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The quantum reality problem is that of finding a mathematically precise definition of a sample space of
configurations of beables, events, histories, paths, or other mathematical objects, and a corresponding probability
distribution, for any given closed quantum system. Given a solution, we can postulate that physical reality is
described by one randomly chosen configuration drawn from the sample space. For a physically sensible solution,
this postulate should imply quasiclassical physics in realistic models. In particular, it should imply the validity of
Copenhagen quantum theory and classical dynamics in their respective domains. A Lorentzian solution applies
to relativistic quantum theory or quantum field theory in Minkowski space and is defined in a way that respects
Lorentz symmetry. We outline a solution to the nonrelativistic and Lorentzian quantum reality problems and
associated generalizations of quantum theory.
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I. INTRODUCTION

Quantum theory is a mathematically beautiful theory that
unifies all of known physics with the exception of gravity.
Its probabilistic predictions for experimental outcomes have
been verified for a very large range of physical phenomena
and contradicted by no experiment. Yet, as John Bell so
eloquently and persuasively argued [1], we do not know what
precisely it is that quantum probabilities are probabilities of.
We do not have a mathematically precise description of what
Bell called [2,3] the “beables” for quantum theory. That is,
we do not have a sample space of events, or histories, or
paths, or other mathematical objects, on which the quantum
probability distribution is defined. This is the quantum reality
problem, sometimes referred to as the measurement problem,
rather misleadingly from a modern perspective, since few
physicists now believe that the fundamental laws of nature
involve measuring devices per se or that progress can be made
by analyzing them. As Bell emphasized, the quantum reality
problem becomes particularly conceptually problematic when
we impose the natural condition that any solution should
respect the symmetries of special relativity. We focus here
on solutions to the Lorentzian quantum reality problem, i.e.,
solutions that have this property.

As Bell also stressed [1], mathematical aesthetics are not the
main motivation for solving the quantum reality problem. The
motivation is the following. On the one hand, the impressive
successes of quantum theory and the lack of compelling
alternatives make it natural to try to treat quantum theory as
fundamental and so to derive everything else in physics from
quantum theory. On the other hand, it appears to us that we
live in a quasiclassical world, in which macroscopic variables
are most of the time approximately governed by deterministic
equations of motion, but are also affected by random events
of quantum origin. Moreover, it appears as though this
quasiclassical world emerged from an initial quantum state
with no initial quasiclassical properties. Given a well-defined
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probabilistic version of the quantum theory of closed systems,
we can hope to explain these features from within quantum
theory and indeed to sketch a coherent and unified account
of cosmology, classical and quasiclassical dynamics, and
quantum theory. Without one, we cannot rigorously derive
classical or quasiclassical physics from quantum theory nor
give a coherent treatment of cosmology from within quantum
theory.

The once-standard Copenhagen interpretation of quantum
theory explicitly accepted these limitations. It is the hope of
going further and giving a unified framework that includes
all of modern physics that motivates the ongoing search for a
solution.

The first well-known attempt to address the quantum
reality problem directly was the pilot wave theory of de
Broglie and Bohm [4,5], in which the beables are particle
trajectories whose evolution is defined by the quantum wave
function by a guidance equation. However, de Broglie and
Bohm’s models apply to nonrelativistic quantum mechanics
and are inconsistent with special relativity. No fundamentally
relativistic generalization of the models has been found, nor
is there a convincing extension to quantum field theory. Many
(though not all) physicists also find de Broglie and Bohm’s
trajectories and guidance equations rather mathematically
unnatural and inelegant additions to quantum theory.

Nonrelativistic dynamical collapse models [6,7] attempt to
give another story about physical reality that is consistent with
experiment to date at the price of changing the dynamics and
hence the experimental predictions of quantum theory. (For
some attempts in the direction of relativistic collapse models,
see [8–11].) While scientifically interesting, these and other
generalizations of quantum theory do not address the main
question we focus on here, namely, whether we can find a
mathematically precise description of reality consistent with
standard quantum theory.

Another line of thought, initiated by Everett, suggests that
quantum theory is deterministic and that pure unitary quantum
evolution holds at all times. The problems with this idea and
with the many incompatible proposals for some form of “many
worlds” quantum theory that it has inspired continue to be

1050-2947/2014/90(1)/012107(11) 012107-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.012107


ADRIAN KENT PHYSICAL REVIEW A 90, 012107 (2014)

debated [12]. Still, two relatively uncontroversial points can
be made. First, since, according to most of those who advocate
some version of many-worlds quantum theory, quantum
theory is fundamentally deterministic and the appearance of
quasiclassical physics is supposed to arise as an approximation
via decoherence, no mathematically precise sample space
and probability distribution emerges. Second, many-worlds
theories are radically different types of scientific theory from
standard “one-world” versions of quantum theory (or indeed
from anything previously considered in science) and give a
qualitatively different (and fantastically weird) description of
reality.

Many critics are also unpersuaded either that the appear-
ance of quasiclassical physics can, in fact, be explained by
decoherence or that a fundamentally deterministic theory
can account for an approximate higher level description that
explains the empirical appearance of Born rule probabilities
(see, e.g., [13–15]). However, even convinced advocates of
many-worlds quantum theory, who believe that many-worlds
theories can give a complete explanation of the Born rule,
the appearance of probabilities and of quasiclassicality and
everything else described by standard physics should still be
(and generally are) interested in whether we need to invoke
many-worlds ideas to do all this.

In short, there remains an unresolved and intellectually
fascinating question fundamental to our understanding of
quantum theory. Namely, is there a mathematically precise
solution to the quantum reality problem, consistent with the
symmetries of special relativity, that gives a probabilistic
description of one physical world, consistent with the qua-
siclassical combination of classical and quantum physics that
we actually observe? Or, if this is too much to presently hope,
given that any fully realistic model of quasiclassical physics
would need to describe the real-time evolution of complex
physical structures within quantum field theory and quantum
gravity, is there at least a conceptually clear route to defining
such a solution?

This paper answers this last question positively. The
solution described here uses the strategy of inferring finite
time beables from asymptotic behavior and many of the other
ideas set out in Ref. [16], but is simpler than the proposals
made in that paper.

