
PHYSICAL REVIEW A 90, 012110 (2014)

Quantum process tomography of unitary and near-unitary maps
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We study quantum process tomography given the prior information that the map is a unitary or close to a
unitary process. We show that a unitary map on a d-level system is completely characterized by a minimal set of
d2+d elements associated with a collection of POVMs, in contrast to the d4−d2 elements required for a general
completely positive trace-preserving map. To achieve this lower bound, one must probe the map with particular
sets of d pure states. We further compare the performance of different estimators inspired by compressed sensing,
to reconstruct a near-unitary process from such data. We find that when we have accurate prior information,
an appropriate compressed sensing method reduces the required data needed for high-fidelity estimation, and
different estimators applied to the same data are sensitive to different types of noise. Convex optimization inspired
by the techniques of compressed sensing can therefore be used both as indicators of error models and to validate
the use of the prior assumptions.
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I. INTRODUCTION

The development of quantum information processing de-
vices will require new diagnostic tools for efficiently char-
acterizing errors and verifying performance. While standard
quantum process tomography (QPT) was initially designed in
order to characterize a “black box” [1]; in practice there is often
substantial prior information about the intended target map that
the device is designed to implement and various diagnostic
experiments initially ensure that the device is performing
well. Of particular importance is the design of devices whose
target is a unitary map, e.g., quantum logic gates. Randomized
benchmarking [2–4] is a scalable and robust technique that
has been applied in many experiments, e.g., [5–10], in order
to estimate the fidelity between the applied map and the target
unitary. While such information is important, particularly for
evaluating whether fault-tolerant error correction is possible,
in practice we would like to learn more. Given a high-fidelity
operation, to further improve performance it is critical to
learn about and estimate the particular errors that led to a
certain average error rate. It is therefore necessary to develop,
along with benchmarking techniques, efficient QPT protocols
beyond the “black box” model.

In the standard formulation of QPT, the applied process is an
unknown completely positive, trace-preserving (CPTP) map,
and therefore d4−d2 real numbers are required to completely
characterize it [1]. If through, e.g., randomized benchmarking,
we have high confidence that the applied map is close to a target
unitary, we have substantial prior information. In this case, one
may expect a dramatic reduction in the number of parameters,
and hence resources, needed for reliable estimation of the
full quantum process. Such reductions have been employed in
the reconstruction of near-unitary process matrices describing
linear optical networks [11,12]. Our goal in this work is to
develop a general efficient protocol for QPT maps that are
close to a target unitary map. Our focus is on establishing
rigorous bounds on the minimal required resources and also
on procedures to validate the use of prior knowledge.

Previous workers have studied methods to diagnose devices
that are designed to implement target unitary maps. Recently,
Reich et al. [13] showed that by choosing specially designed

sets of probe states, one can efficiently estimate the fidelity
between an applied quantum process and a target unitary
map. Moreover, Gutoskia and Johnston [14] showed that
the measurement of 4d2 − 2d − 4 Pauli-like Hermitian (i.e.,
two-outcome) observables is sufficient to discriminate one
unitary map from all other unitary maps, while identifying
a unitary map from the set of all possible CPTP maps requires
a measurement of 5d2 − 3d − 5 such observables. Utilizing
prior information is important not only for efficiently gathering
the required information, but also in designing the numerical
estimators that reconstruct the process from the measured
data. Such techniques, known as “compressed sensing” (CS),
were originally introduced in the context of classical signal
recovery [15]. Protocols inspired by these methods have been
applied to QPT by Kosut and co-workers [16,17] and quantum
state tomography (QST) by Gross et al. [18–20]. These
procedures reliably approximate the process (or the state) in
question and provide substantial reduction in the required data
for this task.

In this work we further study the use of prior information to
perform efficient QPT of maps close to unitary evolution and
integrate this with convex optimization protocols inspired by
CS techniques. Our results show two important features: (1)
When we have accurate prior information, one can drastically
reduce the required data needed for high-fidelity estimation.
(2) Different estimators applied to the same data are sensitive
to different types of noise. These estimators can, therefore, be
used as indicators of error models and to validate (to some
degree) the use of prior assumptions employed in the convex
optimization.

After a brief review in Sec. II that serves to establish
our notation for the various mathematical representations of
quantum processes, in Sec. III we describe the mathematical
tools that we use for QPT. Extending the results of Reich
et al. [13] in Sec. IV, we present efficient procedures for QPT
of unitary maps. In particular, we show that a given unitary
map is fully characterized and completely distinguished from
any other unitary map by a set of POVMs with a total minimum
of d2 + d elements (measurement outcomes). This contrasts
with previously known results [13,14]. To achieve this lower
bound, one must probe the map with particular sets of d pure
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states, and measure the evolved states with particular POVMs.
Then, in Sec. V, we study how the methods for efficient
characterization of perfect unitary maps, discussed in Sec. IV,
could be utilized in physical scenarios where the applied map
is close to a unitary map by formulating the reconstruction
as a convex optimization problem. We examine the behaviors
of different convex estimators based on correct or faulty prior
information caused by noise, and use the results as a step
towards validation of prior information and as a diagnosis of
the nature of errors. We present our conclusions in Sec. VI.

II. REVIEW OF QUANTUM PROCESSES

There are different, equivalent, ways to represent a given
quantum map. Among these are the well-known Kraus
representation [21], process matrix representation [1], and
Choi-Jamiołkowski isomorphism [22]. We briefly discuss the
various representations in order to establish our notation. In
the Kraus representation, a completely positive (CP) map E is
written as the sum

E[·] =
K∑

k=1

Ak[·]A†
k, (1)

where [·] represents the mathematical object on which the
map acts, and {Ak} are the Kraus operators. The map
is trace preserving (TP) when

∑
k A

†
kAk = 1. The Kraus

representation is not unique, and the number of independent,
orthogonal, Kraus operators equals the rank of the map. If the
map is unitary, E[·] = U [·]U †, we have only one term in the
above sum with A1 = U .

