
PHYSICAL REVIEW A 90, 012106 (2014)

Geometric chained inequalities for higher-dimensional systems
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For systems of an arbitrary dimension, a theory of geometric chained Bell inequalities is presented. The
approach is based on chained inequalities derived by Pykacz and Santos. For maximally entangled states, the
inequalities lead to a complete 0 = 1 contradiction with quantum predictions. Local realism suggests that the
probability for the two observers to have identical results is 1 (that is, a perfect correlation is predicted), whereas
quantum formalism gives an opposite prediction: the local results always differ. This is so for any dimension. We
also show that with the inequalities, one can have a version of Bell’s theorem which involves only correlations
arbitrarily close to perfect ones.
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I. INTRODUCTION

Bell theorem states that there exists no local hidden-
variable model of quantum theory. The hidden variables are
hypothetical additional parameters which are beyond quantum
formalism. They might be interpreted as (local) causes of
events or, more narrowly, as hidden proper states of the
systems. If one additionally assumes that the probabilities
of measurement results depending on such local causes have
a Kolmogorovian nature (and that there exists a procedure
of random choice of local measurement settings, which is
independent of anything else in the experiment), then one can
derive Bell inequalities of some form. As individual detection
events have, in quantum theory, an inherently spontaneous
nature, such inequalities can be violated by quantum predic-
tions. Also, quantum states do not describe the system but
rather our knowledge about their preparation (and subsequent
evolution), thus they have entirely different properties than the
hypothetical (local) hidden proper states. There is no reason
for quantum probabilities to satisfy inequalities based on the
hypothesis of existence of the latter ones. If one insists on their
existence, or existence of causes, one must abandon either
locality or the independence of settings assumption (often
provocatively put as free will).

Since the pioneering work of Bell, many new derivations
of Bell inequalities have appeared in the literature (see, e.g.,
the latest review [1]) and many experimental tests have been
performed, especially in the optical domain [2]. Very early,
the so-called chained inequalities were found (see Ref. [3];
however, a more detailed analysis of their statistical behavior
was first introduced in Ref. [4]). A different approach to
obtain a similar kind of chained inequality was shown in
Ref. [5]; later, the results were used to construct logical Bell
inequalities for qubits [6]. The first ones were for dichotomic
local outputs only, but, later on, generalizations followed [7,8],
including one in the guise of a ladder Hardy-type argument [9].
The procedure of chaining rests on a derivation of an initial
inequality, and then, by upper bounding some of the terms
in this inequality by an inequality of a similar kind involving
different settings, one can produce a new one. This iteration
can be continued arbitrarily long.

All of this resembles the geometric triangle inequality for
distances, which leads to a quadrangle one and, by iteration,
to a polygon inequality of as many points as one wishes. In

the works of Santos [10] and Pykacz [11], one can find a
derivation of chained Bell inequalities based on geometrical
concepts related to Kolmogorovian probabilities. The aim of
our work is to extend their results to multidimensional systems
and to show the full power of the geometric approach.

The derivations shown below are for systems of arbitrary
dimensions (for different inequalities of this kind, see [7]), and
there seems to be no obstacle to the generalization of the results
to an infinite dimension. However, such cases will be studied
elsewhere. As a bright squeezed vacuum resembles, in many
respects, the Einstein-Podolski-Rosen (EPR) state, such states
would probably violate generalizations of the inequalities to
infinitely dimensional systems. As a matter of fact, a squeezed
vacuum can be shown to violate a chained inequality of a
different kind [12].

Chained inequalities are most interesting if we take into
account correlations close to perfect ones. In this context, one
can find a specific application of chained inequalities related
to the problems of interpreting Franson-type [13] two-particle
interferometry as a Bell experiment; see [14]. Here, we also
shall concentrate on properties of quantum predictions for our
chained inequalities, for predictions which are close to perfect
correlations. For a very high number of chained settings, we
approach a kind of Greenberger-Horne-Zeilinger (GHZ)-type
contradiction, like in the case of [5,7]. We also show that one
can use such inequalities to give a rigorous formulation of
the heuristic approach to Bell’s theorem given in [15]. One
can have a Bell theorem involving only correlations that are
infinitesimally close to a single perfect one.

