSE (with respect to the HS distance)
when W is the identity,

E(ρ) = Tr{F(ρ)−1} − tr(ρ2). (10)

The volume of the scaled uncertainty ellipsoid is given by

V(ρ) = Vd2−1

√
D̄et{C(ρ)}

= Vd2−1

√
D̄et{F(ρ)−1 − |ρ〉〉〈〈ρ|}, (11)

where

Vd2−1 = π (d2−1)/2

�
(

d2+1
2

) (12)

is the volume of the (d2 − 1)-dimensional unit ball, and D̄et(O)
denotes the determinant of the restriction ofO onto the space of
traceless Hermitian operators. All superoperators in this paper
of which we need to evaluate D̄et are supported on this space.
In particular, this is the case for C(ρ), as we shall see shortly.

The inequality in Eq. (5) implies that the BLUE is optimal
not only in minimizing the MSE but also in minimizing any
other cost function that is monotonic increasing in the MSE
matrix, such as various WMSEs and the volume of the uncer-
tainty ellipsoid. This observation is crucial to investigating the
efficiency advantage of the optimal state reconstruction over
canonical reconstruction. It is also indispensable for clarifying
the questions of whether and to what extent IOC measurements
are helpful in improving the tomographic efficiency over
minimal IC measurements. Furthermore, the formulas for the
BLUE and its associated MSE matrix can serve as a benchmark
for selecting more efficient measurement schemes, thereby
providing a stepping stone for studying experimental designs
and adaptive quantum state tomography [27].

When ρ is the completely mixed state, Eqs. (6) and (7)
reduce to Eqs. (1) and (4), respectively, and it follows that
the set of canonical reconstruction operators and the CLE
are optimal. This observation implies that the canonical
reconstruction is optimal in minimizing the WMSE averaged
over unitarily equivalent states as long as the weighting matrix
is state independent. In the case the weighting matrix is a
constant matrix, this conclusion reduces to the one of Scott
that the set of canonical reconstruction operators is optimal in
minimizing the average MSE [17] (see Sec. II A).

Meticulous readers may have noticed that the optimal
reconstruction operators depend on the true state, which is
usually unknown. To remedy this problem, we may replace the
true state in the relevant formulas with an estimator obtained
from another reconstruction scheme, canonical reconstruction
for instance. Alternatively, we may just replace probabilities
pξ with frequencies fξ in Eqs. (6) and (7). In that case, the
final estimator is no longer linear in the frequencies. So strictly
speaking, the BLUE is not a linear estimator in the usual sense.
Nevertheless, the resulting estimator is almost as good as the
theoretical BLUE as long as N is not too small. To see this,
note that for an IC measurement, any reasonable estimator,
such as the CLE, will converge to the true state in the large-N
limit. Therefore, intuitively, the reconstruction operators based
on the estimator will also converge to the theoretical optimal
reconstruction operators. Numerical calculation indicates that
the MSE between the approximate BLUE and the theoretical
BLUE decreases approximately as 1/N2, in sharp contrast
with the scaling law 1/N of the MSE between each estimator
and the true state. For most values of N of practical interest,
there is almost no difference between the two estimators, as
illustrated in Fig. 1 along with the CLE and MLE (cf. Sec. II D
and Appendix C). Therefore, the BLUE is useful not only to
theoretical study but also to practical applications.

For the convenience of subsequent discussions, here we
collect several basic properties of the frame superoperator and
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FIG. 1. (Color online) Tomographic efficiencies of the CLE,
BLUE, and MLE. The scaled MSEs of these estimators are deter-
mined by numerical simulation of the cube measurement (cf. Sec. IV)
on a qubit state with random Bloch vector s = (0.6886,0.1137,

− 0.5025). Each data point is an average over 1000 repetitions.
BLUE1 assumes the knowledge of the true state in computing the
reconstruction operators, while BLUE2 uses frequencies instead of
probabilities in relevant formulas. The theoretical scaled MSEs of the
CLE and BLUE are shown as dashed line and solid line, respectively.
Also plotted are pairwise scaled MSEs (multiplied by a factor of 10
for ease of viewing) among BLUE1, BLUE2, and MLE. The figure
indicates that the three estimators are almost equally efficient as long
as N is not too small.

the optimal reconstruction operators,

F(ρ)|ρ〉〉 = |1〉〉, F(ρ)−1|1〉〉 = |ρ〉〉, (13a)

tr(�ξ ) = 1, (13b)∑
ξ

tr(�ξ )�ξ = 1. (13c)

Equation (13a) follows from the definition of F(ρ); Eq. (13b)
can be derived by multiplying both sides of Eq. (7) with 〈〈1|
and applying Eq. (13a); Eq. (13c) follows from the requirement∑

ξ |�ξ 〉〉〈〈�ξ | = I and thus holds for any set of reconstruction
operators, regardless of whether it is optimal or not.

According to Eqs. (8) and (13a), |1〉〉 is a null eigenvector
of C(ρ); that is, C(ρ) is supported on the space of traceless
Hermitian operators as claimed before. Let Ī denote the
projector onto this space and define F̄(ρ) as the projection
of F(ρ) onto this space,

F̄(ρ) := ĪF(ρ)Ī =
∑

ξ

|�̄ξ 〉〉 1

pξ

〈〈�̄ξ |, (14)

where �̄ξ = �ξ − tr(�ξ )/d. Then we can deduce from
Eq. (13) that C(ρ)F̄(ρ) = Ī, which implies that C(ρ) is the
inverse of F̄(ρ) in the space of traceless Hermitian operators.
Consequently,

C(ρ) = F̄(ρ)+, EW (ρ) = Tr{WF̄(ρ)+},
E(ρ) = Tr{F̄(ρ)+}, V(ρ) = Vd2−1[D̄et{F̄(ρ)}]−1/2. (15)

Comparison with Eq. (8) yields

F̄(ρ)+ = F(ρ)−1 − |ρ〉〉〈〈ρ|. (16)

This simple formula is quite useful in later study.
In the rest of this section, we briefly discuss the problem of

state reconstruction when the measurement is not IC [47]. This
problem is also relevant to studying IOC measurements, such
as mutually unbiased measurements, since many of them are
combinations of informationally incomplete measurements.