II. THE REALITY PROBLEM FOR NONRELATIVISTIC
QUANTUM MECHANICS

We should note at the start that the intuitions underlying
our proposed solution come from the properties of relativistic
quantum field theories and from the current tentative under-
standing of the likely asymptotic state of the universe within
presently favored cosmological models. Thus, although the
ideas are described more simply in nonrelativistic quantum
mechanics than in relativistic theories, nonrelativistic quantum
mechanics is not ultimately the most natural setting for them,
and our solution does not necessarily give intuitively appealing
descriptions of reality for simple models of nonrelativistic
systems without further assumptions. We discuss further the
underlying intuitions and the assumptions that need to be
introduced into models to reflect them, below, after giving
the proposal in general form.

Suppose that we have a system of N particles, including
b indistinguishable bosons and f indistinguishable fermions,
with b + f � N , and (N − b − f ) distinguishable particles.
(These choices are made purely to simplify our discussion,
which can easily be extended to allow Mb types of bosons
and Mf types of fermions for any integers Mb,Mf � 0.)
We take b,f > 1 (otherwise, we treat the relevant particle
as distinguishable) and label the bosons by {1, . . . ,b} and
the fermions by {b + 1, . . . ,b + f }; if N − b − f > 0, we
label the remaining distinguishable particles by {b + f +
1, . . . ,N}. We also suppose that the N particles have some
natural division into two classes, which we label 1 and 2. All
indistinguishable particles of the same type belong to the same
class. Both classes contain significant numbers of particles, and
there are significant interactions between the particles in class
1 and those in class 2, which allow the final states of the class
1 and class 2 particles to be highly correlated.

Our proposal involves (as mathematical abstractions) final
and intermediate time measurements of the masses at points
in space, which are functions of particle position operators.
Position (more precisely, the mass at a given position) thus
plays a special role as a mathematically preferred observable.
We thus suppress spin and any other internal degrees of
freedom to simplify the notation; note that our proposal
requires no additional spin or other measurements to be
introduced in systems where they are relevant.

The system’s position space wave function has the appro-
priate statistics. If ρb is a permutation of {1, . . . ,b} and ρf

is a permutation of {b + 1, . . . ,b + f }, write ρ = ρb ⊗ ρf ⊗
IN−b−f for the corresponding permutation of {1, . . . ,N}. Then
we have

ψ(xρ(1), . . . ,xρ(N)) = ε(ρf )ψ(x1, . . . ,xN ),

where ε is the sign of ρf .
We treat this as a closed system without external inter-

vention, which comes into existence at t = 0 and continues
to a final time t = T , at which point time and physics end.
This is a mathematical device, not a fundamental assumption
about nature. Later we consider the limit T →∞, which gives a
more conventional (although in this model still nonrelativistic)
picture in which physics begins at some point in the past and
continues forever thereafter.

Suppose we are given the initial state |ψ(0)〉 at t = 0 with
wave function

ψ(x1, . . . ,xN ; 0) = 〈 x1, . . . ,xN | ψ(0) 〉
and that we are given a Hamiltonian H . Quantum theory then
gives the Schrödinger evolution

|ψ(t)〉 = exp(−iH t/�)|ψ(0)〉,
or, in terms of wave functions,

ψ(x1, . . . ,xN ; t) = exp(−iH t/�)ψ(x1, . . . ,xN ; 0).

Now consider, for each of classes 1 and 2, the corresponding
mass-density function defined by a mass-weighted sum of
position operators,

ρ(j )(x; t) =
∑
i∈Cj

miρi(x,t),
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for j = 1,2. Here the set Cj denotes the labels of all particles
in class j , and

ρi(x,t) =
∫

dx1 · · · dxi−1dxi+1 · · · dxN

|ψ(x1, . . . xi−1,x,xi+1, . . . ,xN ; t)|2
= 〈ψ(t) | P x

i | ψ(t)〉, (1)

where

P x
i = I1 ⊗ · · · Ii−1 ⊗ |x〉i〈x|i ⊗ Ii+1 ⊗ · · · ⊗ IN

is the formal projection operator onto the value xi = x of
the ith coordinate. Note that, while P x

i is not even formally
well defined if i is a bosonic or fermionic label, the sums∑b

i=1 miP
x
i and

∑b+f

i=b+1 miP
x
i are. (The identical bosons

have equal masses, m1 = m2 = · · · = mb; similarly, mb+1 =
mb+2 = · · · = mb+f .)

The operators
∑

i miP
x
i and

∑
i miP

y

i commute. So,
formally, we can consider the effect of a simultaneous mea-
surement of all such operators at time t = T . This produces a
possible final time distribution

ρf (x,T ) = ρ
(1)
f (x,T ) + ρ

(2)
f (x,T ) =

∑
i

miδ(x − yi),

randomly chosen from the sample space of all distributions
with total mass

∑
i mi , via the probability distribution defined

by |ψ(0)〉,H and the Born rule. This is the first ingredient
in our construction of a beable description of nonrelativistic
quasiclassical reality. We take the randomly chosen pair
ρ

(1)
f (x,T ) and ρ

(2)
f (x,T ) to define the “real world” that is chosen

from among the sample space of possible worlds that could
arise given the initial state and Hamiltonian. This final time
measurement is not meant to be thought of as carried out by any
external system: We treat the N particle universe as a closed
system with no external observers or devices. It is simply
a mathematical operation that allows a precise description
of the sample space of possible worlds and a corresponding
probability distribution.

Next we consider the expected value of ρ(j )(x,t) (for 0 <

t < T ), given the initial state |ψ(0)〉 and Hamiltonian H , when
we condition on the outcome of our final time measurements
producing the final distribution ρ

(j̄ )
f (x,T ). Here j̄ denotes the

other class to j ; thus, we consider expected values of ρ(1)(x,t)
given the final distribution ρ(2)(x,T ) and vice versa.

Since we have a postselected final outcome, this expectation
value depends on precisely which set of commuting operators
are simultaneously measured. For each point in time t , we con-
sider a simultaneous measurement of ρ(j )(x,t) at all points x ∈
R3. The measurements for each t are considered separately.

