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Complete set of circuit equations for stabilizer quantum mechanics
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We find a sufficient set of equations between quantum circuits from which we can derive any other equation
between stabilizer quantum circuits. To establish this result, we rely upon existing work on the completeness of
the graphical ZX language for quantum processes, a two-coloured logical calculus for multi-qubit systems. The
complexity of the circuit equations, as opposed to the very intuitive reading of the much smaller number of ZX
equations, advocates the latter for performing computations with quantum circuits.
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I. INTRODUCTION

Studying quantum theory from a computational and
information-theoretic point of view has provided important
no-go theorems [1–5], a description of new physical phenom-
ena [6–9], and a better understanding of the importance of
quantum resources, like entanglement [10]. The development
of quantum computation as a subdiscipline of computer
science in its own right, moreover, leads us to ask important
new questions that would not normally occur to physicists.

There are several natural logical properties that are impor-
tant with regard to quantum computation. The first one of these
is universality. It has been shown [11,12] that a universal set
of gates for any quantum computation consists of single-qubit
gates and the controlled-NOT (CNOT) gate. This means that any
valid quantum circuit can be built up using composition and
tensor products of gates in this universal set.

Two other essential properties for logical systems are
soundness and completeness. Previous work has focused
on whether abstract diagrammatical systems are sound or
complete for quantum mechanics [13–15]. Here, we wish to
present soundness and completeness in a more concrete setting
by describing them in terms of familiar quantum circuits. This
should clarify the importance of these logical properties from
the viewpoint of quantum computation, in analogy with the
work done on the role of universality in quantum computation.

Assume that we are given a set of equations between
quantum circuits. New circuit equations can be obtained
by locally substituting parts of circuits by equal quantum
circuits.

Soundness guarantees that any equation between quantum
circuits that can be deduced from an original set of equations
is in agreement with quantum theory. A set of circuit equations
is sound if each quantum circuit equation in the original set of
equations agrees with quantum mechanics and if any equation
built from this original set is also in agreement with quantum
theory.

Completeness ensures that any equation between quantum
circuits that is true in quantum theory can be deduced from the
original set of equations. A complete set of circuit equations
for quantum mechanics is one from which the equality of
any two quantum circuits corresponding to the same physical
process can be deduced. Although constructing a set of circuit
equations that is sound for quantum theory is simple, finding a
complete set of circuit equations is far from trivial. Such a set,
if it exists, would provide a logical set of axioms from which

one could formally derive whether or not any two quantum
processes are equivalent.

In this article, we restrict the search for a complete set of
circuit equations to a subclass of quantum mechanics, namely
stabilizer quantum theory. A stabilizer quantum mechanics
process consists of tensor products and compositions of
computational basis state preparations, Clifford unitaries, and
measurements of observables in the Pauli group (or at least one
of these three). Two such physical processes are equivalent if
they can be described by exactly the same quantum circuit.

This naturally leads us to ask the following question:
Can one find a sound and complete set of quantum circuit

equations from which one can deduce the equivalence of any
two stabilizer processes?

We answer this question in the affirmative. The crux of the
proof draws from converting an abstract graphical calculus
into quantum circuits.

In the following, we construct a logical circuit calculus
whose elements correspond to physical stabilizer processes.
We show that this calculus is equivalent to an abstract graphical
calculus called the ZX network [14].

This demonstrates that familiar quantum circuits can always
be used instead of the algebraic calculus to study stabilizer
theory. However, since the ZX network diagrams are not
restricted to the structure of circuits, the ZX network is a
more flexible and convenient tool for calculation. The abstract
calculus relies on reasoning with diagram elements which have
no explicit physical interpretation.

The elements of the circuit calculus, on the other hand, cor-
respond directly to physical systems and processes. Therefore,
we can use this graphical language to study the physical theory
of stabilizer quantum mechanics from a logical point of view.
This allows us to explicitly present a complete set of quantum
circuit equations for stabilizer quantum mechanics.