For an informationally incomplete measurement, it is
generally impossible to infer the true state accurately even if
the sample size is arbitrarily large. Nevertheless, the projection
of the true state onto the reconstruction subspace, the space
spanned by the �ξ , can be determined in the asymptotic limit.
Let ρR and CR(ρ) be the restrictions of the true state and the
scaled MSE matrix onto the reconstruction subspace. Then
using a similar argument that leads to Eq. (5), we find

CR(ρ) � F(ρ)+ − |ρR〉〉〈〈ρR| = F̄(ρ)+. (17)

The inequality is saturated if and only if the reconstruction
operators are given by

|�ξ 〉〉 = p−1
ξ F(ρ)+|�ξ 〉〉, (18)

when restricted to the reconstruction subspace.
To illustrate the above idea, let us consider a rank-one

projective measurement {�ξ } for example. Noticing that the
outcomes �ξ are orthogonal projectors and ρR = ∑

ξ pξ�ξ ,
we get

CR(ρ) =
∑

ξ

|�ξ 〉〉pξ 〈〈�ξ | −
∑
ξ,ζ

|�ξ 〉〉pξpζ 〈〈�ζ |,

ER(ρ) = Tr{CR(ρ)} = 1 −
∑

ξ

p2
ξ . (19)

C. Illustration with SIC and MUB measurements

To illustrate the improvement of the BLUE over the CLE
and to answer a question raised in Sec. I, here we consider
state estimation with SIC measurements and complete sets of
mutually unbiased measurements. Although the main results
concerning SIC and MUB presented in this section were known
before, they were derived under various different assumptions
scattered in the literature, and a coherent account is still
lacking. We hope to bridge this gap by stating the conclusion
explicitly and precisely within a unified framework.

In a d-dimensional Hilbert space, a SIC measurement is
composed of d2 subnormalized projectors onto pure states
�ξ = |ψξ 〉〈ψξ |/d with equal pairwise fidelity [6,7],

|〈ψξ |ψζ 〉|2 = dδξζ + 1

d + 1
; (20)

see Refs. [8,9,27] for the latest developments. Two bases
{|ψj 〉} and {|φk〉} are mutually unbiased if all the transition
probabilities |〈ψj |φk〉|2 across their basis elements are equal
to 1/d [10–12]. In a d-dimensional Hilbert space, there exist
at most d + 1 MUB; such a maximal set, if it exists, is called
complete. When d is a prime power, a complete set of MUB
can be constructed explicitly [10,11]; see Ref. [12] for a
review. Two (rank-one) projective measurements are mutually
unbiased if their measurement bases are mutually unbiased.
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Applications of SIC and MUB to quantum state estimation
have been studied extensively in the literature [9–12,14–28].

For a minimal IC measurement, the optimal reconstruction
is identical with the canonical reconstruction. The scaled MSE
averaged over unitarily equivalent states is bounded below by

E(ρ) � d2 + d − 1 − tr(ρ2), (21)

and the lower bound is saturated if and only if the measurement
is SIC [9,17,18,26,27]. For a SIC measurement, the scaled
MSE is unitarily invariant, so we have

E(ρ) = E(ρ) = d2 + d − 1 − tr(ρ2). (22)

The bound in Eq. (21) is also applicable to IOC measure-
ments, such as mutually unbiased measurements if canonical
reconstruction is applied. The lower bound is saturated if and
only if the measurement is composed of subnormalized pure
states that form a weighted 2-design [7,9,17,26,27], that is,
�ξ = |ψξ 〉wξ 〈ψξ | with

∑
ξ wξ = d and

∑
ξ

wξ (|ψξ 〉〈ψξ |)⊗2 = 2

d + 1
Ps, (23)

where Ps is the projector onto the bipartite symmetric sub-
space. Such a measurement is called tight IC. In that case, the
canonical reconstruction operators have a very simple form,

�ξ = |ψξ 〉(d + 1)〈ψξ | − 1, (24)

and the scaled MSE is also unitarily invariant [17,18,26,27].
Since both MUB and SIC form 2-designs, it follows that they
are equally efficient with respect to the MSE under canonical
reconstruction.

The situation is different if the optimal reconstruction is
employed. Now the scaled MSE achievable with MUB is given
by [16,18,27]

E(ρ) = E(ρ) = (d + 1)[d − tr(ρ2)]. (25)

Therefore, MUB is more efficient than SIC under the optimal
reconstruction, especially for states with high purities. This
example shows that the optimal reconstruction is crucial to
unleashing the full potential of IOC measurements and to
making sensible comparison among various measurement
schemes. In addition, it demonstrates that IOC measurements
can indeed improve the tomographic efficiency over minimal
IC measurements in quantum state estimation, as discussed in
more detail in Secs. III and IV.

D. Connection with the maximum-likelihood method

To elucidate the connection between the BLUE and the
MLE [1,35], we need to introduce a suitable parametrization
for the quantum state space. A convenient choice is the affine
parametrization

ρ(θ ) = 1

d
+

d2−1∑
j=1

θjEj , (26)

where the Ej form an orthonormal basis in the space of
traceless Hermitian operators. Now the Fisher information

matrix takes on the form (see Appendix B)

Ijk(θ ) =
∑

ξ

〈〈Ej |�ξ 〉〉〈〈�ξ |Ek〉〉
pξ

= 〈〈Ej |F(ρ)|Ek〉〉

= 〈〈Ej |F̄(ρ)|Ek〉〉. (27)

This equation clearly indicates that the superoperator F̄(ρ) is
essentially the Fisher information matrix in disguise and that
the BLUE is as efficient as the MLE in the large-N limit as
long as the true state is not on the boundary of the state space
(see Fig. 1 for an illustration). Recall that the MSE matrix of
any unbiased estimator is lower bounded by the inverse of the
Fisher information matrix and that the bound can be saturated
asymptotically with the MLE [33,34,48,49] (see Appendix B).
This observation implies that the BLUE is optimal not only
among linear unbiased estimators but also among all unbiased
estimators in the asymptotic limit.

Alternatively, we can clarify the connection between the
BLUE and the MLE by inspecting the likelihood functional
L(ρ) (see Appendix C) in the large-N limit. According to
Eq. (C2),

∂2 lnL(ρ)

∂θj θk

= −N
∑

ξ

fξ

p2
ξ

tr(Ej�ξ ) tr(�ξEk)

≈ −N
∑

ξ

1

pξ

tr(Ej�ξ ) tr(�ξEk)

= −N〈〈Ej |F(ρ)|Ek〉〉 = −N〈〈Ej |F̄(ρ)|Ek〉〉. (28)

Suppose that the likelihood functional is maximized at θ̃ . Let
	θ = θ − θ̃ ; then

1

N
lnL(ρ) ≈ c − 1

2

∑
j,k

	θj	θk〈〈Ej |F̄(ρ)|Ek〉〉, (29)

where c is a constant. Again, we find that F̄(ρ) plays the role
of the Fisher information matrix.