Formally, the relevant expectation value is then given by the
Aharonov-Bergmann-Lebowitz rule [17], extended to the case
where the intermediate and final projection operators may be
degenerate. We write {Mj

k : k ∈ K} for the possible nonzero
outcomes of measuring the mass of particles in class j at a
point in our system, so that each M

j

k = ∑
l∈L ml for some

nonzero subset L ⊆ C(j ) ⊆ {1, . . . ,N}. Write P
x,dV
M for the

projection onto the space of states with mass M in a volume
element dV around the point x. Then we have

〈ρ(j )(x,t)〉 = lim
dV →0

1

dV

∑
k

Mk

Aj (Mk,x,t,T )

Bj (t,T )
, (2)

where

Aj (Mk,x,t,T )

=
∑

{k1,...,kr :ki∈C(j ) ∀ iand
∑r

i=1 Mki
+Mk=M (j )}∫

dy1 · · · dyrTr

{
Pf exp[−iH (T − t)/�]P x,dV

Mk

×
N−1∏
i=1

P
yi

Mki
exp(−iH t/�)P0 exp(iH t/�)P x,dV

Mk

×
N−1∏
i=1

P
yi

Mki
exp[iH (T − t)/�]

}
, (3)

with the yi integrals taken over all of space outside dV , and

Bj (t,T ) =
∑

{k1,...,kr+1:ki∈C(j ) ∀i and
∑r+1

i=1 Mki
=M (j )}

∫
dy1 . . . dyr+1

× Tr

{
Pf exp[−iH (T − t)/�]

×
r+1∏
i=1

P
yi

Mi
exp(−iH t/�)P0 exp(iH t/�)

×
r+1∏
i=1

P
yi

Mi
exp[iH (T − t)/�]

}
. (4)

Here P0 = |ψ(0)〉〈ψ(0)| and Pf is the projection onto the
space of states for which the class j̄ particles have final mass
density ρ

j̄

f (x,T ), and

M (j ) =
∑
l∈C(j )

ml.

That is, our definition of an expectation value for the mass
density of class j particles at intermediate times uses only the
postselected data from the other class, j̄ .

That is, for an infinitesimal volume element dV around x

〈ρ(j )(x,t)〉dV =
∑

k Mk

∑
wt(all outcomes including mass Mk in volume dV around x)∑

wt(all outcomes)
,

where wt( ) denotes the pre- and postselected probability
weights used in the above expression, and the outcomes

considered are of simultaneous mass measurements of all the
class j particles at all points y ∈ R3. We could also include
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projections onto the zero mass eigenspaces at all points other
than y1, . . . ,yr−1,yr in the denominator, and at all points other
than y1, . . . ,yr−1,x in the numerator. However, these would
not change the expressions here, since we have a fixed number
of positive mass particles of total mass

∑
l∈C(j ) ml .

This is the second ingredient in our construction. Given the
final outcomes ρ

(j )
f (x,T ), we take the expressions

ρ
(j )
T (x,t) = 〈ρ(j )(x,t)〉

just calculated (using the postselected final conditions for the
complementary class j̄ to define the beable for class j ) to
define the beables at position x and time t for a universe in
which physics runs from time 0 to time T .

The full set of beables describing reality for our first model,
in which all physics takes place between times 0 and T , is thus
given by{

ρ
(j )
T (x,t) : 0 < t < T, x ∈ R3, j = 1,2

}
. (5)

To make further progress, we need a key assumption. This is
that quantum physics in our model universe involves nontrivial
interactions between the particles in the two classes at finite
times, creating effective records, but becomes, in a sense to be
characterized more precisely, asymptotically trivial as t→∞.

A possible intuition that would support this assumption
is that, while initially the particles often are localized in the
same region and interact, eventually all particles that can decay
will have decayed, all particles that are capable of interacting
with one another either do interact or become more and more
widely separated, nongravitational interactions become rarer
and rarer, and the asymptotic evolution is effectively described
by a free quantum field theory. This intuition relies on being
able to think of the asymptotic physical state as composed
of elementary particles, or at least as behaving qualitatively
as though it were. It is supported by some cosmological
scenarios that are presently taken seriously, for example (and
most cleanly), in “big rip” scenarios. To model something
like this in the nonrelativistic setting requires in particular that
interactions between particles in class 1 and those in class 2 are
initially significant but are switched off, or become negligible,
at large times.

A weaker intuition, still adequate to justify the assumption,
is that the outcome of a typical indeterministic quasiclassical
event leaves an indelible asymptotic record in the mass
densities of one or both classes (both being required if the
event itself is quasiclassical with respect to variables defined
by both classes). That is, in principle, a measurement of the
class mass densities at large final time T allows one to infer all
initially undetermined outcomes, and thereby the entire history
of quasiclassical physics, which is encoded in the inferred
mass-density distributions at times between 0 and T .

For example, suppose that the Schrödinger equation creates
what is traditionally thought of as a measurement event at
time t < T . That is, suppose that, around time t , a quantum
system interacts with an apparatus whose pointer initially
has a single approximately localized position and creates a
superposition of two states corresponding to macroscopically
separated approximately localized pointer positions at time
t + δ. Suppose also that the pointer comprises particles in class
1 and its environment contains particles in class 2 that interact

with it. In a fairly general class of such models, the position
degrees of freedom of many particles in the environment
typically become coupled to the pointer positions, and produce
effective records (i.e., multiply redundant subsystems that are
persistently correlated with the original data) of those positions
in the environment. The class 2 mass-density measurement at
the final time T distinguishes different states of these records
and so indirectly measures the pointer position at times soon
after t + δ, whether or not the pointer itself remains intact or
quasiclassical indefinitely.

Of course, the point of giving a precise definition of
reality in terms of beables is to go beyond intuition. In
our models, a definite quasiclassical measurement event is
ultimately a higher level description, which can generally
only be approximately characterized in the quasiclassical
theory based on the beables. Such an event occurs if and
only if it leaves effective records in the final time mass-density
measurement(s) for the relevant class(es). Thus, a hypothetical
experiment successfully demonstrating interference between
two paths of a macroscopic object would not produce definite
events selecting one of the paths, since the interference implies
near-perfect isolation of the beams from all other particles, and
hence a typical final time mass-density measurement outcome
will give almost no path information.

Intuitions aside, then, the precise assumption we need
to make is that the probability distribution for the possible
configurations of beables describing reality (5) within each
fixed time interval [0,t], for any t < T , has a well-defined limit
as T →∞. Given models in which this holds, we can then test
whether typical beable distributions represent quasiclassical
reality appropriately [18].