The process matrix representation of a quantum map can be
obtained from the Kraus representation of the map by writing
the Kraus operators in a basis for complex matrices. Let ϒn,
n = 1, . . . ,d2 be an orthonornomal basis for d×d complex
matrices. Then by decomposing the Kraus operators as

Ak =
d2∑

n=1

ankϒn, (2)

we obtain the process matrix representation of the map,

E[·] =
d2∑

n,m=1

χnmϒm[·]ϒ†
n. (3)

The d2 × d2 matrix χ , whose elements in the ϒn basis are
χnm, is the process matrix representation of the map. The
CP constraint implies that the process matrix is a positive-
semidefinite Hermitian matrix χ � 0, χ = χ †. The process
matrix of a TP map satisfies

∑
n,m χnmϒ

†
mϒn = 1. We say a

map is pure if the process matrix is rank 1. A CP pure map is
a unitary map if and only if it is a TP map.

The space of d × d complex matrices is a complex vector
space of dimension d2, with inner product defined by

〈〈M1|M2〉〉 = Tr(M†
1M2) (4)

(where we use a “double” bra-ket notation to indicate vectors in
the corresponding d2-dimensional vector space). The process
matrix χ can then be seen as an operator acting on a

d2-dimensional complex vector space,

χ =
d2∑

n,m=1

χnm|ϒm〉〉〈〈ϒn|, (5)

where 〈〈ϒm|ϒn〉〉 = δn,m is an orthonormal basis. In diagonal
form,

χ =
d2∑

n=1

λn|Vn〉〉〈〈Vn|, (6)

with eigenvalues λn and eigenvectors |Vn〉〉.
Finally, the Choi-Jamiołkowski representation is an iso-

morphism between a CP map on d-dimensional Hilbert space,
E[·], and a positive-semidefinite Hermitian operator acting on
d2-dimensional tensor-product Hilbert space χc. According to
the isomorphism,

χc =
d∑

n,m=1

|n〉〈m|A ⊗ E[|n〉〈m|B],

E[·] = TrA
{
χc

(
[·]ᵀA ⊗ 1B

)}
, (7)

with Tr(χc) = d, and the superscript ᵀ standing for the
transpose. Being an operator on a d2-dimensional Hilbert
space, χc has a representation as a d2 × d2 matrix—the Choi
matrix. The elements of the Choi matrix are then given by

(χc)mknl = 〈k|E[|n〉〈m|]|l〉, (8)

where m,k,n,l = 1, . . . ,d. The Choi matrix χc is an example
of a process matrix, where the operator basis {ϒn} appearing
in Eq. (3) is the “standard” basis {ϒn = ϒij = |i〉〈j |} with the
relabeling of n = 1, . . . ,d2 by the pair ij with i,j = 1, . . . ,d.

III. TOMOGRAPHY OF QUANTUM PROCESSES:
THEORY AND NUMERICAL METHODS

QPT is the procedure by which one attempts to estimate
a given process based on measurements made on the output
of a well-chosen set of input states. Assuming for a moment
the ideal, unphysical case that the collected data have neither
statistical errors nor systematic, i.e., state preparation and
measurement (SPAM) errors [23], then an informationally
complete measurement record uniquely defines the map.
Since any representation of a general map has d2(d2 − 1)
independent parameters, to specify the map one can, e.g., probe
it with d2 “input” states ρ in

j which form a (Hermitian) operator
basis. An informationally complete measurement on the output
state specifies d2 − 1 independent parameters of the map,
ρout

j = E[ρ in
j ]. We give two examples of such sets of states,

which we will use below. The projection onto the d2 kets,

|k〉, k = 0, . . . ,d − 1,

1√
2

(|k〉 + |n〉), k = 0, . . . ,d − 2, n = k + 1, . . . ,d − 1,

1√
2

(|k〉 + i|n〉), k = 0, . . . ,d − 2, n = k + 1, . . . ,d − 1,

(9)
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forms an operator basis. These states are the generic states
one typically considered in QPT protocols [1]. For powers of
prime dimensions, the projection onto the d2 kets,

|n〉, n = 0, . . . ,d − 1,

|n; b〉, b = 0, . . . ,d − 1, n = 0, . . . ,d − 2, (10)

also forms an Hermitian operator basis. These vectors
(together with |d−1; b〉, b = 0, . . . ,d − 1) are the elements
that compose d + 1 mutually unbiased bases (MUBs), with
n labeling the vector in the bth basis [24]. Using either of
these sets as input states and performing an informationally
complete measurement on each output state completely
specifies an arbitrary quantum map.

Consider an arbitrary measurement defined by a POVM
with elements {El � 0}, with

∑
l El = 1. The probability of

observing an outcome El for state ρout
j , pjl = Tr(ρout

j El), is
expressed in terms of the process matrix using Eq. (3),

pjl = Tr

⎛⎝ d2∑
n,m=1

χnmϒmρ in
j ϒ†

nEl

⎞⎠
=

d2∑
n,m=1

Djlmnχmn = Tr(D†
j lχ ). (11)

Here Djlmn = Tr(ρ in
j ϒ

†
nElϒm), a d2×d2 matrix. Alternatively,

using Eq. (7) we can express pjl in terms of the Choi matrix
χc as

pjl = Tr
{
χc

((
ρ in

j

)ᵀ ⊗ El

)}
. (12)

Comparing Eqs. (11) and (12) reveals that D
†
j l = (ρ in

j )ᵀ ⊗ El .
Hence, the matrices Djl allow us to relate the Choi matrix
elements directly to the measurements statistics.

In practice, each measurement is repeated a finite number of
times, and the measured data are comprised of frequencies of
outcomes with finite statistical noise. We denote the frequency
of the outcome El in measuring the state ρout

j by fjl . Given
the measured data, in order to characterize the quantum
process in question, one must employ numerical estimators.
We consider three estimation procedures: least squares (LS),
�1-norm CS (CS�1 ), and Tr-norm CS (CSTr). The optimal
solution for each of these estimators can be found using convex
semidefinite programs (SDPs), given convex constraints χ � 0
(CP constraint) and

∑
n,m χnmϒ

†
mϒn = 1 (TP constraint). We

denote the estimated matrix returned by the procedures as χ̂ .
To solve the SDPs we use the MATLAB package CVX [25].