Compared with the ML method, our approach is indepen-
dent of the parametrization and is thus often more convenient
to work with. In particular, it allows deriving analytical results
more easily, thereby elucidating the dependence of the cost
function on various parameters, such as the dimension of the
Hilbert space and the purity. Also, our approach can better
clarify the differences between canonical state reconstruction
and optimal reconstruction as well as the differences between
minimal IC measurements and IOC measurements. In addi-
tion, it is quite helpful for studying adaptive measurements and
quantum precision limit [27]. The drawback of our approach
is that the optimal reconstruction operators need to be chosen
adaptively, and it is not easy to take into account naturally the
positivity constraint on the density operators. Depending on
the situation, one alternative may be preferable to the other,
and a judicious choice is crucial to simplifying the problem.

III. TOMOGRAPHIC SIGNIFICANCE AND LIMITATION
OF IOC MEASUREMENTS

In this section we investigate the tomographic efficiency of
IOC measurements in comparison with minimal IC measure-
ments, so as to answer the questions of when and to what
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extent IOC measurements are advantageous over minimal
IC measurements. Our study also clarifies the limitation of
nonadaptive measurements for quantum state estimation. As
we shall see shortly, covariant measurements play a crucial
role in understanding the tomographic significance of IOC
measurements, although it is not practical to implement them
in practice. Most previous studies on covariant measurements
focused on pure-state models [50]. Our study fills the gap in
the case of mixed states.

A. Optimality of the covariant measurement

Suppose F̄1(ρ) and F̄2(ρ) are the Fisher information
matrices associated with two given IC measurements. If the
two measurements are performed with probabilities p1 and
p2 = 1 − p1, then the Fisher information matrix is a convex
combination,

F̄(ρ) = p1F̄1(ρ) + p2F̄2(ρ). (30)

Since the function 1/x is operator convex over the interval
(0,∞) [51], it follows that

C(ρ) � p1C1(ρ) + p2C2(ρ), E(ρ) � p1E1(ρ) + p2E2(ρ).
(31)

Taking average over unitarily equivalent states yields

E(ρ) � p1E1(ρ) + p2E2(ρ). (32)

As a consequence, E(ρ) � E1(ρ) = E2(ρ) if the two given
measurements are unitarily equivalent. In other words, the av-
erage MSE never increases by combining unitarily equivalent
measurements. Given that the set of optimal measurements
contains at least one measurement that is composed of
subnormalized pure states, we conclude that the average MSE
is minimized by the covariant measurement. By the same
token, so is the average WMSE based on any unitarily invariant
distance, such as the Bures distance.

In addition to minimizing average WMSEs based on various
unitarily invariant distances, the covariant measurement is
also optimal in minimizing the average log volume of the
uncertainty ellipsoid. To see this,

lnV(ρ) = ln Vd2−1 + 1
2 ln D̄et{C(ρ)}

= ln Vd2−1 − 1
2 ln D̄et{F̄(ρ)}

= ln Vd2−1 − 1
2 T̄r ln{F̄(ρ)}, (33)

where “T̄r” denotes the trace on the space of traceless
Hermitian operators. Observing that the function ln(x) is
operator concave [51], we deduce

lnV(ρ) � p1 lnV1(ρ) + p2 lnV2(ρ). (34)

Now our claim follows from the same reasoning as in the
previous paragraph.

B. Efficiency of the covariant measurement with canonical
reconstruction

As we have seen in the previous section, the covariant
measurement sets the efficiency limit to nonadaptive measure-
ments, so it is crucial to understand its tomographic efficiency.
Before investigating its performance under the optimal re-
construction, it is instructive to consider the situation under

the canonical reconstruction. The covariant measurement is a
special instance of isotropic measurements, whose outcomes
form not only (weighted) 2-designs, but also 3-designs [26,27].
Under canonical reconstruction, isotropic measurements share
the same covariant MSE matrix and are thus equally efficient
with respect to any figure of merit that is a function of the
MSE matrix, including various WMSEs and the volume of the
uncertainty ellipsoid. So the conclusions in this section also
apply to any isotropic measurement.

To evaluate the tomographic efficiency of the covariant
measurement, which is unitarily invariant, without loss of
generality, we may assume that ρ is diagonal with eigenvalues
λ1,λ2, . . . ,λd . Under canonical reconstruction, the scaled
MSE matrix associated with the covariant measurement is
given by [cf. Eq. (2)]

C(ρ) = d

∫
dμ(ψ)(|�ψ 〉〉〈ψ |ρ|ψ〉〈〈�ψ |) − |ρ〉〉〈〈ρ|

=
∑
j,k

Qjk(|Ejj 〉〉〈〈Ekk|)

+ d + 1

d + 2

∑
j 	=k

(1 + λj + λk)(|Ejk〉〉〈〈Ejk|), (35)

where the �ψ = |ψ〉(d + 1)〈ψ | − 1 are reconstruction oper-
ators [see Eq. (24)], dμ(ψ) is the normalized Haar measure,
Ejk = |j 〉〈k|, and

Qjk = (d + 1)(1 + 2λj )δjk − 1 − λj − λk − (d + 2)λjλk

d + 2
.

(36)
Define

E+
jk := 1√

2
(|j 〉〈k| + |k〉〈j |),

E−
jk := − i√

2
(|j 〉〈k| − |k〉〈j |).