Our asymptotic assumption translates as follows. Let C
(j )
t

(for j = 1,2) be any coarse-grained subsets of the sets of
continuous functions

{ρ(j )(x,t ′) : x ∈ R3,0 � t ′ � t}
obeying (in our nonrelativistic model) the constraint∫

d3xρ(j )(x,t ′) =
∑
l∈C(j )

ml

for any t ′. Let

ProbT (C(1)
t ,C

(2)
t )

be the joint probability that {ρ(j )
T (x,t ′) : x ∈ R3,0 � t ′ � tf }

belong to C
(j )
t for j = 1 and 2, given our constructed

probability density function on the set of possible ρ
(j )
T . Then,

assuming that

Prob∞
(
C

(1)
t ,C

(2)
t

) = lim
T →∞

ProbT

(
C

(1)
t ,C

(2)
t

)

exists, we define this expression to be the probability that
reality up to time t is described by a time-evolving mass
distribution for class j particles belonging to C

(j )
t , for j = 1

and 2. This, together with the additivity of the probability
measure on finite disjoint measurable subsets of the sample
space, completes the definition of the probability distribution
on the beable configurations, i.e., on the possible descriptions
of reality, in this nonrelativistic model.
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We consider other nonrelativistic beable models below.
First, though, we discuss relativistic generalizations of the
above model.

III. THE REALITY PROBLEM FOR RELATIVISTIC
QUANTUM THEORY

It is not presently possible to give a completely rigorous
discussion of the reality problem for any physically relevant
relativistic quantum field theory in Minkowski space, because
no version of relativistic quantum field theory is well-enough
understood to allow quasiclassical equations to be rigorously
derived from first principles. We cannot even give a fully
mathematically rigorous quantum field-theoretic description
of any realistic physical experiment, for example, of electrons
passing from a source through a two-slit region and registering
at detectors. Evidently, then, we cannot hope to prove rigor-
ously that a particular mathematical construction attached to
such a description gives a description of physical reality with
any given desired property.

However, we can aim to separate the conceptual issue
posed by the reality problem from the technical issues that
prevent us from carrying out complete calculations describing
realistic experiments, or other phenomena characterized by
quasiclassical physics, in quantum field theory. We can also
hope to make it plausible that a proposed solution correctly
describes quasiclassical reality in realistic models. This is the
strategy we follow here.

We now suppose that the initial state |ψ0〉 is given on some
spacelike hypersurface S0 and that some relativistic unitary
evolution law is given. The Tomonaga-Schwinger formalism
allows us to define formally the evolved state |ψS〉 on any
hypersurface S in the future of S0 via a unitary operator
US0S . These future hypersurfaces S play the same role in our
relativistic formalism as the final time coordinate, t = T , does
in the nonrelativistic case.

As in the nonrelativistic case, we may assume that the rele-
vant fields are naturally divided into two (or more) classes. Our
reason for employing this construction in the nonrelativistic
case is the unphysical nature of nonrelativistic propagators,
which imply that propagations from a single space point x to
any other point y in any time t are equally probable.

Since relativistic propagators encode the causal structure of
the underlying space-time, and tend rapidly to zero outside the
future light cone, it seems to us an open question—which
depends on the details of the fields and their interactions
and the underlying assumptions about the initial state—
whether dividing the particles up into classes is necessarily
required in the case of relativistic field theory. Our relativistic
constructions could be considered for a single class of particles,
in which case the stress-energy expectations at intermediate
points would be defined by postselecting on the total final
hypersurface mass-energy density operator. We intend to
explore this possibility further in future.

We discuss here the case of two classes, j = 1 and 2,
analogous to the discussion given explicitly in the nonrela-
tivistic case above. Our definitions can easily be applied to the
case of a single class. Both the relativistic and nonrelativistic
definitions can also easily be extended to other postselection

rules, involving more than two classes; we discuss these
possibilities in the next section.

We use the following natural generalization of the final time
measurements of mass density in our nonrelativistic models.
For any given smooth hypersurface S in the future of the initial
hypersurface S0, we consider the effect of joint measurements
of the local mass-energy density operators for classes 1 and 2,
T

(j )
S (x) = T

(j )
μν (x)nμnν , carried out at each point x ∈ S, where

nμ is the forward-pointing timelike unit 4-vector orthogonal
to the tangent plane of S at x. We assume here the two mass-
density operators commute.

This gives us a probability distribution on possible mass-
energy distributions t

(j )
S (x) on S. Conditioned on any given

outcome of the t
(j )
S (x), we wish to calculate expectation values

of the stress-energy tensors for the field classes, 〈T (j̄ )
μν (y)〉, at

each point y between S0 and S.
We again define these expectation values using the

Aharonov-Bergmann-Lebowitz formalism. As in the nonrela-
tivistic case, we need to take appropriate limits. Again, because
we have a postselected final outcome, the expectation value
〈T (j̄ )

μν (y)〉 depends on the other commuting observables that
we consider as jointly measured. Because we no longer have
an absolute time coordinate, we need to define the relevant
measurement more carefully.

For any point y in the future of S0, define the effective past
boundary �(y) of y in our model to be �0(y) ∪ S0(y), where
�0(y) is the set of points in the lightlike past of y and the
future of S0, and S0(y) is the set of points in S0 not in the past
light cone of y. Let {Si(y)} be a sequence of smooth spacelike
hypersurfaces that include y such that

lim
i→∞

Si(y) = �(y).

Consider a joint measurement of T
(j̄ )
μν (y) and of T

(j̄ )
Si (y)(x) for

all x ∈ Si(y) other than y. Given the initial state |ψ0〉 on S0

and the relevant postconditioned final measurement outcomes
t

(j )
S (x) on S, the ABL rule gives a value

〈
T (j̄ )

μν (y)
〉
Si (y)

for the pre- and postselected stress-energy tensor expectation
value which, as our notation suggests, may, in general, depend
on Si(y). It is important to note that, as in the nonrelativistic
case, this expectation value depends on the full specification of
the measurement. To apply the ABL rule, we need to include
all possible outcomes of all the measurements of T

(j̄ )
Si (y)(x). We

comment further on this later.
Finally, we define

〈
T (j̄ )

μν (y)
〉 = lim

i→∞
〈
T (j̄ )

μν (y)
〉
Si (y),

assuming both that this limit exists and that it is independent
of the chosen limit sequence {Si(y)}.