The LS estimator minimizes the (square of the) �2-norm
distance between the measurement record (consisting of
frequencies) and the expected measurement record,

min
∑
j,l

|fjl − Tr(D†
j lχ )|2

subject to
∑
n,m

χnmϒ†
mϒn = 1,

χ = χ †, χ � 0. (13)

The estimated matrix χ̂ is the (constrained) maximum-
likelihood solution under the assumption that the data are

drawn from a Gaussian distribution. The LS program makes
no prior assumptions about the nature of the process matrix we
are attempting to reconstruct (besides being a CPTP process).

The next two procedures are inspired by CS in classical
signal processing [26,27]. Often, when we are attempting to
estimate a process matrix, we have some prior knowledge
about the physics of the device that implements the map.
Incorporating this knowledge into our numerical procedure
may result in an efficient estimation technique. This, however,
makes the method biased towards process matrices that satisfy
our assumptions. Hence, if we made a wrong assumption about
the implemented process, the procedure can report an estimate
that could have poor fidelity with the applied process. In this
case the estimation procedure fails. We will return to this
problem later. For now we discuss two main convex methods
for quantum process estimation, with roots in CS.

The original CS estimation technique [15] is based on the
assumption that the optimization variable (in our case, the
process matrix) is a sparse vector in a known representation.
When this is the case the optimization variable can be much
more efficiently extracted by minimizing its �1-norm [26]. To
use this method efficiently for the problem of QPT, the process
matrix should thus be close to a sparse matrix in a known
basis [16]. In an application such as the implementation of a
quantum logic gate, one is attempting to build a target unitary
map Ut. We therefore expect that if the error in implementation
is small, when expressed in an orthogonal basis {Vn} that
includes the target process as a member, V1 = Ut, the process
matrix describing the applied map will be close to a sparse
matrix. This in turn implies that the CS�1 optimization
algorithm can efficiently estimate the applied process.

We thus define the CS�1 estimator as follows:

min ‖χ‖1

subject to
∑
j,l

|fjl − Tr(D†
j lχ )|2 � ε,

∑
n,m

χnmV †
mVn = 1,

χ = χ †, χ � 0, (14)

where here the matrices Djl are represented in the {Vn}
basis, Djlmn = Tr(ρ in

j V
†
n ElVm). The first constraint equation

now requires that the probabilities from our optimization
variable should match our measurement frequencies up to
some threshold ε. The threshold is chosen based on a physical
model of the statistical noise sources for the measurements.

In the numerical simulation to be studied in Sec. V,
assuming a target unitary map Ut without loss of generality,
we take the basis {Vn} = {Ut,Utϒ2,Utϒ3, . . . ,Utϒn}, where
{ϒn} is the generalized Gell-Mann basis. We can regard the
representation of the applied process matrix in this basis as a
transformation into the “interaction picture” with respect to the
target map; any deviation of the applied process matrix from
the projection onto |Ut〉〉 indicates an error. Therefore the CS�1

directly estimates the error matrix studied in detail in [28].
This feature holds also if the target map is not a unitary map.
Representing the applied map in the eigenbasis of the target
map results in an error matrix; the latter is approximated by
the CS�1 procedure.
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The second type of CS-inspired estimation technique we
study is based on the prior assumption that the process matrix is
close to a low-rank matrix. This is equivalent to the assumption
that the process is close to a (possibly unknown) unitary map.
It was shown in [27] that one can complete a low-rank matrix
M , for which we have only partial information, by minimizing
its nuclear norm ‖M‖∗ = Tr

√
M†M . This procedure has been

applied to QST [19,20,29,30], for states close to pure states,
and thus close to low-rank density matrices ρ. Because ρ � 0,
‖ρ‖∗ = ‖ρ‖Tr = Tr(ρ). We thus refer to this procedure as
CSTr.

For QPT we take a similar approach. Since our optimization
variable is the process matrix χ , which is positive semidefinite,
as in QST, ‖χ‖∗ = Tr(χ ). Typically, the trace of the process
matrix is part of the TP constraint equations, as for example
in the CS�1 estimator. In the current procedure, however, we
must drop any equation that constrains the trace of the process
matrix. To deal with this and maintain the maximal number
of constraint equations, we take an operator basis of traceless
Hermitian matrices, thereby ensuring that there is only one
equation relevant to the trace of the process matrix, which is
dropped as a constraint. We thus define the CSTr estimator as
follows:

min Tr(χ )

subject to
∑
j,l

|fjl − Tr(D†
j lχ )|2 � ε,

∑
n,m�=1

χnmϒ†
mϒn = 0,

χ = χ †, χ � 0, (15)

where now χ and Djl are represented in a basis with ϒ1 = 1
and the elements ϒm�=1 are orthogonal traceless Hermitian
matrices. The sum in the second constraint includes all
the terms except n = m = 1. While the CSTr estimator is
basis independent, our numerical analysis indicates that this
choice of basis improves the performance. Also, as in the
CS�1 procedure, we constrain the probabilities based on the
optimization variable to match our measured frequencies up
to some threshold ε, determined by our knowledge of the
statistical noise. Finally, the estimated process matrix χ̂ should
be renormalized such that Tr(χ̂) = d.

IV. TOMOGRAPHY OF A UNITARY PROCESS

A. Minimal sets of probes and measurements

To begin, we consider the most basic problem—QPT
of a unitary map. Here we treat the idealized limit where
the measurement record has neither statistical errors nor
systematic errors. In doing so we establish the mathematical
relationships that determine the minimal set of input states and
POVM elements required for perfect QPT of a unitary map.
We return to the question of statistical errors in the following
section.