(37)

Then E±
jk with j 	= k are eigenvectors of C(ρ) with eigenvalues

(d + 1)(1 + λj + λk)/(d + 2).
The scaled MSE agrees with Eq. (22) as expected for a tight

IC measurement. The scaled MSB reads

ESB(ρ) = 2d3 + 2d2 − 3d − 2

4(d + 2)

+ 1

4(d + 2)

⎡
⎣∑

j

d

λj

+
∑
j 	=k

2(d + 1)

λj + λk

⎤
⎦ , (38)

where we have applied the formula for the Bures metric derived
by Hübner [52],

D2
B(ρ,ρ + dρ) = 1

2

∑
j,k

|〈j |dρ|k〉|2
λj + λk

. (39)

Note that the scaled MSB diverges at the boundary of the
state space. The same is true for the scaled WMSE based on
any monotone Riemannian metric because the Bures metric is
minimal among such metrics [40–42]. To see this explicitly,
observe that up to a multiplicative constant a generic monotone
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Riemannian metric has the form

D2
c (ρ,ρ + dρ) =

∑
j

|〈j |dρ|j 〉|2
4λj

+
∑
j 	=k

c(λj ,λk)

4
|〈j |dρ|k〉|2,

(40)
where c(x,y) is a Morozova-Chentsov function [40–42]. The
corresponding scaled WMSE is given by

Ec(ρ) = 2d2 − d − 2

4(d + 2)
+ d

4(d + 2)

∑
j

1

λj

+ d + 1

4(d + 2)

∑
j 	=k

(1 + λj + λk)c(λj ,λk). (41)

This equation reduces to Eq. (38) if c(x,y) = 2/(x + y), which
corresponds to the Bures metric. For the quantum Chernoff
metric [53], we have c(x,y) = 4/(

√
x + √

y)2 and

Ec(ρ) = 2d2 − d − 2

4(d + 2)
+ d

4(d + 2)

∑
j

1

λj

+ d + 1

d + 2

∑
j 	=k

1 + λj + λk

(
√

λj + √
λk)2

. (42)

C. Efficiency of the covariant measurement with optimal
reconstruction

Now let us turn to the optimal state reconstruction based on
the covariant measurement. According to Eq. (6), the frame
superoperator is given by

F(ρ) = d

∫
dμ(ψ)

1

〈ψ |ρ|ψ〉 (|�ψ 〉〉〈〈�ψ |), (43)

where �ψ = |ψ〉〈ψ |. In general, it is not easy to derive an
explicit formula for F(ρ). To understand its state dependence,
it is instructive to consider those states that are convex
combinations of the completely mixed state and a projector
state of rank r ,

ρr (s) = s

r

r∑
j=1

|j 〉〈j | + (1 − s)
1

d
,

1 � r � d − 1, 0 � s � 1. (44)

Note, however, that we do not assume this knowledge in state
reconstruction. In this case, F(ρr (s)) has the form

F(ρr (s)) = aP1 + bP2 + cP3 +
∑
j,k

Mjk|Ejj 〉〉〈〈Ekk|, (45)

where P1,P2,P3 are projectors,

P1 =
r∑

j 	=k=1

|Ejk〉〉〈〈Ejk|, P3 =
d∑

j 	=k=r+1

|Ejk〉〉〈〈Ejk|,

P2 =
r∑

j=1

d∑
k=r+1

(|Ejk〉〉〈〈Ejk| + |Ekj 〉〉〈〈Ekj |), (46)

and

Mjk =

⎧⎪⎨
⎪⎩

(1 + δjk)a if 1 � j,k � r,

(1 + δjk)c if r + 1 � j,k � d,

b otherwise.

(47)

The three parameters a, b, and c are determined by the formulas
a = g20, b = g11, and c = g02, where

gjk = 2dr�(d + 1)

�(r + j )�(d − r + k)

×
∫ π/2

0
dα

(cos α)2r−1+2j (sin α)2d−2r−1+2k

ds(cos α)2 + r(1 − s)
, (48)

which can be evaluated by applying the formula∫ π/2

0
dα

cos α(sin α)2m+1

(cos α)2 + u

= 1

2
(1 + u)m ln

1 + u

u
− 1

2

m−1∑
n=0

(1 + u)n

m − n
, u > 0

(49)

after replacing (cos α)2 with 1 − (sin α)2. The Fisher informa-
tion matrix F̄(ρr (s)) has the same form as F(ρr (s)), except
that M is replaced by M̄ := ĪMĪ.

Calculation shows that M̄ has r − 1 eigenvalues equal to
a, d − r − 1 eigenvalues equal to c, and one eigenvalue equal
to

β = (r + 1)(d − r)a + r(d − r + 1)c − 2r(d − r)b

d
. (50)

Note that E±
jk for j 	= k are eigenvectors of F and F̄ , and

that the common eigenvalue is one of the three choices a,b,c

depending on the values of j and k. We deduce that F̄ has four
distinct eigenvalues a,b,c, and β with multiplicities r2 − 1,
2r(d − r), (d − r)2 − 1, and 1, respectively (the eigenvalue
corresponding to the null eigenvector |1〉〉 is excluded here).

According to Eq. (15), the scaled MSE is given by

E(ρr (s)) = r2 − 1

a
+ 2r(d − r)

b
+ (d − r)2 − 1

c
+ 1

β
. (51)

The scaled MSB can be determined by virtue of Eq. (39) with
the result

ESB(ρr (s)) = 1

4

(
r2 − 1

aλ1
+ 4r(d − r)

b(λ1 + λ2)

+ (d − r)2 − 1

cλ2
+ d − r

dβλ1
+ r

dβλ2

)
, (52)

where λ1 = (s/r) + (1 − s)/d and λ2 = (1 − s)/d are the two
distinct eigenvalues of ρ. The scaled WMSEs with respect
to other monotone Riemannian metrics can be derived in a
similar manner. The volume (with respect to the HS metric) of
the scaled uncertainty ellipsoid is given by

V(ρr (s)) = Vd2−1
(
ar2−1b2r(d−r)c(d−r)2−1β

)−1/2
, (53)

along with its logarithm

lnV(ρr (s)) = ln Vd2−1 − 1
2 {(r2 − 1) ln a + [2r(d − r)] ln b

+ [(d − r)2 − 1] ln c + ln β}. (54)

Figure 2 illustrates the scaled MSE and MSB in the case
r = 1 and d = 2,3,4,5,6. Compared with canonical linear
state tomography or minimal state tomography, optimal state
estimation with covariant measurements can improve the
efficiency significantly when the states of interest have high
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FIG. 2. Tomographic efficiencies of covariant measurements.
The true states have the form in Eq. (44) with r = 1 and d =
2,3, . . . ,6 (from bottom to top). The scaled MSB diverges in the limit
s → 1, in which case the states are rank deficient. For comparison,
the dashed lines show the performances of covariant measurements
under canonical linear reconstruction. In plot (a), they also represent
the performances of the optimal minimal IC measurements (that is
SIC measurements) with respect to the scaled MSE.

purities. Nevertheless, the efficiency is still too limited to be
satisfactory when the scaled MSB is chosen as the figure of
merit.