For a toy model in which all of physics takes place between
S0 and S, the two functions t

(j )
S (x) on S define the particular real

world that was randomly selected. The pre- and postselected
expectation values 〈T (j̄ )

μν (y)〉, for y between S0 and S and j = 1
and 2, are the beables corresponding to the given real world
and define physical reality between S0 and S in our model.
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We then consider the asymptotic limit in which S tends
to the infinite future of S0. Suppose that S1 is some fixed
hypersurface in the future of S0. Let C

(k)
S1

(for k = 1 and 2)
be any coarse-grained subsets of the sets of continuous tensor
functions {t (k)

μν (x) : x ∈ R4,S0 < x < S1}, where the notation
S0 < x < S1 means that x lies in the future of some point in
S0 and the past of some point in S1. Let

ProbS

(
C

(1)
S1

,C
(2)
S1

)
be the probability that {t (k)

μν (x) : x ∈ R4,S0 < x < S1} belongs

to C
(k)
S1

, for k = 1 and 2, given our constructed probability
density function on the set of possible functions T (j )(x) :
S→R. Then, assuming that

Prob∞
(
C

(1)
S1

,C
(2)
S1

) = lim
S→∞

[
ProbS

(
C

(1)
S1

,C
(2)
S1

)]

exists, we define this to be the probability that reality between
S0 and S1 is described by time-evolving mass distributions
belonging to C

(k)
S1

for k = 1 and 2. This completes our proposed
description of reality in this relativistic model.

Note that an interesting alternative model can be defined by
using the effective future boundary (defined analogously) in
place of the effective past boundary. Again, this requires defin-
ing the expectation value at x via a limit using measurements
on spacelike hypersurfaces that tend to the effective future
boundary of x.

Another interesting possibility to explore, in discrete finite
lattice models of space-time, would be to define the expectation
value at x via a measurement on the first (or last) spacelike
hypersurface through x from a foliation defined by stochastic
forward time evolution from S0, as in [19].

IV. DISCUSSION

We have described a way of defining a mathematically
precise description of physical reality that is not only consistent
with standard nonrelativistic quantum mechanics, but also
involves only familiar quantities that are simply defined within
the theory, namely, expectation values of mass density. In
contrast to Everett’s ideas, this solution to the reality problem
describes a randomly chosen single real physical real world,
selected from a well-defined probability distribution in an
entirely standard and unproblematic way. In contrast to de
Broglie-Bohm theory, we believe our solution will appear
mathematically natural to anyone familiar with quantum
theory. In contrast to dynamical collapse models, our solution
requires no change to quantum dynamics.

We have also extended this to a Lorentz covariant solution
of the quantum reality problem for quantum field theory
in Minkowski space. As in the nonrelativistic case, this
solution requires assumptions about the asymptotic behavior
of solutions to quantum dynamics given a realistic unitary
evolution law and initial conditions.

Our asymptotic assumptions can be tested directly in
reasonably complex models in the nonrelativistic case, with
the caveat we noted above: To be reasonable tests, such models
need to include assumptions that reflect the underlying field-
theoretic and cosmological intuitions. Relativistic quantum
field theory is not itself rigorously enough developed to allow

either our asymptotic assumptions or the beable configurations
they are intended to define to be directly calculated for complex
systems. Our solution to the reality problem in this case thus
involves formal definitions. It could, however, still be tested
in hybrid toy models in which, for example, the asymptotic
early and late time states are taken to have fixed finite particle
number.

Of course, no proposal for solving the reality problem in
relativistic quantum field theory can be fully rigorously tested,
given our presently limited understanding of the latter. At
present, the best one can hope for is to show that there is
a route to a solution with no evident conceptual obstacles,
and this we claim to have achieved. Our proposal’s ability to
reproduce quasiclassical physics, and the limiting behaviors it
requires, can be tested in toy models.

Relativistic quantum theory has been, purportedly, one of
our two fundamental theories of nature and may yet subsume
the other—general relativity—in some future quantum theory
of gravity. Yet, to date, it has been completely unclear whether
it admits any conceptually clear description of physical reality
or allows a conceptually clear derivation of classical dynamics
or other higher-level theories. This has left serious questions
over its status as a fundamental theory—in Bell’s words, it
has seemed to “carry the seeds of its own destruction”—and
led Bell and many others to suspect that these problems can
only be solved by a deeper theory with different dynamics
and experimental predictions. Replacing these fundamental
conceptual problems with technical questions about asymp-
totic behavior—in a theory that has in any case always been
understood to have deep unresolved technical questions—
seems to us a considerable advance.

We do not know for certain whether some appropriately
further extended version of our asymptotic assumptions holds
true in realistic cosmologies that include a theory of gravity, or,
a fortiori, whether it holds true in our universe. However, the
essential idea that final states are asymptotically well-defined
superpositions of states of different mass density configura-
tions is at least consistent with some standard cosmological
pictures. It is also consistent with the standard intuition that
quantum field theory should be understood as describing
processes from which asymptotically well-defined particle
states emerge.

Modulo these caveats, we believe our solution method is
currently the most promising way of obtaining a physically
sensible description of a single quasiclassical world consistent
with quantum theory and special relativity and plausibly
consistent with gravity and cosmology.

The method could, of course, be applied to other physical
quantities, and so our solution is not unique. For example,
probability or charge densities could be used instead of
mass densities in the nonrelativistic case. In the relativistic
case, the final measurements could be of Jμnμ, and the pre-
and postselected expectation values of the electromagnetic
4-current Jμ could be used instead of that of the stress-energy
tensor to define the real beables.

Other possibilities could also be considered. Nonetheless,
relatively few options seem particularly natural, and among
these, mass density (in the nonrelativistic case) and the stress-
energy tensor (in the relativistic case) seem to us the most
natural. A strong additional motivation for focusing on these
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options is that they suggest new ideas to explore in unifying
quantum theory with gravity. We discuss these further below.