In a recent work, Reich et al. [13] developed an algebraic
framework to identify sets of input states from which one can
discriminate any two unitary maps given the corresponding
output states. In particular, a set of input states {ρ in

j } provides
sufficient information to discriminate any two unitary maps

if and only if the identity operator is the only operator that
commutes with all ρ in

j ’s in this set. We call such a set of
states “unitarily informationally complete” (UIC) set. More
generally, under unitary evolution, the output states {ρout

j =
Uρ in

j U †} completely distinguishes U from any other CPTP
map if and only if {ρ in

j } is a UIC set.
An example of such a set on a d-level system is

S =
{

ρ in
0 =

d−1∑
n=0

λn|n〉〈n|, ρ in
1 = |+〉〈+|

}
, (16)

where the eigenvalues of ρ in
0 are nondegenerate, {|n〉} is

an orthonormal basis for the Hilbert space, and |+〉 =∑d−1
n=0 |n〉/√d . Reich et al. [13] considered S in order to set

numerical bounds on the average fidelity between a specific
unitary map and a random CPTP map. In fact, S is a UIC set
with the minimal number of input states required for complete
QPT of a unitary map on a d-dimensional Hilbert space.

To see this, we write the unitary map as a transformation
from the orthonormal basis {|n〉} to its image basis {|un〉},

U =
d−1∑
n=0

|un〉〈n|. (17)

In its essence, the task in QPT of a unitary map is to fully
characterize the basis {|un〉}, along with the relative phases
of the summands {|un〉〈n|}. By probing the map with ρ in

0 ,
we obtain the output state ρout

0 = Uρ in
0 U † = ∑d−1

n=0 λn|un〉〈un|,
which we fully characterize by means of an informationally
complete POVM. Such a POVM has at least d2 − 1 elements.
We then diagonalize ρout

0 and learn {|un〉〈un|}. Without loss of
generality, we take the global phase of |u0〉 to be zero. Next,
we probe the map with ρ in

1 , and fully characterize the out-
put state ρout

1 = ∑d−1
n,m=0 |un〉〈um|/d with an informationally

complete POVM. The {|un〉} are calculated according to the
relation |un〉〈un|ρout

1 |u0〉 = |un〉/d. This procedure identifies
a unique orthonormal basis {|un〉} if and only if the map is a
unitary map.

So far we have not specified the nature of the “informa-
tionally complete measurement on the output state.” Under a
unitary evolution ρout

1 is a pure state. To fully characterize it,
we may therefore use a measurement that is informationally
complete for pure states. Flammia et al. [31] showed that the
2d operators

E0 = a|0〉〈0|,
En = b(1 + |0〉〈n| + |n〉〈0|), n = 1, . . . ,d − 1,

Ẽn = b[1 + i(|0〉〈n| − |n〉〈0|)], n = 1, . . . ,d − 1,

E2d = 1 −
[
E0 +

d−1∑
n=1

(En + Ẽn)

]
(18)

with a and b chosen such that E2d � 0 represent an infor-
mationally complete POVM for pure states with the minimal
number of outcomes. That is, all pure states in a d-dimensional
Hilbert space (except those in a set of measure zero [32]) are
completely determined by the probabilities of these POVM
elements. The total minimal number of POVM elements that
are needed for complete characterization of a unitary map
using the above procedure is thus d2 − 1 + 2d.
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While S is the minimal UIC set, in practice we do not
have reliable procedures to produce a desired, reproducible,
mixed state ρ in

0 . We thus turn our attention to minimal UIC
sets that are composed only of pure states (arbitrary pure
states can be reliably produced using the tools of quantum
control [9]). Such UIC sets are composed of d pure states
that form a nonorthogonal vector basis for the d-dimensional
Hilbert space. For example, the set

|ψn〉 = |n〉, n = 0, . . . ,d − 2,

|ψd−1〉 = |+〉 = 1√
d

d−1∑
n=0

|n〉, (19)

a subset of the states of Eq. (10), is a minimal UIC set of pure
states. A similar set (with d + 1 elements) was considered
in [13]. Here we focus on a different set of d pure states that
is UIC,

|ψ0〉 = |0〉,

|ψn〉 = 1√
2

(|0〉 + |n〉), n = 1, . . . ,d − 1. (20)

This is a subset of the standard states used in QPT, Eq. (9).
The only operator that commutes with all of the projectors
{|ψn〉〈ψn|}, n = 0, . . . ,d − 1, is the identity operator.

A generic tomographic procedure for a unitary process
using the set given in Eq. (20) can be described as follows. First
let the map act on |ψ0〉 and make an informationally complete
measurement on the output state U |ψ0〉 = |u0〉, from which we
can obtain the state |u0〉 (up to a global phase that we can set
to zero). Next, let the unitary map act on |ψ1〉 and perform
an informationally complete measurement on the output
state U |ψ1〉〈ψ1|U †. From the relation U |ψ1〉〈ψ1|U †|u0〉 =
1
2 (|u0〉 + |u1〉) we obtain the state |u1〉, including its phase
relative to |u0〉. We repeat this procedure for every state |ψn〉
with n = 1,. . .,d−1, thereby obtaining all the information
about the basis {|un〉}, including the relative phases in the sum
of Eq. (17), and completing the tomography procedure for a
unitary map. In this protocol, because input and output states
are ideally pure, we may use the POVM of Eq. (18), which has
2d measurement outcomes, as the informationally complete
measurement on each output state. We thus conclude that the
total number of POVM elements needed for reconstruction of a
unitary map based on the protocol above is d×2d = 2d2. This
is the minimal number of measurement outcomes required to
distinguish a unitary map from an arbitrary CPTP map, when
the map in probed with pure input states.