This is an important result towards understanding the logic
of stabilizer quantum mechanics: This complete set of circuit
equations is a set of axioms from which any two stabilizer
quantum circuits which are identical can be proven to be the
same. Note that the existence of such a definable complete set
of circuit equations cannot be deduced from only studying the
abstract ZX network.

II. STABILIZER QUANTUM THEORY

A very useful subclass of quantum mechanical operations is
stabilizer quantum mechanics. Stabilizer states are eigenstates
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with eigenvalue 1 of each operator in a subgroup of the Pauli
group:

Pn := {αg1 ⊗ · · · ⊗ gn : α ∈ {±1, ± i}, with

gk ∈ {I,σx,σy,σz},∀k ∈ {1, . . . ,n}}.
The Clifford group is the group of unitary operations:

Cn := {U : UgU † ∈ Pn,∀g ∈ Pn}.
It is generated by the phase, Hadamard, and C-NOT gates.
Stabilizer quantum mechanics [16] includes state prepara-

tions in the computational basis, Clifford unitaries, and mea-
surements of observables in the Pauli group. This nonuniversal
subclass of quantum mechanics is particularly important for
a large number of quantum protocols, including quantum
teleportation [7], superdense coding [6], and quantum key
distribution [17]. It also underlies the current theory of
quantum error correction.

By the Gottesman-Knill theorem [18], stabilizer quantum
mechanics can be efficiently simulated by a classical computer.
It has been shown [19,20] that there is a close relationship be-
tween the stabilizer formalism and Spekkens’s toy theory [21].

Independent from work in this paper, a recent result [22]
presents a rewrite system by which any Clifford operator can
be reduced to a unique normal form.

III. ZX NETWORK

We now describe the ZX network [14,23], which is a two-
colored pictorial calculus aiming to reproduce certain aspects
of quantum theory. This calculus directly allowed us to find
the complete set of circuit equations for stabilizer quantum
mechanics presented below.

General network diagrams are built out of parallel (tensor
product) and downward compositions of generating diagrams
from Fig. 1.

The axioms of the ZX network are summarized in Fig. 2.
The (T) rule means that after identifying the inputs and outputs
of any part of a ZX network, any topological deformation of the
internal structure does not matter. The (H) rule was introduced
in Ref. [24].

Two network diagrams can be shown to be equal by locally
replacing some part of a diagram with a diagram equal to it.

ZX network diagrams are logical elements which have
no explicit physical meaning and can be modeled in many
different ways. Indeed, there are structures that appear in ZX
networks but do not have a circuit interpretation. A particular
interpretation in terms of quantum circuits can be constructed
from the diagrams of the ZX network as shown in Fig. 3. The
ZX network is universal for quantum computation since any
quantum circuit can be built in this way.
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β; ; ;;

FIG. 1. (Color online) Generating diagrams for the ZX network.
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FIG. 2. (Color online) Diagrammatic rules for the ZX network.

We know that the ZX network is sound for quantum
mechanics: If two diagrams are equal according to the rules
of the ZX network then their corresponding quantum circuits
are equivalent [14]. Note that the converse is not true: It can
be impossible, from the axioms, to show the equality of two
ZX network diagrams whose corresponding quantum circuits
are equivalent. The ZX network simplifies numerous quantum
calculations. It allows us to study a number of fundamental
aspects of quantum theory from a high-level mathematical
point of view [25–27].

Theorem (Backens) [15]. The ZX network is complete for
stabilizer quantum mechanics.

This means that any equation between two ZX network
diagrams (put into matrix mechanics) which can be shown to
be true using stabilizer quantum mechanics is derivable using
the rules of the ZX network. Note that this completeness result
only requires the axioms in Fig. 2 to hold with phases α and β

in the set {−π/2,0,π/2,π}.

IV. QUANTUM CIRCUITS FOR THE ZX
NETWORK AXIOMS

This section presents the formal proof of the result stated
in the introduction.
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FIG. 3. (Color online) Quantum circuit interpretation of the ZX
network elements.