There are also various ways in which the particles (in the
nonrelativistic case) or fields (in the relativistic case) could
naturally be divided into two or more classes, and various
postselection rules that could be considered. For example,
one might take the classes to be bosons and fermions, or
massive and massless particles (or, more speculatively, matter
and gravitational fields, or ordinary and dark matter, in the
appropriate contexts). Which choice(s) of classes are most
natural depends on the Hamiltonian and the asymptotic form
of the final state (and thus also on the initial state). Any given
physical theory in which these are specified should allow
relatively few options that seem particularly natural.

In the variants of our model in which several classes are
considered, one natural rule for defining the class j mass
densities is to postselect on the final outcomes for all the
other classes; again, other rules could be considered. Once
again, though, relatively few options for choosing classes,
or postselection rules, are likely to seem particularly natural,
given a specific theory.

One other variant of our model that is worth noting is that
in which there are two classes of particles or fields, but only
the mass density (respectively, mass-energy density) for one
of them defines beables. While this seems less natural if the
ultimate aim is to couple the mass(-energy) beables directly
to a quasiclassical gravitational field, it seems adequate as a
solution to the quantum reality problem per se. A quasiclassical
picture of reality can seemingly be described adequately in
terms of the mass-energy densities of fermions or massive
particles, for example.

A. Implications for earlier approaches
to the quantum reality problem

Although admittedly incomplete, this work raises, in our
view, significant questions about previous approaches to the
reality problem. For example, why resort to de Broglie-
Bohm theory, with its inelegant combination of particlelike
trajectories guided by an evolving quantum wave function,
if a solution to the nonrelativistic quantum reality problem
exists that uses only simple quantities that arise naturally in
quantum theory? The case against de Broglie-Bohm theory
seems all the stronger when we consider the relativistic reality
problem, and the fundamental conceptual problems that arise
when one tries to define any fully Lorentz covariant version of
de Broglie-Bohm field theory.

Similarly, why resort to many-worlds ideas, if there is a
simple one-world solution to the reality problem? Why try to
deal with the problem of the appearance of quasiclassicality in
many-worlds quantum theory, and the necessary imprecision
in defining the branching worlds, when we can give a simple
picture with a single, precisely defined quasiclassical world?
Why struggle with what seems to many (e.g., [13–15]) the
hopeless task of trying to make sense of probability in
a deterministic many-worlds theory if a straightforwardly
probabilistic one-world description is available?

Moreover, if there is a reasonably natural way of solving
the reality problem within standard quantum mechanics, do
we need to consider collapse models, with their ad hoc

assumptions and extra parameters? The question seems even
more apt given that this solution also extends naturally
to relativistic quantum theory and—while admittedly not
rigorously defined in this context—still appears to pose fewer
technical or conceptual problems than attempts at relativistic
generalizations of collapse models.

Bell said [20] of Ghirardi-Rimini-Weber’s original discrete
dynamical collapse model [7]: “I am particularly struck by
the fact that the model is as Lorentz invariant as it could be
in the nonrelativistic version. It takes away the ground of my
fear that any exact formulation of quantum mechanics must
conflict with fundamental Lorentz invariance.” The ideas for a
solution to the reality problem outlined in this paper take away
the ground of my own prior hunch that any exact Lorentz
invariant formulation of quantum theory must necessarily
alter the dynamical equations (as the Ghirardi-Rimini-Weber
theory and other dynamical collapse models do). Given the
extraordinary beauty of both special relativity and quantum
theory this prompts the following question: If we can solve the
reality problem and retain both theories intact, (why) would
we want to consider alternatives that break one or the other?

B. Generalizations of quantum theory

1. Generalizations using beable guided quantum theory

This last question has some real force. In particular, if the
ideas outlined here work, then the case for dynamical collapse
models does seem weakened. However, it is by no means
purely rhetorical. There are still good reasons for continuing
to explore generalizations of quantum theory, and indeed the
solutions to the quantum reality problem described above also
suggest intriguing new directions for such exploration.

One entirely uncontroversial motivation is that, however
beautiful quantum theory appears, and even if the reality
problem and all other conceptual and technical issues can be
resolved within standard quantum theory, it still may turn out
not to be the final theory of nature. We want to test our best
current theories as strongly as we can. To do this, we need
alternatives against which to test it; ideally, we would like
parametrized classes of alternatives to quantify the extent to
which it has been tested. Such alternatives need not be as
beautiful or compelling as our best theory; indeed, almost by
definition, they will not be. They can still serve a valuable role
as foils, or, to be open minded about it, as ways of pointing out
domains in which our best theory might, in fact, break down,
even if not necessarily quite for the reasons those alternative
theories suggest.

There is, though, also a strong case for taking generaliza-
tions of quantum theory seriously on their own terms [21]. Any
solution to the quantum reality problem defines a probability
distribution on configurations of beables. It is perfectly logi-
cally consistent for this distribution to be defined only by the
initial conditions and quantum dynamics, as our solutions are.
However, there is, arguably, something oddly epiphenomenal
about the status of the beables in such a theory. On the one
hand, they are the building blocks of physical reality. On the
other hand, they seem to play a mathematically secondary
role to that of the evolving quantum state. It determines their
probability distribution, while they have no effect on it.
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Of course, it could be that nature is described this way. It is
hard to know just how much weight to put on the intuition that
physically crucial quantities in a fundamental theory should
play a more central role in the mathematics [22]. Still, the
intuition is there. It also motivates a class of generalizations
of quantum theory, which moreover suggest a new way of
thinking about quantum theory and gravity. So, whether or
not the underlying intuition is fundamentally right, it suggests
potentially valuable new directions for theoretical physics.

Recall that, given initial conditions and dynamics, our
solution defines a probability distribution on configurations
of beables—in the form of space and time-dependent
mass-density or stress-energy tensor expectation values—that
define reality. Any such construction can be generalized by
taking the probability distribution to depend not only on
the initial conditions and dynamics but also on the beable
configuration itself [21]. To give just one example among
countless possibilities, the probability of configurations could
be enhanced or suppressed depending on some global measure
of its uniformity over time. Different generalizations can
be obtained from versions of our solution involving charge
density or other quantities.