While 2d2 > d2 − 1 + 2d, the total number of measure-
ment outcomes required for the minimal (mixed) UIC set S,
by using a UIC set of d pure states, we can fully distinguish a
unitary map from the set of all unitary maps by measuring sets
of POVMs that have in total only d2 + d elements. The key
ingredient is to note that in the procedure above, we have not
used the orthogonality of the basis {|un〉}. By taking this into
account, we can reduce the number of required measurement
outcomes on each output state. The first step is, as before, to use
|ψ0〉 as a probe state and perform an informationally complete
measurement, which has 2d outcomes, on the output state
|u0〉. From this measurement we determine |u0〉 completely

(up to an irrelevant global phase). Note that the probability of
detecting the outcome E0 is

p00 = 〈u0|E0|u0〉 = a|c00|2, (21)

and since the amplitude c00 can be taken to be positive without
loss of generality, we deduce that c00 = √

p00/a. Similarly,
from the probabilities of the outcomes En and Ẽn we obtain
the real and imaginary parts of c0n, respectively,

p0n = 〈u0|En|u0〉 = b[1 + 2c00Re(c0n)],

p̃0n = 〈u0|Ẽn|u0〉 = b[1 + 2c00Im(c0n)]. (22)

Thus, we obtain full information about the state |u0〉. This
procedure fails for states with c00 = 0, a set of measure zero.
Next, we probe the unitary map with |ψ1〉 of Eq. (20), and
perform an informationally complete measurement on the
output state 1√

2
(|u0〉 + |u1〉). However, since |u1〉 is orthogonal

to |u0〉, it is sufficient to make a measurement that yields
only the first d − 1 probability amplitudes c1n = 〈n|u1〉,
n = 0, . . . ,d − 2, and then use the orthogonality condition
〈u0|u1〉 = 〈u1|u0〉 = 0 to calculate the dth amplitude c1d−1.
A measurement with 2d − 2 outcomes can be, for example,
the measurement of Eq. (18), but with n = 0, . . . ,d − 2.
Therefore, to measure the state |uk〉, k = 0, . . . ,d − 1, we
perform a measurement with 2d − 2k outcomes, and use 2k

orthogonality relations.
Overall, if we have prior information that the map is unitary,

this protocol shows that we can reconstruct it from d2 + d

measurement outcomes. This number is, by construction, the
minimum number of POVM elements required to reconstruct
a unitary map. Although this protocol is slightly more efficient
than the previous one, it assumes much more. Crucially, the
former protocol assumes no prior knowledge of the map and
can be cast as a convex optimization program to uniquely
reconstruct an applied unitary map after informationally com-
plete measurements on d input pure states. This feature makes
it useful for laboratory implementation, when estimating an
applied map from measured data.

B. Simulating tomography of a unitary process

To study the behavior of the reconstruction using the
UIC sets of pure states discussed above, in this section we
simulate QPT based on the LS estimator Eq. (13). Here, and
throughout, we consider a target unitary map on a qudit of
dimension d = 5, a Hilbert space dimension sufficient to test
the the general performance of the estimators. We generate
a random process matrix and let it act on a preassigned set
of input states. We then use an informationally complete
measurement on the output states to generate the expected
probability distribution according to Eq. (12). Finally, we
simulate the measurement record by the outcome probabilities
plus a Gaussian-distributed random variable Wjl with mean
zero and variance 1,

fjl = pjl + σWjl. (23)

The magnitude σ is held constant for all j and l. In this way,
by repeating the measurement many times, the frequencies
are normal Gaussian-distributed random variables with mean
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FIG. 1. (Color online) Fidelity between a unitary map on a
(d = 5)-dimensional Hilbert space and the LS estimate of the process
matrix (averaged over 50 Haar-random unitary maps) as a function
of the number of input states in the absence (a) and in the presence
(b) of statistical noise. The error bars represent the standard deviation.
The data represented in the dotted (red) line are obtained from an
informationally complete measurement on the states produced by
applying the unitary map to all d2 input states in the order specified
in Eq. (9). In the solid (blue) line the first five input states are those
of Eq. (20), and the remaining states are chosen from Eq. (9) in an
arbitrary order. In the dashed (green) line the first five input states are
those of Eq. (19) and the remaining state from Eq. (10). Unit fidelity
is obtained after d = 5 input states in a UIC set. In the presence of
statistical error, as seen in (b), the main features of the fidelity remain
qualitatively the same—by choosing the correct set of input states we
obtain a reliable reconstruction after d input states, up to statistical
error. The statistical fluctuations in the data are modeled by Eq. (23),
a normal distribution, with σ = 10−4.

given by the probability pjl and variance describing the noise
of large but finite counting statistics.

To evaluate the performance of the estimators, we calculate
the (Uhlmann) fidelity between the reconstructed process
matrix χ̂ and the process matrix of a target unitary map
χt = |Ut〉〉〈〈Ut|,

F (χ̂ ,χt) = 1

d2

(
Tr

√√
χtχ̂

√
χt

)2
= 1

d2
〈〈Ut|χ̂ |Ut〉〉 (24)

as a function of the number of input states. By this we
mean that we simulate an estimator that uses all of the data
derived by inputting the first k � d states in a particular
order and measuring the output states with an informationally
complete POVM. The input states are taken to be those of
Eqs. (9) and (10). As we are considering the ideal case of
a perfect unitary map, each output state is measured with
the informationally complete measurement for pure states of
Eq. (18).

To begin, we treat the idealized situation where there is
no noise in the data, i.e., σ = 0 in Eq. (23). We clearly see in
Fig. 1(a) that the order in which one uses the input states affects
the way in which we gain information about the process. In the
dotted (red) line we use the generic order of input states used
for general process tomography given in Eq. (9) starting with
k = 0 and running over n. The plateaus in the plot indicate

that we gain information only from particular states in that
set, while others do not provide additional information. The
positions of the plateaus occur for the same input state for each
of the sampled unitary maps, and they are independent of their
details. To see this point more clearly, take for example the
two input states with k = 0 and n= 1 of Eq. (9), 1√

2
(|0〉 + |1〉)

and 1√
2
(|0〉 + i|1〉). Probing a unitary map with these two

states gives us the same information, namely, the image |u1〉.
Since probing the unitary map with either state gives the same
information, for efficient reconstruction it is sufficient to probe
the map only with one of the states. Therefore, to obtain an
efficient reconstruction of a unitary map with d = 5 pure input
states, the latter must form a UIC set. Such states are used in
the solid (blue) line and the dashed (green) line in Fig. 1. In the
solid line we input the first d = 5 input states in Eq. (20) and
then the remainder of the states of Eq. (9). In the dashed line, on
the other hand, the first five input states are those of Eq. (19),
followed by the remainder of the states of Eq. (10). Note
that in our LS program, for the reconstruction of the process
matrix, we did not assume any structure on the reconstructed
map except that it is a CPTP map. Yet, after d input states
of Eq. (20) or Eq. (19), the LS estimator returns the target
map. Thus, d input states are sufficient to completely identify
a unitary map among all CPTP maps.