In light of Backens’s theorem, the quantum circuit equations
corresponding to the axioms of the ZX network will be
complete for stabilizer quantum mechanics. First of all, note
that directly using Fig. 3 to convert the ZX network axioms into
equations between linear operators does not yield a complete
set of equations between quantum circuits since some of
the resulting equations between linear operators cannot be
expressed as quantum circuit equalities.

Therefore, in order to obtain the desired set of sound and
complete circuit equations for stabilizer theory, we need to
clarify the relationship between the ZX network and quantum
stabilizer circuits. In order to do this formally, we introduce a
symmetric monoidal category of stabilizer quantum circuits
and show that it is equivalent to the symmetric monoidal
category of the ZX network.

Lemma. There is an equivalence of categories between
the free symmetric monoidal categories of quantum circuits
FSMC(Circ) and of the ZX network FSMC(ZX) (quotient to
their axioms):

FSMC(Circ)/ ≡Circ↔ FSMC(ZX)/ ≡ZX.

FSMC(Circ) is a free symmetric monoidal category over the
monoidal signature [28]:

S := {C-NOT; SWAP; prepare |0〉; prepare |+〉;
postselect |0〉,postselect |+〉,Rx(α); Rz(β)}.
These are the constistuent “gates” of the symmetric

monoidal category, which can be combined using composition
and the tensor product.

The axioms for the category FSMC(Circ), which are quan-
tum circuit equations corresponding directly to the axioms of
the ZX network (FSMC(ZX)), are given in Fig. 4. This gives
us insight into the structure of the ZX network, namely an
understanding of what the axioms of the network mean, in
terms of familiar quantum circuits.

This equivalence of categories means that there ex-
ists a full, faithful, essentially surjective functor [[·]] :
FSMC(ZX)/ ≡ZX→ FSMC(Circ)/ ≡Circ. For the constructive
proof of the existence of this functor, we use the functor [[·]]
in Fig. 3 and check that it is full, faithful, and essentially
surjective.

In practice, this requires us to find a set of ZX network
equations which are equivalent to the axioms of the ZX
network (≡ZX) and are in a form that can be directly related
to quantum circuits using Fig. 3. Such a set of ZX network
circuitlike equations is shown in Fig. 5, in the Appendix. If
we use the quantum circuit equations obtained by applying
the functor in Fig. 3 to the network equations in Fig. 5 as
the axioms ≡Circ for the category FSMC(Circ), then [[·]] :
FSMC(ZX)/ ≡ZX→ FSMC(Circ)/ ≡Circ is full, faithful, and
essentially surjective by construction.

The Appendix proves that the set of equations in Fig. 5
are equivalent to the ZX network axioms. These ZX network
equations can be directly related to the axioms ≡Circ for the
category FSMC(Circ) in Fig. 4, using the functor in Fig. 3. Note
that the equivalence in this lemma holds for arbitrary phases
α and β in the ZX network axioms.

V. A COMPLETE SET OF CIRCUIT EQUATIONS FOR
STABILIZER QUANTUM MECHANICS

The lemma from the previous section shows that any
quantum circuit equation which, when written in the ZX
network, can be shown to be true using the ZX axioms from
Fig. 2 can be shown to be true using the equivalent circuit
equations in Fig. 4.

Backens’s theorem states that any quantum circuit equation
which can be shown to be true using stabilizer quantum
mechanics is derivable using the ZX axioms when written
as an equation between two ZX network diagrams.

Combining the lemma with the fact that the ZX network
is sound for stabilizer quantum mechanics shows that any
equation between quantum circuits which can be derived from
the circuit equations in Fig. 4 is in agreement with stabilizer
quantum mechanics.

Synthesizing these results yields the main result of this
paper:

Theorem. The set of quantum circuit equations in Fig. 4
with phases α and β in the set {−π/2,0,π/2,π} is both sound
and complete for stabilizer quantum mechanics.