As s approaches 1, the state ρr (s) turns into a subnormalized
projector of rank r . When r � 2, the three parameters a,b,c

have well-defined limits a = r/(r + 1),b = 1,c = r/(r − 1),
and so does the scaled MSE,

E(ρr (1)) = d2 + 2d − 1 − d2

r
− 1

r
. (55)

When r = 1, the parameters a and b still have well-defined
limits, whereas c diverges as ln[d/(1 − s)]. The formula for
the scaled MSE is still applicable, except that the derivative
of E(ρr (s)) with respect to s can diverge. In the pure-state
limit, the scaled MSE 2(d − 1) achieved by the covariant
measurement is equal to the corresponding value for the
pure-state model [50]. Compared with the scaled MSE
d2 + d − 2 [17,26,27] that is achievable with minimal state
tomography, it is smaller by (d + 2)/2 times. Furthermore,
it is minimal not only in the Bayesian sense but also in
the pointwise sense by saturating a quantum analog of the
Cramér-Rao bound; see Ref. [54] as well as Secs. 5.3.3 and
6.2.2 of Ref. [27].

In the pure-state limit, the scaled MSE matrix can be
determined based on Eqs. (8) and (45), with the result

C(|1〉〈1|) =
d∑

j=2

(|E+
1j 〉〉〈〈E+

1j | + |E−
1j 〉〉〈〈E−

1j |). (56)

It is a rank-2(d − 1) projector, in contrast with the scaled
MSE matrix associated with canonical reconstruction, which
has full rank in the space of traceless Hermitian operators [see
Eq. (35)]. The scaled deviation 	ρ has the form

	ρ =
d∑

j=2

(xjE
+
1j + yjE

−
1j ), (57)

where xj ,yj obey a 2(d − 1)-dimensional standard isotropic
Gaussian distribution. Since 	ρ has only two nonzero eigen-

values ±
√∑d

j=2(x2
j + y2

j )/2, its trace norm is proportional

to the HS norm, ‖	ρ ‖tr=‖	ρ ‖HS /
√

2. The scaled mean
errors (not MSE) with respect to the trace distance and the HS
distance are given by

Etr(ρ) = 1√
2
EHS(ρ) = �

(
d − 1

2

)
�(d − 1)

≈ √
d − 1. (58)

Compared with the result achievable with minimal tomogra-
phy [26,27], the scaled mean trace distance is approximately
smaller by a factor of 4d/3π when d � 2. Therefore, the
efficiency advantage of IOC measurements is more substantial
with respect to the mean trace distance in comparison with the
MSE. The contrast is even more dramatic with respect to the
volume of the scaled uncertainty ellipsoid: the average volume
vanishes in the pure-state limit for the covariant measurement
but remains finite for any minimal IC measurement or any set
of mutually unbiased measurements.

In sharp contrast, the scaled MSB diverges in the limit
s → 1. Consequently, with respect to the Bures metric, the
volume of the scaled uncertainty ellipsoid also diverges.
This seemingly surprising phenomenon can be explained as
follows: the entries of F̄ are either finite or logarithmically
divergent in this limit, while the entries of the weighting
matrix diverge much faster according to Eq. (39). Recalling
that the covariant measurement minimizes the average scaled
MSB among all nonadaptive measurements, we conclude
that the average scaled MSB diverges at the boundary of
the state space for all nonadaptive measurements. From the
Bayesian perspective, our analysis implies that the MSB
generally decreases more slowly than the scaling law 1/N

expected from common statistical consideration once the prior
weight near pure states is non-negligible. For single qubit, this
phenomenon was noticed in Ref. [55]. The same conclusion
also holds for any WMSE based on a monotone Riemannian
metric since the Bures metric is minimal among all such
metrics [40–42]. These observations reveal a severe limitation
of nonadaptive measurements for quantum state estimation
and the importance of exploring more sophisticated strategies,
which deserve further study [27].

IV. QUBIT STATE ESTIMATION
WITH INFORMATIONALLY OVERCOMPLETE

MEASUREMENTS

In this section we exemplify our general approach on
IOC measurements with qubit state estimation. Our main
goal is to elucidate with this simple example the efficiency
limit of IOC measurements and the extent to which they are
advantageous over minimal IC measurements with respect
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to various figures of merit, such as the MSE, MSB, and
the volume of the uncertainty ellipsoid. To be concrete,
our discussions focus on the covariant measurement and
measurements constructed out of platonic solids inscribed on
the Bloch sphere. Nevertheless, our approach applies equally
well to other measurements. There are already many studies on
this subject [15,20–22], but most theoretical works are based
on numerical simulations. We have derived several analytical
results on canonical linear state tomography in Ref. [26]. Here
we turn to the optimal state reconstruction in comparison with
the canonical reconstruction.

A. Canonical reconstruction

Following the convention in Refs. [26,27], to each platonic
solid inscribed on the Bloch sphere, we can construct a
generalized measurement whose outcomes correspond to the
vertices of the platonic solid. Given a platonic solid with n

vertices represented by n unit vectors vk , the outcomes of
the corresponding measurement are given by �k = (1 + vk ·
σ )/n. Suppose the qubit state ρ is parametrized by the Bloch
vector s = (x,y,z); then reconstructing the state ρ is equivalent
to reconstructing its Bloch vector s.

Under canonical reconstruction, the reconstruction oper-
ators take on the form �k = (1 + 3vk · σ )/2 according to
Eq. (24) since the measurement corresponding to any platonic
solid is tight IC. The scaled MSE matrix of the estimator ŝ of
the Bloch vector has the form [26,27]

C(s) = 3 − ss + 9

n

n∑
k=1

(vk · s) vkvk, (59)

where ss is the dyadic composed of the vector s and itself. For
any measurement constructed from a platonic solid other than
the regular tetrahedron, the last term in the equation vanishes
due to symmetry, which yields

CIso(s) = 3 − ss. (60)

More generally, all isotropic measurements [26,27] share the
same scaled MSE matrix and are equally efficient under
canonical reconstruction. The scaled MSE with respect to the
HS distance is equal to

E(ρ) = 1

2
tr{C(s)} = 9 − s2

2
. (61)

Here the factor 1/2 accounts for the difference between the HS
distance and the distance on the Bloch ball. The scaled MSE is
independent of the orientation of the Bloch vector, regardless
of the platonic solid under consideration, as expected for any
rank-one tight IC measurement.