The choice of stress-energy tensor expectation values as
beables for relativistic quantum field theory is particularly
suggestive if we allow the probability distribution for con-
figurations of these beables to depend on laws not defined
only by the evolving quantum state. This suggests the thought
that it might be possible to unify gravity and quantum
theory via probabilistic quasiclassical laws that couple the
background geometry directly to the quasiclassical beables
defining a matter distribution, without necessarily requiring
any quantized gravitational field.

The idea here is not to restrict to defining versions of
semiclassical gravity by equations of the form

Gμν + gμν� = 8π〈Tμν〉,
where the expectation value on the right-hand side is defined by
one of the recipes given above (summing over the expectation
values for the classes if there are two or more classes).
Such equations need not generally be everywhere consistent.
Instead, the goal is to extend the probability distributions
defined above on beable configurations, represented by 〈Tμν〉,
to joint probability distributions on Riemannian manifolds and
tensor fields defined on such manifolds, with the property that
the quasiclassical Einstein equations emerge as approximately
valid in appropriate domains. We intend to explore this further
in future work.

C. Relation to previous work

The solution to the reality problem outlined here uses
the strategy of inferring finite time beables from asymptotic
behavior and many of the other ideas set out in Ref. [16], but
is simpler than the proposals made in that paper. While the
simplicity of the solution given here is particularly appealing
and its suggestion of a relationship to gravity is particularly
intriguing, those earlier proposals still remain potentially
interesting alternatives in our view. Both the solution proposed
here and those in Ref. [16] have features in common with other
earlier ideas in the literature.

The fundamental significance of the quantum reality prob-
lem and the possibility of finding a mathematical solution
was perhaps first realized by de Broglie and Bohm [4,5]. The
concept of beable is due to Bell [2,3], who also illustrated
the variety of possible types of beable solution to the reality
problem and focused attention on the Lorentzian quantum
reality problem [20].

Aharonov and collaborators [17,23,24] have long stressed
the value of considering both initial and final states in order
to illuminate the properties of and interpret quantum theory
from various perspectives. Related ideas were previously
considered by Watanabe [25]. Suggestions for interpretations
of quantum theory in terms of initial and final states have
been made by Davidon [26] and Aharonov and Gruss [27].
From the perspective adopted here, one major limitation
of these latter ideas is their reliance on intuitive definitions
of measurement and classicality, which are unsatisfactorily
imprecise in any setting and especially problematic in the
context of cosmology; see [1,16] for further discussion.
Another fundamental problem, from the perspective of those
looking for a new one-world solution to the reality problem,
is that they define an ontology that is larger than that used by
Everett, since it includes backward evolving data as well as
the standard wave function unitarily evolving forward in time.

The idea of defining cosmological models with independent
initial and final boundary conditions, using a decoherent-
histories version of the ABL rule, was discussed by Gell-Mann
and Hartle [28]. The possibility of defining cosmological
models and other generalizations of the quantum theory of
closed systems by going beyond boundary conditions and
considering a sequence of constraints on the system’s evolution
was proposed in Ref. [29] and developed and discussed further
in Ref. [21]. The potential uses of environmental records in
making sense of quantum theory and quantum cosmology
have been stressed by Zurek and collaborators [30–32] and
by Gell-Mann and Hartle [28], among others.

While all of these contributions have been influential and
relevant to our discussion, none of the above authors has
proposed a mathematically precise solution to the Lorentzian
quantum reality problem in the sense defined by Bell and
considered here.

Mass-density beable ontologies were first proposed for
nonrelativistic collapse models by Pearle and Squires ([33]; see
also [34]). An extension of these ontologies to relativistic col-
lapse models using constructions previously defined in [35,36]
was proposed in [8]. These proposals apply to generalizations
of quantum theory rather than to quantum theory itself. We
presently see our relativistic solution as more natural and
see the path to rigorizing it as having fewer (although still
considerable) technical obstacles.

We also see our proposed solutions as calling into question
part of the original motivation for dynamical collapse models.
It should be noted, though, that one possible motivation for
dynamical collapse models is the desire for a theory that
effectively ensures that macroscopic superpositions essentially
never take place, even in hypothetical future experiments in
which technology allows us either to isolate macroscopic
systems for long times or to control their environments,
in such a way that quantum theory would predict a gen-
uine macroscopic superposition and an ensuing quantum
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interference pattern. Our solutions suggest an ontology in
which all significant components of the macroscopic super-
position have corresponding beable trails in such experiments.
This does not seem evidently problematic: There is no logical
inconsistency in such a description, nor any contradiction with
experiment or observation to date. Still, those who prefer the
hunch that nature abhors a macroscopic superposition will
prefer collapse models or others with this feature.

Of course, all these various questions certainly deserve
further analysis. We also wish to stress that, whether or not they
ultimately prove relevant to nature, dynamical collapse models
remain, in our view, a landmark intellectual achievement in
the development of work on the quantum reality problem and
that there remains a scientific case for exploring them simply
because they are testable generalizations of quantum theory.
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APPENDIX A: BEABLE MODELS BASED
ON OTHER DEFINITIONS

In this appendix we consider alternative strategies for defin-
ing beables, applicable to both nonrelativistic and relativistic
models. We make the same assumptions as previously about
the initial state and asymptotically defined final conditions.

1. Expectation values defined by measurements at a single point

In our nonrelativistic model, we defined the beable at the
point (x,t) in terms of an expectation value 〈ρ(x,t)〉. This
expectation value was defined via the ABL rule for a joint
measurement of mass density at all points y on the surface of
constant time t . We could, instead, have defined an expectation
value, which we denote 〈ρ(x,t)〉x , by applying the ABL rule
for a single measurement of the operator ρ(x,t).

As Aharonov and Vaidman’s box “paradoxes” [37] illus-
trate, there are final states for which this would give a different
beable distribution, with somewhat counterintuitive properties.
The beables for a single particle in a three-box example would
suggest that its entire mass was simultaneously in two distinct
regions (with some further nonzero mass-density expectation
in a third). Mass would thus not generally be conserved at the
beable level.

This is aesthetically worrying, and even more troubling
if one hopes that the mass-density beables play a significant
role in combining quantum theory and gravity (a possibility
we consider further below). Nonetheless, we should note that
such a description is not logically inconsistent, and it is not
immediately evident to us that it is incapable of reproducing
quasiclassical physics, at least in presently familiar contexts.
In principle, a beable version of quantum theory might give a

counterintuitive picture of reality in microscopic experiments
(or indeed in macroscopic experiments that are to date
unperformed) and still allow the derivation of the correct
higher-level quasiclassical laws in the right regime.