We now present the sound and complete set of quantum
circuit equations for stabilizer quantum mechanics:
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FIG. 4. (Continued.)
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Note that this rule also holds if both sides of the (Ccirc) equation above only contain the top/bottom half of the
quantum circuit (corresponding to the (C) rule with no inputs/outputs respectively).

H = RZ(π
2 ) RX(π

2 ) RZ(π) RX( ) RZ( 2 )Hcirc:

Let us associate a number to each input and output of a quantum circuit Q. If we can obtain a valid quantum
circuit Q′, whose inputs and outputs (which do not include truncated CNOT lines) are numbered in the same way
as Q, by replacing a finite number of times the following quantum circuit fragments:

|+ •· · · ; · · ·
|0

; • X get : +
· · · ;

· · ·
Z get : 0

by wires with the same number as the corresponding input or output (regardless of topological structure), then the
circuits Q and Q′are equivalent. The CNOT vertex attached to one of these circuit elements in circuit Q is included
in circuit Q′.Scirc:

For example, the following circuit equation follows from the application of the (Scirc) rule:

1 Z get : 0

2 • 3
|+ • 4

= 1 • 3
2 4

FIG. 4. Sound and complete set of circuit equations for stabilizer quantum mechanics.
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Therefore, we have found a complete set of quantum
circuit equations for stabilizer quantum mechanics. Any circuit
equation which can be shown to be true using stabilizer
theory—in the sense that both quantum circuits in the equation
correspond to equivalent processes in stabilizer quantum
mechanics—can be derived from this set. This provides insight
into the logical foundation of the stabilizer formalism.

VI. DERIVATION OF AN EQUATION BETWEEN
STABILIZER QUANTUM CIRCUITS FROM THE

COMPLETE SET

The proof of the result relies heavily upon categorical
quantum mechanics. It would have been difficult to find this
set of circuits without the flexibility of the ZX network and the
theorem may have been difficult to prove without appealing to
category theory.

The theorem itself, however, is purely a result about
quantum circuits and stabilizer quantum mechanics, which
can readily be understood without any knowledge of category
theory or formal logic.

In order to make this clear and provide an illustration of the
general result, we now give an example of using the complete
set of circuit equations to formally derive a well-known
equation between stabilizer quantum circuits.

The first quantum circuit of the equation below corresponds
to the standard quantum teleportation protocol [7], where a Bell
state |00〉 + |11〉 is prepared on the second and third qubits
and the Bell basis is measured on the first two qubits (the
result corresponding to |00〉 + |11〉 is postselected). We use
the complete set of circuit equations from Fig. 4 to show that
this is the same quantum process as taking the first qubit to the
third qubit:
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=
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=
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2 )
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This is a proof of the validity of quantum teleportation
from a set of axioms for quantum stabilizer theory. The dotted
boxes indicate a circuit substitution using a circuit equation
from Fig. 4. Any equivalence between two quantum circuits
corresponding to the same stabilizer process can be formally
shown from the complete set of circuit equations by using this
reasoning by substitution.

VII. REASONING WITH THE ZX NETWORK IS MUCH
EASIER THAN WITH THE QUANTUM CIRCUIT

CALCULUS

A quick comparison of the ZX network axioms from Fig. 2
with the set of quantum circuit axioms from Fig. 4 makes it
clear that demonstrating the equivalence of quantum processes
with the quantum circuit calculus will be far more cumbersome
than using the ZX network. For instance, in the previous
section, the circuit calculus takes more than 10 steps to prove
the validity of the postselected teleportation protocol, whereas
the ZX network can verify validity in a single step.
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Now, let us briefly present another example of a derivation
which is less trivial using the ZX network. This demonstrates
how the flexibility of the spider law allows the ZX network to
show validity of a quantum circuit equation far more intuitively
and efficiently than the quantum circuit calculus. Both the ZX
network and the quantum circuit calculus can prove that the
following measurement based quantum computing program
computes a C-NOT gate:

× X get : +
• × •

|+〉 • H H H H X get : +

|+〉 H H
=
•

This only requires a straightforward repeated application
of the (S) law and two applications of the (C) law using the
ZX network [14]. The circuit calculus, however, requires ap-
plications of the (Hcirc), (S6circ), (K2circ), (Ccirc), (S2circ),
(S3circ), and (Scirc) rules to demonstrate the validity of the
previous equation. Therefore, using the circuit calculus to
check correctness not only requires a larger total number of
axioms to be used but also uses more distinct axioms, whose
application is far less intuitive than in the ZX network case.