The weighting matrix corresponding to the Bures metric is
one-fourth of the quantum Fisher information matrix and takes
on the form

W (s) = 1

4
+ ss

4(1 − s2)
. (62)

The scaled MSB is thus given by

ESB(ρ) = tr{W (s)C(s)}

= 9

4
+ s2

2(1 − s2)
+ 9

4n(1 − s2)

∑
k

(s · vk)3. (63)

Except for the SIC (tetrahedron) measurement, the last term
vanishes, and we have

ESB(ρ) = 9

4
+ s2

2(1 − s2)
. (64)

To derive an explicit formula for the SIC measurement, we
assume that the cube (also the octahedron) takes the standard
orientation and that the tetrahedron is composed of four
vertices of the cube including (1,1,1)/

√
3. In that case,

ESIC
SB (ρ) = 9

4
+ s2 + 3

√
3xyz

2(1 − s2)
. (65)

Unlike the scaled MSE, which is unitarily invariant, the scaled
MSB for given s is maximized when the Bloch vector of
the true state is parallel to one leg of the outcomes and
minimized in the opposite situation. The last term in the above
equation vanishes after taking average over unitarily equivalent
states. Therefore, all measurements constructed from platonic
solids are equally efficient with respect to the average scaled
MSB under canonical reconstruction. This conclusion is not as
obvious as the corresponding statement concerning the scaled
MSE.

The volume (with respect to the HS metric) of the scaled
uncertainty ellipsoid is given by

V(ρ) = 4π

3

√
det{C(s)}

8
; (66)

note that V3 = 4π/3. Here the factor 1/8 accounts for the
difference between the HS distance and the distance on the
Bloch ball as before. For isotropic measurements, it reduces
to

V Iso(ρ) = π
√

2(3 − s2). (67)

For the SIC measurement, we have

VSIC(ρ) =
√

2

3
π [2(x4 + y4 + z4) + 8

√
3xyz

− s4 − 6s2 + 9]1/2. (68)

B. Optimal reconstruction

Now let us turn to the optimal reconstruction. In terms of
the Bloch vector, the Fisher information matrix takes on the
form

I (s) = 1

n

∑
k

1

1 + vk · s
vkvk. (69)

The scaled MSE matrix C(s) is the inverse of I (s). For the
SIC measurement, it is still given by Eq. (59). For the MUB
measurement, we have

C(s) = 3 diag(1 − x2,1 − y2,1 − z2). (70)

It is smaller than the scaled MSE matrix 3 − ss under the
canonical reconstruction [cf. Eq. (60)], but is no longer
invariant under unitary transformations of the measurement
outcomes. The differences between the two reconstruction
methods are clearly reflected in the uncertainty ellipses, as
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 Canonical
Optimal

FIG. 3. (Color online) Uncertainty ellipses of the canonical re-
construction and the optimal reconstruction. The uncertainty ellipses
are associated with the marginal distributions on the x-z plane of
the Bloch ball resulting from mutually unbiased measurements on a
family of states, each repeated 300 times. The optimal reconstruction
reduces the sizes of the uncertainty ellipses at the prize of losing the
covariance property.

illustrated in Fig. 3. The situations are quite similar for
measurements constructed from platonic solids other than the
tetrahedron, although the expressions of C(s) can be much
more complicated.

The scaled MSEs of the measurements constructed from
the tetrahedron, octahedron, and cube are respectively given
by

ESIC(ρ) = 9 − s2

2
, EMUB(ρ) = 3(3 − s2)

2
,

ECube(ρ) = 27 − 18s2 + s4 + 2(x4 + y4 + z4)

2(3 − s2)
. (71)

The scaled MSE is unitarily invariant for the SIC (tetrahe-
dron) measurement and the MUB (octahedron) measurement,
as mentioned in Sec. II C. This is not the case for the cube
measurement, although it is a combination of two tetrahedron
measurements and is seemingly more symmetric than a single
tetrahedron measurement. For given s, the minimal scaled
MSE (9 − s2)(9 − 5s2)/6(3 − s2) is attained when s is parallel
to one of the diagonals of the cube, and the maximum
3(3 − s2)/2 is attained when s is parallel to one of the axes.
The average is

ECube(ρ) = 135 − 90s2 + 11s4

10(3 − s2)
. (72)

The formulas for the MSEs of the dodecahedron measurement
and icosahedron measurement are too complicated to convey
a clear meaning; suffice it to mention that the MSEs are not
unitarily invariant in both cases, as in the case of the cube
measurement. This observation reveals an intriguing feature
that seems to be unique to SIC and MUB measurements, which
deserves further study.

The scaled MSB for the SIC measurement is still given by
Eq. (65). For the MUB and cube measurements, we have

EMUB
SB (ρ) = 3(3 − s2)

4
+ 3(s2 − x4 − y4 − z4)

4(1 − s2)
,

ECube
SB (ρ) = 27 − 27s2 − 2s4

12(1 − s2)

+ 6(x4 + y4 + z4) − 2(x6+y6+z6) − 21x2y2z2

3(3 − s2)(1 − s2)
.

(73)

Taking average over unitarily equivalent states yields

ESIC
SB (ρ) = 9

4
+ s2

2(1 − s2)
, EMUB

SB (ρ) = 9

4
+ 3s4

10(1 − s2)
,

ECube
SB (ρ) = 945 − 1260s2 + 413s4 − 26s6

140(3 − s2)(1 − s2)
. (74)

The volume of the scaled uncertainty ellipsoid of the SIC
measurement is still determined by Eq. (68). For MUB and
cube measurements, they are respectively given by

VMUB(ρ) = π
√

6(1 − x2)(1 − y2)(1 − z2),

VCube(ρ) = π

3

√
2[3 − (x + y − z)2][3 − (x − y + z)2]

3 − s2

×
√

[3 − (−x + y + z)2][3 − (x + y + z)2].
(75)

They are all equal to
√

6π when s = 0. The averages of the
log volumes over unitarily equivalent states read

lnVMUB(ρ) = ln(
√

6π ) − 3 + 3

2

[
ln(1 − s2) + 1

s
ln

1 + s

1 − s

]
,

lnVCube(ρ) = ln(3
√

2π ) − 4 + ln
(1 − s2)2

√
3 − s2

+ 2

s
ln

1 + s

1 − s
.

(76)
For the SIC measurement, this average can be determined by
numerical integration.