Because we assumed a (nonphysical) hypothetical situation
where there is no noise in the data, the fidelity between
the reconstructed map and the target map eventually reaches
unity. In any physical implementation, however, even in the
absence of any systematic errors, finite sampling always results
in statistical noise. Qualitatively, such noise does not affect
the key features of the results above in the large-sampling
(Gaussian-noise) limit, as seen in Fig. 1(b). The effect of the
statistical noise on the fidelity between the estimate and the
target map is twofold: it reduces its maximal value below 1
(depending on the level of noise), and after d input states, the
plateau in the fidelity acquires a shallow slope.

The addition of some statistical noise to the measurement
record still allows us to obtain, more or less, all the information
about the process with d input states; if the map itself is far from
unitary, the reconstruction can fail dramatically. We address
this behavior and methods to validate prior assumptions in the
next section.

V. TOMOGRAPHY OF A NEAR-UNITARY PROCESS

While the previous section established the behavior of the
LS estimator in the situation that the applied map was equal
to the target unitary map, in any physical implementation this
is never exactly true. Our goal is to understand how well the
idealized case considered above carries over to the realistic
case under the assumption that the errors in implementation
are sufficiently small. Moreover, we seek to validate the prior
assumptions that are used in the protocol and to use the
estimation procedures to characterize the kinds of errors that
lead to imperfections in the applied map.

Let us denote the target unitary process Et with correspond-
ing process matrix χt. Due to experimental imperfections, the
process actually being implemented is Ea, with corresponding
process matrix χa. We assume good experimental control so
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that the implementation errors are low, and hence χa is close
to χt. Our goal is to reconstruct χa as faithfully as possible in
order to diagnose the errors that led to the creation of Ea.

We consider two types of imperfections in the implementa-
tion of the map: “coherent” and “incoherent” errors. A coherent
error is one where the applied map is also unitary, but “rotated”
from the target. We define incoherent errors as errors that
are not coherent errors, for example, statistical mixtures of
different unitary maps arising from inhomogeneous control or
decoherence.

Under the assumption that the applied process is close to
a known target unitary map, we expect the resource reduction
obtained in the ideal case, where there were no implementation
errors, to carry over here to the noisy case. We thus study
the performance of the estimators probed with states that are
efficient for reconstruction of a unitary map, e.g., the states
of Eq. (20). Moreover, using the knowledge that χa is close
to χt, we expect that in the eigenbasis of χt, χa is close to
a sparse matrix, and we therefore expect the CS�1 procedure
to yield an estimate χ̂ with high fidelity with χa with very
little data. In addition, since the CSTr estimator performs well
when estimating process matrices that are close to low-rank
matrices, when the target map χt is a unitary map, and χa is
close to χt, we expect that the CSTr estimator should return an
estimate with high fidelity to χa after input of d UIC states.

In some cases, however, our assumption that χa is close to
χt is flawed. Then these estimation procedures will in general
return an estimate χ̂ that is very different from χa. In what
follows we will see that one can utilize the sensitivity of the
estimators to the prior assumptions as an indicator for the
possible types of errors that occurred in the implementation
of the map, and to validate, to some degree, whether prior
assumptions are justified.

As in Sec. IV, in the numerical simulations below we
consider the estimation of random maps on a (d = 5)-
dimensional Hilbert space. We ignore SPAM errors, assuming
that the input states are perfectly prepared and that the output
states are perfectly measured (up to statistical errors) with
informationally complete measurement of the MUB. The
target map Et is a Haar-random unitary map, and the applied
map is generated by its composition with a map that describes
the error channel, Ea = Eerr ◦ Et. For coherent errors, we take
Et[·] = Ut[·]U †

t and Eerr[·] = Uerr[·]U †
err, where Uerr = eiηH ,

with η � 0, and H is a random Hermitian matrix selected
by the Hilbert-Schmidt measure. For incoherent errors we
consider the case where

Eerr[·] = (1 − ξ )[·] + ξ

d2∑
n=1

An[·]A†
n, (25)

so that the applied map is given by

Ea[·] = (1 − ξ )Ut[·]U †
t + ξ

d2∑
n=1

AnUt[·]U †
t A†

n. (26)

The set {AnUt} are Kraus operators associated with a CP
map. Equation (26) can be interpreted as a mixture of two
maps—the target map and an error-related map, with a mixing
parameter ξ ∈ [0,1]. The {An}’s are generated by choosing
a Haar-random a unitary matrix U of dimension d3, and a

FIG. 2. (Color online) The fidelity between the estimate and the
applied map as a function of the fidelity between the target map
and the applied map for the case of coherent (a) and incoherent
(b) errors. The error bars represent the standard deviation. The
estimates are obtained with data from only the five UIC input states
of Eq. (20). Each data point in the plots is obtained by an average
over 50 random target unitary maps each with a random error map.
(a) Coherent errors: The applied map is given by Ua = UerrUt, where
Ut is a Haar-random unitary map, Uerr = eiηH , η ∈ [0,3], and H is a
random Hermitian matrix selected by the Hilbert-Schmidt measure,
normalized to TrH = 1. While the fidelities of the estimator based on
the CSTr and the LS minimizations remain more or less constant, the
fidelity of the estimator based on the CS�1 minimization decreases
as the fidelity between the applied and the target maps decreases.
This is an indicator of the sensitivity of CS�1 to coherent errors.
(b) Incoherent errors: The applied map is given by Eq. (26). The
numerical simulation was done by choosing at random values of ξ

from a uniform distribution on [0,0.6]. For each value we generated
Haar-random unitary target maps Ut and 25 randomly selected
Kraus operators from the Hilbert-Schmidt measure as prescribed in
Ref. [34]. The estimate based on the CS�1 minimization performs
better than the estimate based on the CSTr and the LS minimization
procedures, and thus, the CS�1 estimator is more robust to incoherent
errors of the form of Eq. (26) than either the CSTr or the LS
estimator.

random pure state of dimension d2 from the Hilbert-Schmidt
measure |ν〉 such that An = 〈n|U |ν〉 where the set {|n〉} is a
computational basis [34].