The examples presented above are circuit equations whose
validity can be shown in a small number of steps. For larger
circuit equations, we expect the use of the circuit calculus to
be unviable. The skeptical reader is challenged to verify the
correctness of the 7-qubit Steane code [29] using the circuit
calculus instead of the ZX network.

We conclude this section by stressing once again that the
elements of the ZX network have no explicit physical meaning.
Indeed, the network elements are not restricted to the circuit
structure of quantum processes. This mathematical flexibility
is at the core of the calculational power of the network calculus
relative to the circuit calculus. For example, a primitive circuit
element like the C-NOT gate is broken down into two abstract
elements in the ZX network, corresponding to red and green
nodes. These elements obey algebraic rules, some of which
have no evident physical interpretation but which appear to
play a fundamental logical role. In contrast, every rule in the
circuit calculus has an explicit physical interpretation.

VIII. CONCLUSION

Studying quantum theory from a logical, computer science
perspective has provided an insight into the foundations
of stabilizer quantum mechanics. The axiomatic approach
presented here provides a representation of the systems and
processes of an operational physical theory, together with all
the equational laws they obey.

Describing physical processes directly using a logical
language may dispense with the need of a more elaborate
mathematical description which would require a more refined
language and further axioms. Some of this extra structure may

be unnecessary and undesirable to fully model an operational
physical theory and may even lead to several redundant
mathematical descriptions of a single physical theory, like the
use of either Hilbert spaces or the ZX network to describe
stabilizer quantum mechanics.

Furthermore, such a formalization of the foundations of
physics allows one to rigorously ask certain questions about
consistency, soundness, and completeness of physical theories.
Is it possible to find a consistent, sound, and complete set
of quantum circuit equations which can prove the validity
of any true quantum circuit equation? Are there fundamental
incompleteness theorems for the foundations of physics?

In any case, the study of the logical foundation of physical
theories is an essential method of testing their validity,
especially in realms of nature in which experiments are very
difficult or impossible to perform. Logic seems to be the most
suited tool to rigorously study the foundations of mathematical
theories of nature from a human perspective.
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APPENDIX A

We now prove that the set of ZX network equations
given in Fig. 5, which are in a form that can be directly
related to quantum circuits using Fig. 3, are equivalent to
the axioms of the ZX network. Note that normalization is not
relevant for the proof of completeness so we ignore scalar
factors.

Note first of all that the rule (T) of the ZX network states
that after enumerating the inputs and outputs of a diagram, any
topological deformation of the internal structure will give an
equal diagram. The (T) rule can be used as part of the new set
of ZX axioms in the form resembling circuit equations. The
topological rigidity of quantum circuits, however, means that
the complete set of quantum circuit equations will contain
several equations for each ZX network rule, one for each
possible choice of assignments of inputs and outputs.

Lemma A1. The ZX network rules (S1′), (S2′), (S3′), (S4′),
(S5′), (S6′), and (S′) taken together are equivalent to the (S)
rules of the ZX network:

α

β
...

...

...

=

...

... ...

...

S1′:

= =S2′:

α + β
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⇔
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This equivalence assumes that the (T) rule holds and that the
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Proof. By Theorems 6.11 and 6.12 of Ref. [14], we know
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and therefore we can assume that (So′) holds in one direction
of the proof. We now add a rule (S′) to the new set of circuit
equations which is trivially equivalent to (So′)
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S′:

where the N box is an arbitrary ZX network. Adding (So′)
to the new set of network equations means that we can now
assume that (So′) holds in both directions of the proof. Note
that we only assume that (C) holds in the proof that {(S1),
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=
π πα

π
=

−α−α

N

...