For the covariant measurement, the parameters b in Eq. (45)
and β in Eq. (50) are now given by

b = 2s − (1 − s2) ln
(

1+s
1−s

)
2s3

, β = −2s + ln
(

1+s
1−s

)
s3

. (77)

Note that the parameters a and c are irrelevant here. The Fisher
information matrix takes on the form

F̄(ρ) = bĪ + 1
2 (β − b)|s̃ · σ 〉〉〈〈s̃ · σ |, (78)

where s̃ = s/s is the normalized Bloch vector (the ambiguity
at s = 0 does not matter since b = β in that case). In terms of
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the Bloch vector, it simplifies to

I (s) = 1
2 [b + (β − b)s̃ s̃]. (79)

Its inverse is the scaled MSE matrix associated with the optimal
reconstruction,

C(s) = 2

[
1

b
+

( 1

β
− 1

b

)
s̃ s̃

]
. (80)

The scaled MSE, MSB, and the volume of the scaled
uncertainty ellipsoid (with respect to the HS metric) follow
from Eqs. (51)–(53), respectively,

E(ρ) = 2

b
+ 1

β
, ESB(ρ) = 1

b
+ 1

2β(1 − s2)
,

V(ρ) = 4π

3b
√

β
. (81)

Similarly, the WMSE with respect to the monotone Rieman-
nian metric characterized by the Morozova-Chentsov function
c(x,y) is given by

Ec(ρ) = c(λ+,λ−)

2b
+ 1

2β(1 − s2)
, (82)

where λ± = (1 ± s)/2 are the eigenvalues of ρ. For the
Chernoff metric c(x,y) = 4/(

√
x + √

y)2, it reduces to

Ec(ρ) = 2

b(1 + √
1 − s2)

+ 1

2β(1 − s2)
. (83)

As comparison, in canonical linear tomography with the
covariant measurement, the scaled MSE matrix C(s) is equal
to 3 − ss as in Eq. (60) since the covariant measurement is an
isotropic measurement. Accordingly, we have

E(ρ) = 9 − s2

2
, ESB(ρ) = 3

2
+ 3 − s2

4(1 − s2)
,

V(ρ) = π
√

2(3 − s2), Ec(ρ) = 3

4
c(λ+,λ−) + 3 − s2

4(1 − s2)
.

(84)

Figure 4 shows the tomographic performances of SIC,
MUB, cube, and covariant measurements in qubit state
estimation with respect to the average scaled MSE, MSB, and
log volume of the scaled uncertainty ellipsoid. For all three
figures of merit, the tomographic efficiencies of the four mea-
surement schemes are monotonic increasing with the number
of outcomes, the more so the higher the purities of the states
of interest. By contrast, in canonical linear state tomography,
MUB, cube, and covariant measurements are as efficient as
the SIC measurement with respect to the average scaled MSE
and MSB, and even less efficient with respect to the average
log volume. Comparison with the scaled MSE achieved by
the optimal adaptive strategy [16,27,56–58] shows that under
the optimal reconstruction the covariant measurement is
almost optimal in the pointwise sense. However, it should
be noted that this is generally not the case with respect to other
figures of merit, such as the scaled MSB. Also, the situation can
be very different beyond the two-level system (see Chap. 5 in
Ref. [27]). Actually, the scaled MSB diverges in the pure-state
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FIG. 4. (Color online) Tomographic efficiencies of the SIC,
MUB, cube, and covariant measurements in qubit state estimation.
(a) Average scaled MSE; (b) average scaled MSB; (c) average log
volume (with respect to the HS metric) of the scaled uncertainty
ellipsoid. The average scaled MSBs diverge in the pure-state limit for
all four measurements. For the covariant measurement, the log volume
diverges to −∞ (that is, the volume vanishes) in the pure-state limit.
As comparison, the curve “Iso” shows the common performance
of isotropic measurements (including MUB, cube, and covariant
measurements) under canonical linear reconstruction. It coincides
with the curve “SIC” in plots (a) and (b) since under canonical linear
reconstruction isotropic measurements are as efficient as the SIC
measurement in qubit state estimation with respect to the average
scaled MSE and MSB.

limit for the covariant measurement, although it is the most
efficient among all nonadaptive measurements. The same is
true for any WMSE based on a monotone Riemannian metric,
as explained in Sec. III.

V. SUMMARY

We have studied quantum state estimation with IOC
measurements, motivated by the questions of whether and
to what extent IOC measurements can improve the tomo-
graphic efficiency over minimal IC measurements. To answer
these questions and to make fair comparison among various
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measurement schemes, we derived the best linear unbiased
estimator and showed that it is as efficient as the maximum
likelihood estimator in the large sample limit. This estimator
may significantly outperform the canonical linear estimator
when the states of interest have high purities. This finding is
useful not only for studying IOC measurements but also for
exploring experimental designs and adaptive quantum state
estimation.

Based on the above framework, we showed that the
covariant measurement is optimal among all nonadaptive
measurements in minimizing the average WMSE based on
any unitarily invariant distance, including the MSE and the
MSB, as well as the average log volume of the uncertainty
ellipsoid. When the states of interest have high purities, IOC
measurements can improve the tomographic efficiency signifi-
cantly and even change the scaling of the cost function with the
dimension of the Hilbert space. Nevertheless, the efficiency is
still too limited to be satisfactory with respect to the MSB
or the WMSE based on any other monotone Riemannian
metric as long as the measurement is nonadaptive. On the
one hand, our study clarifies the tomographic significance of
IOC measurements compared with minimal IC measurements.
On the other hand, it pinpoints the limitation of nonadaptive
measurements and motivates the study of more sophisticated
estimation strategies based on adaptive measurements and
collective measurements [27], which deserve further study. In
this paper, we only consider ideal measurements. It would be
desirable in the future to extend the current work to incorporate
imperfection, such as detector inefficiency.
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APPENDIX A: PROOF OF LEMMA 1

The idea of the proof follows from the proof of Lemma 5.1
in Chap. VI of Ref. [60]. Let u and v be two m × 1 vectors
such that v belongs to the support of B†. Let a = A†u and
b = B†v; then we have

a†a = u†AA†u, b†b = v†BB†v,

a†b = u†AB†v = u†v.
(A1)

The Cauchy inequality applied to the equation yields

(u†AA†u)(v†BB†v) � (u†v)2. (A2)

Setting v = (BB†)+u gives rise to

u†AA†u � u†(BB†)+u, (A3)

which implies that AA† � (BB†)+. Necessary conditions for
saturating the inequality are A†u ∝ B†(BB†)+u and |A†u| =
|B†(BB†)+u| for arbitrary u; that is, A† ∝ B†(BB†)+ and A ∝
(BB†)+B. Since AB† is a projector by assumption, it follows
that A = (BB†)+B, which happens to be the pseudoinverse of
B† [45]. Now the inequality is indeed saturated.

If AB† = 1, then (BB†) is invertible. The second part of
the lemma follows from the fact that (BB†)+ = (BB†)−1.