We first test the sensitivity of the CS�1 , CSTr, and LS
estimators to the error type and magnitude. In Fig. 2 we
plot the fidelity between the applied matrix χa and the
reconstructed matrices χ̂ determined by each of the three
estimators, as a function of the fidelity between the applied
process χa and the target χt. The latter fidelity F (χt,χa) is a
measure of the magnitude of the error in the applied process.
Each data point is obtained by an average of 50 random
error processes [Fig. 2(a) for coherent errors and Fig. 2(b)
for incoherent errors] based on informationally complete
measurements from d = 5 UIC input states. As expected, all
of the estimators return reconstructions that have high fidelity
with the applied map when the applied map is close to the target
unitary map Ea[·] ≈ Ut[·]U †

t . In particular in our simulations
F (χ̂ ,χa) � 0.95 when F (χt,χa) � 0.97.
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FIG. 3. (Color online) The fidelity between the estimate and the applied map, F (χ̂ ,χa) (a), and the estimate and the target map, F (χ̂ ,χt),
inset (b), as a function of the number of input states, averaged over 50 applied processes, using different estimators, and under different error
models for the applied map. Error bars represent the standard deviation. Each column corresponds to a different magnitude of implementation
error, represented by the fidelity between the applied and target maps F (χt,χa). Top row: Coherent errors as in Fig. 2(a). For a low error
magnitudeF (χt,χa) = 0.97 ± 0.005, the three estimators return a high-fidelity estimate with the applied and the target maps. The CS�1

estimator returns a reliable estimate with the information obtained from a single input state, while the CSTr and the LS minimization procedures
reliably estimate the map after five UIC input states. The CSTr and the LS estimators are robust to coherent error and perform essentially the
same as the error level increases; here, F (χt,χa) = 0.90 ± 0.005 and F (χt,χa) = 0.83 ± 0.005. A noticeable slope in the fidelity as a function
of the number of input states for the CS�1 estimator, and a sharp kink in this curve for the LS and CSTr estimators, are indicators of the
coherent-error type. Bottom row: Incoherent errors as in Fig. 2(b). The CS�1 estimator returns a reliable estimate with information for higher
error magnitudes; here, F (χt,χa) = 0.90 ± 0.005 and F (χt,χa) = 0.83 ± 0.005 with the fidelity relatively constant after a single input state.
In contrast, the CSTr and the LS estimators are more sensitive to an increase in the magnitude of incoherent errors. As the error level increases,
the sharp transition in the fidelity as a function of the number of input states becomes smoother as the noise increases. These features of the
fidelity curves for the three estimators are indicators of the incoherent-error type.

However, as the implementation error increases and
F (χt,χa) decreases, the performance of the three estimators
depends strongly on the nature of the errors. The CS�1 is more
sensitive to coherent errors than the CSTr and LS estimators,
as seen in Fig. 2(a). Using the data from d = 5 UIC input
states, the fidelity between the CS�1 estimate and the applied
map begins to fall below ∼90% in these simulations for
F (χt,χa) � 0.9 while the CSTr and LS estimators maintain
their high fidelity. This trend is reversed for incoherent errors,
as seen in Fig. 2(b). The CS�1 estimator is more robust to
incoherent errors of the form of Eq. (26) than either the
CSTr or LS estimator because the process matrix is no longer
close to a low-rank matrix, but it is still relatively close to a
sparse matrix in the preferred basis. As the incoherent-error
magnitude increases, the CS�1 method returns an estimate with
(on average) higher fidelity with the applied map than either
the CSTr or the LS estimate. We thus conclude that when the
applied map is sufficiently far from the target unitary map, the

performance of the three estimators varies in a manner that
depends on the type of the error, and we can use this variation
as an indicator of the type of error that occurred in the applied
process.

To understand the validation and diagnosis protocol, we
study the fidelity between the estimate and the applied map
[Fig. 3(a)] and between the estimate and the target map
[Fig. 3(b)] as a function of the number of input states, as
studied previously in Sec. IV. We plot the fidelity averaged
over 50 Haar-random applied maps. The estimator based on
the �1-norm is somewhat unstable when the reconstruction is
based on data taken from very few input states. To overcome
this instability, one can use the same data obtained from
the first d input states, in different orders, to estimate the
process, and then average over the resulting processes. This
reduces the sensitivity to the specific choice of state of the
first input state. In Fig. 3 we have used such averaging for
estimating the process based on 1,2, . . . ,d = 5 input states.
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Each estimated process is the average of the five reconstructed
process matrices, each based on the data associated with an
informationally complete measurement record on the five
states |ψn〉, n = 0,1, . . . ,4, of Eq. (20), taken in cyclic
permutations. The plots on the top and bottom rows correspond
to different levels of coherent and incoherent errors. When the
prior assumptions are valid and we are in a regime of a low error
magnitude (either coherent or incoherent), e.g., F (χt,χa) =
0.97 ± 0.005 in these simulations, the three estimators yield
reconstructions with high fidelity to the applied map (and with
the target map). While the CSTr and the LS estimators require
d UIC input states to reliably characterize the applied map,
with proper formulation, the CS�1 estimator returns a reliable
estimate with information obtained from a single input state.