N

...

...
=S′:

...

...

=
π

π π

=

FIG. 5. (Color online) Alternative ZX axioms in a form resem-
bling quantum circuit equations.

(S2)} ⇒ {(S1′), (S2′), (S3′), (S4′), (S5′), (S6′)} and not in the
other direction.

The Eq. (S6o′) is the same as the equation (S6′). If we
assume that (So′) and (T) hold, then each of the individual
equations (S1o′), (S2o′), (S3o′), and (S5o′) is equivalent to
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(S1′), (S2′), (S3′), (S4′), and (S5′) respectively. For example,

=
(S1o′)

=

= =
(T)
(So′)

(T)
(So′)

shows that (S1o′) is equivalent to (S1′). The other four
equivalences follow in the same way, by repeatedly using (So′).

Lemma A2. The ZX network equations (B1′) and (B2′) are
equivalent to the (B) rules of the ZX network:

= iff B1: =

=iff= B2:

B1′:

B2′:

Proof. Note that we assume that the rules (T) and (S)
hold, which is not a problem since our goal is to prove the
equivalence of the whole set of ZX network equations given
in Fig. 5 with the ZX axioms from Fig. 2. The proof consists
of four steps:

(i) (B1′) ⇒ (B1):

=

⇒

==
(T)

B1′:

(B1′)
(So′)

B1:

(ii) (B1′) ⇐ (B1):

=

⇒

==
(T) (S)

B1′:

B1:

(B1)

(iii) (B2′) ⇒ (B2):

=

⇒

=

=

(T)(B2′)

(T)
=

(T)

=(T)

B2′:

B2:

(iv) (B2′) ⇐ (B2):

=

⇒

==
(T)
(B2)

(T)
B2′:

B2:

Lemma A3. The ZX network equations (K1′) and (K2′) are
equivalent to the (K) rules of the ZX network:

π

= π iff

π

= π ππK1′: K1:

and (K2′) is the same as (K2).
Proof. Once again, we assume that the (S) and (T) rules

hold. We show the equivalence in two steps:
(i) (K1′) (⇒) (K1):

π

= π

⇒
π

= π π=

π

(T)
(So′)

(K1′)

π

(S)

K1′:

K1:

012109-9
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(ii) (K1′)(⇐) (K1):

π

=

π

⇒

π

=

π π

= π

(T) (S)
(K1)

π πK1′:

K1:

Lemma A4. The ZX network equation (C′) is equivalent to
the (C) rule of the ZX network:

α

...

...

= α

HH HH

HH HH

...

...
iff

α

...

...

......

... ...

H H H H

H H H H

α

...

...

... ...

......

=C′:

C:

Proof. Again, we assume that the (S) and (T) rules hold.
This is not a problem since the proof that {(S1′), (S2′), (S3′),
(S4′), (S5′), (S6′)} ⇒ {(S1), (S2)} in Lemma A1 does not
assume that (C) holds. The proof of equivalence goes as
follows:

α

...

...

= α

...

...

......

... ...

α

...

...

...

...

=
(S)
(T)

(S′)
(T)

and similarly:

=

H H H H

H H H H

α

...

...

... ...

......

α

H H
H

H

H
H

HH

=
(S)
(T)

(S′)
(T)

=

...

HH

α

H

...
H

H

α

H

...
H

... H

Therefore, the left- and right-hand sides of equation (C)
are the same as the left- and right-hand sides respectively of
equation (C′), which shows that (C) and (C′) are equivalent.
Note that both (C) and (C′) rules include the case where there
are no inputs or no outputs.

Note that (H′) is the same as (H). Lemmas A1–A4
taken together show that the set of ZX network equations
given in Fig. 5 are equivalent to the axioms of the ZX
network.
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