APPENDIX B: FISHER INFORMATION AND
CRAMÉR-RAO BOUND

Fisher information [34] and the Cramér-Rao bound [48,49]
are two basic ingredients in statistical inference: the former
quantifies the amount of information yielded by an observation
or a measurement concerning certain parameters of interest,
and the latter quantifies the minimal error in estimating these
parameters.

Consider a family of probability distributions p(ξ |θ )
parametrized by θ . Our task is to estimate the value of θ as
accurately as possible based on the measurement outcomes.
Given an outcome ξ , the function p(ξ |θ ) of θ is called
the likelihood function. The score is defined as the partial
derivative of the log-likelihood function with respect to θ

and reflects the sensitivity of the log-likelihood function with
respect to the variation of θ . Its first moment is zero, and the
second moment is known as the Fisher information [34,61],

I (θ ) = Var

(
∂ ln p(ξ |θ )

∂θ

)
=

∑
ξ

p(ξ |θ )

(
∂ ln p(ξ |θ )

∂θ

)2

=
∑

ξ

1

p(ξ |θ )

(
∂p(ξ |θ )

∂θ

)2

. (B1)

The Fisher information represents the average sensitivity of
the log-likelihood function with respect to the variation of θ .
Intuitively, the larger the Fisher information, the better we can
estimate the value of the parameter θ .

An estimator θ̂(ξ ) of the parameter θ is unbiased if its
expectation value is equal to the true parameter; that is,∑

ξ

p(ξ |θ )[θ̂(ξ ) − θ ] = 0. (B2)

Taking the derivative with respect to θ and applying the
Cauchy-Schwarz inequality [using the fact that

∑
ξ p(ξ |θ ) =

1] yields the well-known Cramér-Rao bound

C(θ ) = Var(θ̂) � 1

I (θ )
, (B3)

which states that the MSE or variance of any unbiased
estimator is bounded from below by the inverse of the Fisher
information [48,49].

012115-12



QUANTUM STATE ESTIMATION WITH INFORMATIONALLY . . . PHYSICAL REVIEW A 90, 012115 (2014)

In the multiparameter setting, the Fisher information and
MSE take on matrix forms,

Ijk(θ ) = E

[(
∂ ln p(ξ |θ )

∂θj

)(
∂ ln p(ξ |θ )

∂θk

)]
,

Cjk(θ ) = E[(θ̂j − θj )(θ̂k − θk)].

(B4)

Accordingly, the Cramér-Rao bound for any unbiased estima-
tor turns out to be a matrix inequality,

C(θ ) � I−1(θ ). (B5)

Since the likelihood function is multiplicative, the Fisher
information matrix is additive; that is, the total Fisher informa-
tion matrix of independent measurements is equal to the sum
of the respective Fisher information matrices of individual
measurements. In particular, the Fisher information matrix
of N identical and independent measurements is N times
that of one measurement. Accordingly, the MSE matrix of
any unbiased estimator based on N measurements satisfies
the inequality C(N)(θ ) � 1/NI (θ ). Thanks to Fisher’s theo-
rem [33,34], the lower bound can be saturated asymptotically
with the ML estimator under very general assumptions [46].
In the large-sample scenario, the scaled MSE matrix NC(N)(θ )
is generally independent of the sample size. It is also denoted
by C(θ ) when there is no confusion.

In quantum state estimation, we are interested in the
parameters that characterize the state ρ(θ ) of a quantum
system. To estimate the values of these parameters, we may
perform generalized measurements. Given a measurement �

with outcomes �ξ , the probability of obtaining the outcome ξ

is p(ξ |θ ) = tr{ρ(θ )�ξ }. The corresponding Fisher information
matrix Ijk(�,θ ) is given by

Ijk(�,θ ) =
∑

ξ

1

p(ξ |θ )
tr

{
∂ρ(θ )

∂θj

�ξ

}
tr

{
∂ρ(θ )

∂θk

�ξ

}
.

(B6)
Once a measurement is chosen, the inverse Fisher information
matrix sets a lower bound for the MSE matrix of any unbiased
estimator, which can be saturated asymptotically by the ML
estimator, as in the case of classical parameter estimation.
It should be noted that the bound depends on the specific
measurement.

In practice, it is often more convenient to use a single
number rather than a matrix to quantify the error. A common
choice is the scaled MSE tr{C(θ )}; a more general alterna-
tive is the scaled WMSE tr{W (θ )C(θ )}, where W (θ ) is a
positive semidefinite weighting matrix, which may depend

on θ . The Cramér-Rao bound implies that tr{W (θ )C(θ )} �
tr{W (θ )I−1(θ )}; again, this bound can be saturated asymptot-
ically with the ML estimator. A drawback with the MSE is
that it depends on the parametrization, which is somehow
arbitrary. With a suitable choice of the weighting matrix,
the WMSE is free from this problem. For example, the
WMSEs with respect to the HS distance and Bures distance are
parametrization independent. Except when stated otherwise,
the MSE concerned in the main text is defined with respect to
the HS distance.

APPENDIX C: MAXIMUM-LIKELIHOOD ESTIMATION

In ML estimation, instead of searching for a state that
matches the observed frequencies, we seek a state that max-
imizes the likelihood function (or functional). The principle
of ML was proposed by Fisher [33] in the 1920s and has
become a basic ingredient in statistical inference. During the
past decade, it has found extensive applications in quantum
state estimation [1,2,35,62,63]. In addition, it is useful for
entanglement detection [64] and characterization [65].

In quantum state estimation, the likelihood functional is
defined as [1,35]

L(ρ) =
∏
ξ

p
nξ

ξ , (C1)

where pξ = tr(ρ�ξ ) and nξ are the probability and the number
of times of obtaining the outcome ξ given N measurements
on the state ρ. In practice, it is often more convenient to work
with the log-likelihood functional

lnL(ρ) =
∑

ξ

nξ ln pξ = N
∑

ξ

fξ ln pξ . (C2)

The ML method consists in choosing a state ρ̂ML that
maximizes the likelihood functional or, equivalently, the
log-likelihood functional, as an estimator of the true
state [1,2,35,62,63]. If there exists a state that matches the
observed frequencies, then the state is also an MLE. This
conclusion is an immediate consequence of the inequality∑

ξ

fξ ln pξ �
∑

ξ

fξ ln fξ . (C3)

In general, it is not easy to find a closed formula for the
MLE. Fortunately, the estimator can be computed efficiently
with an algorithm proposed by Hradil [35].
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