As the error magnitude increases, our prior assumptions
become less and less valid, and consequently the estimators
yield lower fidelity with the data obtained from of order d

input states. The data suggest that with high confidence the
following conclusions hold. First, the value of the fidelity
F (χ̂ ,χt) obtained from d UIC input states serves to validate
that the applied map was close to a known target unitary map;
the value of F (χ̂ ,χt) decreases when the applied map is further
from the target. Second, if the error in the applied map is not
small, we can infer the dominant source of the imperfection by
examining the behavior of the different estimators. As seen in
Fig. 3(a), with F (χt,χa) = 0.83 ± 0.005, when employing the
CS�1 estimator, a large coherent error results in a curvature in
F (χ̂ ,χt) as a function of the number of input states. Addition-
ally, for the same data, using the CSTr and LS estimators, we
see that F (χ̂ ,χt) exhibits a sharp cusp after d UIC probe states.
In contrast, when the errors are predominantly incoherent, we
see that when employing the CS�1 estimator, F (χ̂ ,χt) is more
or less a constant function of the number of input states. In
addition, there is a more gradual increase of F (χ̂ ,χt) for the
CSTr and LS estimators around d states; the cusp behavior is
smoothed. These variations are signatures of the nature of the
error in implementing the target unitary map.

In the regime 0.90 � F (χt,χa) � 0.97 it is difficult to
distinguish, with high confidence, the nature of errors based
solely on the behavior of F (χ̂ ,χt) as a function of the input
state, and additional methods will be required to diagnose the
process matrix. Nonetheless, a low fidelity of F (χ̂ ,χt) � 0.95
after d input states challenges the validity of our assumptions
and indicates the presence of noise.

VI. SUMMARY AND CONCLUSIONS

We have studied the problem of QPT under the assumption
that the applied process is a unitary or close to a unitary
map. We found that by probing a unitary map on a d-level
system with d specially chosen pure input states (which we
called a UIC set of states), one can discriminate it from any
other arbitrary CPTP map given the corresponding output
states. In the ideal case of no errors, since the latter are
completely characterized by a measurement of a POVM
with a minimum of 2d elements, all together, QPT of a
unitary map requires measurement of a total of 2d2 POVM
elements. This is to be compared with the results of [14]
that a measurement of 5d2 − 3d − 5 Pauli-like observables

is sufficient to discriminate a unitary map from any other
CTPT map, and with d4 − d2 POVM elements required for
discriminating any two arbitrary CPTP map. We then showed
that discriminating a unitary map from any other unitary
map requires measurements of a minimum number of d2 + d

POVMs elements.
We used the methods for efficient unitary map reconstruc-

tion to analyze a more realistic scenario where the applied
map is close to a target unitary map and the collected data
include statistical errors. Under this assumption, we studied the
performance of three convex-optimization-based estimators,
the LS, CSTr, and CS�1 . For each of these estimators we
reconstructed the applied process from the same simulated
data obtained by probing the map with pure input states, the
first d of which form a UIC set. We considered two types
of errors that may occur on the target map, coherent errors,
for which the applied map is a unitary map but slightly rotated
from the target map, and incoherent errors in which the applied
map is full rank but with high purity. In our simulation in Sec. V
we used the states of Eq. (9) to probe a randomly generated
(applied) map with the desired properties.

Our analysis suggests that when the prior assumptions are
valid, the three estimators yield high-fidelity estimates with
the applied map using only the input UIC set of states. We
found that the sensitivity of these methods for various types
of errors yields important information about the validity of
the prior assumptions and about the nature of the errors that
occurred in the applied map. In particular, probing the map
with a UIC set of d pure states and obtaining low fidelity
between the estimates and the target map indicates that the
errors are actually not small and the applied map is not close
to the target unitary map. Furthermore, the performance of the
different estimators and under coherent and incoherent noise,
enables the identification of the dominant error type. One can
then take this information into account to further improve the
implementation of the desired map.

Further extensions will be necessary before this protocol
will be useful in practice. While we have separately studied
the effects of coherent and incoherent errors, in any real
application both types of error will occur to some degree.
We expect that if one error source sufficiently dominates, the
signatures we found in the reconstruction that characterize the
nature of the error will survive. An additional extension of
particular importance is a study of the performance of QPT
in the presence of SPAM errors. In the analysis presented
here we assumed error neither in the preparation of the
probe states nor in the POVM elements measured. Errors
of this sort will certainly contaminate the data and make
it more difficult to both validate prior assumptions and
diagnose errors. Additional analysis is required to calibrate
how SPAM errors affect the distinctive signatures of errors in
gate implementations.

It is also important to study how the form of the input states
that form a UIC set affects our protocol. For example, the
information learned from each input state of Eqs. (19) and (20)
is qualitatively different, as seen in Fig. 1(a). It is important
to design the input states so that the information encoded in
the corresponding output state will be as robust as possible.
The amplitude 1/

√
2 of the states of Eq. (20) was chosen to
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ensure robustness against statistical errors. For example, the
set of states {|0〉,√0.999|0〉 + √

0.001|n〉, n = 1, . . . ,d − 1}
is UIC, but with large enough statistical errors the information
encoded in the |n〉 states becomes noisy and uninformative.
In future work we will examine how the choice of UIC states
minimizes the error in the reconstruction due to statistical
errors and, perhaps, SPAM errors.

Finally, while the analysis presented in work is inspired
by CS methodology, it does not contain all of its elements.
In particular, our estimators make use of the sparsity of the
process matrix in different bases, depending on the nature
of errors and prior information, but we do not make use of
the “uniform uncertainty principle,” (UUP) at the heart of

compressive sampling, which ensures that one can substan-
tially reduce data required for high-fidelity reconstruction [26].
It is an important problem to understand how the UUP applies
in the context of quantum tomography [20], and thus apply
the full methodology of CS to estimate quantum states and
processes, validate prior assumptions, and diagnose errors.
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