Similar comments apply to the relativistic models. We could
define a stress-energy tensor beable 〈Tμν(y)〉y as the ABL
expectation value for a measurement of Tμν(y) alone. This
has what might be seen as the advantage of dispensing with
a definition based on a limit of spacelike hypersurfaces that
approximate and tend to the past light cone. It has the same
counterintuitive features as its nonrelativistic counterpart in its
description of three-box experiments, however.

We should also note that, while the beable models we
defined earlier give more intuitively sensible descriptions of
three-box experiments, we would not expect them to agree with
all prior intuitions in their descriptions of every closed quantum
system. For example, the stress-energy tensor beable 〈Tμν(y)〉
need not generally satisfy conservation laws everywhere and
cannot be directly used as a source in Einstein’s equations for
a semiclassical treatment of gravity. (Indeed, no quasiclassical
derivation of Einstein’s equations involving macroscopic
quantum experiments can be valid everywhere [38].)

In summary, models in which the beables are defined by
single-point expectation values have decidedly odd features.
While these make such models seem presently less attractive,
we do not feel they presently logically exclude them. More
analysis of the relationship between the beable distributions in
these models and quasiclassical variables is needed.

2. Comments on weak operator values and beables

Another candidate beable in our relativistic models could
be the modulus of a generalized form of the so-called weak
value [27,37] of the stress-energy tensor,

Aμν(x)w =
∣∣∣∣
{

Tr[Tμν(x)PSTμν(x)P0]

Tr(PSP0)

}∣∣∣∣
1/2

.

Here PS is the projection onto the space of states whose
mass-energy distributions ts(x) agree with that randomly
selected on the final hypersurface S, P0 = |ψ0〉〈ψ0| is the
projection onto the initial state on S0. These are unitarily
evolved backwards and forwards, respectively, to any chosen
spacelike hypersurface S ′ through x, and the inner products
are calculated on S ′: We suppress these details in our notation.

Similar comments apply to this and other quantities derived
from weak expectation values or decoherence functions. Such
quantities behave similarly to the single-point expectation
values in three-box experiments so that a single particle would
appear in the beable description to be located in more than one
box and have other peculiar properties (see, e.g., [39]). While
these observations do not logically exclude them as candidate
beables capable of describing quasiclassical physics, they do
motivate further careful scrutiny and analysis.

APPENDIX B: FURTHER GENERALIZATIONS OF
QUANTUM THEORY

1. Generalizations by taking finite limit parameters

Consider again our nonrelativistic model, in which a mass
distribution is obtained at final time T and then used to
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define mass-density distributions at times 0 < t < T . These
expressions may be calculated by using projectors P 	

ρf
onto

the set of states with final mass distribution in a neighborhood
	 of ρf (x,T ) and taking the limit as the size of 	 tends
to zero. Finally, we take the limit T →∞. These limits are
intended to reproduce a quasiclassical reality consistent with
standard quantum theory in realistic models.

To produce generalizations of quantum theory, we can take
T , and if we wish also 	, to be fixed finite parameters.
Intuitively, if T is large compared to the duration of a
quantum experiment, one expects this to give predictions
almost indistinguishable from those of standard quantum
theory for that experiment.

Of course, taking the finite T version of the model literally
suggests that reality ceases after time T has elapsed, even
though (on a standard reading) the quantum dynamics may
continue to be eventful long afterward. Our recommended
attitude to this is not to take the model literally on this
point. A commonly held view of dynamical collapse models
is that although the mathematical details of their collapse
mechanisms are ad hoc and it is hard to believe that
either they or the associated ontologies are fundamentally
correct, the models are nonetheless interesting generalizations
of quantum theory. They make an intellectually significant
point—altering quantum dynamics somewhat radically alters
the ontology and gives alternative solutions to the quantum
reality problem—and also point to interesting experimental
tests. A model does not need to be completely right in order
to point in a direction that is theoretically or experimentally
fruitful to explore. Similarly, finite T and 	 versions of our
models show that altering quantum theory gives a well-defined
realist ontology without any assumption about the asymptotic
dynamics and in a way that could affect the predictions for
quasiclassical dynamics and experiment so subtly as to be
essentially undetectable [40].

Another possible approach to finite T models would be to
construct versions in which “final measurements” are made

repeatedly on time scales of order T , and the chosen reality
depends on a sequence of final measurement outcomes in such
a way that it evolves smoothly. At first sight, such models look
mathematically rather ad hoc, since one can imagine many
recipes of this type, none of which seems particularly natural.
They also look likely to have physically peculiar conse-
quences, in which reality is something like a real superposition
(with time-evolving weights) of a sequence of independently
randomly chosen realities defined by measurements at times
≈ T , ≈ 2T , . . .. Perhaps, though, there is scope to construct
more natural models by variations on these ideas. We leave
this for future exploration.

2. Comments on relativistic generalizations

One might also investigate “finite proper time” generaliza-
tions of our relativistic models. Given initial data on a spacelike
hypersurface S, and a time parameter τ , we can define a finite
version of the models given any Lorentz covariant rule that
produces a final hypersurface S ′ that depends (stochastically
or deterministically) on S and τ , with the property that S ′ is
always in the future of S and that the maximum proper time
between points on S and S ′ is a function of τ . Such rules can
be naturally defined in finite lattice models [19]. It would be
interesting to explore continuous versions in Minkowski space
or, indeed, analogous rules in quantum gravity using natural
definitions of cosmological time [41].

Again, a literal reading of such models suggests that reality
exists only between S and S ′; again, our preferred attitude
would be not to take any such model so literally. Another
feature is that the choice of hypersurfaces S,S ′ suggests some
sort of preferred coordinate choice, even if the rules relating
S ′ to S are Lorentz covariant. This may not necessarily be
problematic—after all, standard general relativistic cosmo-
logical models can also include both preferred proper time
coordinates and associated spacelike hypersurfaces—but it
requires careful discussion. Again, we leave these preliminary
ideas for future exploration.
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