II. DERIVATIONS

Within Kolmogorov theory of probability, one can intro-
duce, for a pair of probabilistic events, a notion resembling
distance (which can be called probabilistic separation). Let A
and B be two events. Then, their separation S(A,B) is defined
as [10]

S(A,B) = P (A) + P (B) − 2P (A,B), (1)

where P(A, B) is the joint probability of the occurrence of
both A and B. Obviously, S(A,B) = S(B,A) and S(A,B) � 0.
Most importantly, S(A,B) satisfies a triangle inequality,

S(A,C) � S(A,B) + S(B,C). (2)
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This can be derived by using the definition given in (1). The
triangle inequality reduces to

P (A,B) + P (B,C) � P (B) + P (A,C). (3)

This relation can be easily proved with Venn diagrams or other
methods. Note that if we have the triangle inequality, we can
build a quadrangle and higher ones. It is important to note that
the inequality in (3) cannot be used in quantum mechanics
if one is interested in events related to the measurement of
incompatible observables. Even for two separated observers,
if, for example, one assumes that A is an event associated with
observable Â for Alice, say, getting the eigenvalue a′, and C is
an event related to obtain measurement result c′ of a different
observable Ĉ also by Alice, while B stands for getting b′ when
Bob measures B̂, then we face the problem that P (A,C) is
associated with two noncommensurable observables of Alice,
and has no quantum mechanical value. Nevertheless, there
is no problem with using the inequality in the context of
(stochastic) local hidden-variable theories, as in such a case
complementarity does not apply.

Nevertheless, a quadrangle inequality, which is naturally
implied by the triangle one, does not face this problem. We
can denote Alice’s events associated with her choice of settings
of the local measuring apparatus by Ai and Bob’s events by
Bj , where i,j ∈ 0,1. We get

S(A0,B1) � S(A0,B0) + S(A1,B0) + S(A1,B1). (4)

This is just the good-old Clauser-Horne (CH) inequality [16]:

P (A0,B0) + P (A1,B0) + P (A1,B1)

−P (A1) − P (B0) − P (A0,B1) � 0. (5)

As it is violated by quantum predictions, we see that the notion
of Kolmogorovian probability does not apply to quantum
observations (Bohr’s complementarity at work).

Note that we can generalize the above separation inequal-
ity (4). Let us consider n different experiments on each side. Let
us give even indices i to Alice’s measurement events at specific
local settings, Ai , so that i = 2k; while for Bob’s events Bj , we
shall use odd indices, j = 2k + 1. The following implication
of the triangle inequality holds:

S(A0,B2n−1) � S(A0,B1) + S(A2,B1)

+ S(A2,B3) + · · · + S(A2n−2,B2n−1)

=
∑

|i−j |=1

S(Ai,Bj ). (6)

This inequality also can be easily written in terms of probabil-
ities.

However, we would try to derive from the above inequal-
ity a distancelike inequality for probability distributions of
multivalued variables (assuming that the set of eigenvalues
for observables of Alice and Bob is the same one; this can
always be done, as eigenvalues related to clicks at specific
detectors are a question of convention). Denote by S(Ax,Bx)
the Kolmogorovian separation of the following events: Alice,
while measuring an observable Â, gets an eigenvalue ax ,
and Bob, measuring an observable B̂, gets an eigenvalue bx .
To make further notation easier, we assume the following
convention for our eigenvalue assignment: ax = bx for all

x = 1, . . . ,d. With all that, one can write

S(Ax,Bx) = P (Ax) − P (Ax,Bx) + P (Bx) − P (Ax,Bx)

= P (Ax,B̃x) + P (Ãx,Bx), (7)

where B̃x denotes the event of Bx not occurring, and similarly
Ãx . Now, summing this over all possible d outcomes, one gets

d∑
x=1

[P (Ax,B̃x) + P (Ãx,Bx)] = 2P (A �= B), (8)

where P (A �= B) denotes the probability that if Alice measures
Â while Bob B̂, they get different results. Obviously,

P (A �= B) = 1

2

∑
x

S(Ax,Bx). (9)

By summing up inequalities (6) for all pairs Ax
i and Bx

j ,
over x = 1, . . . ,d, we see that P (Ai �= Bj ) satisfy a polygon
inequality of the following form:∑

|i−j |=1

P (Ai �= Bj ) � P (A0 �= B2n−1), (10)

with i = 0,2, . . . ,2n − 2 and j = 1,3, . . . ,2n − 1. An in-
equality effectively equivalent to the one above was derived us-
ing a different method by Colbeck and Renner for dichotomic
variables; see, e.g., [17].

A. Violation

Let us apply this inequality to entangled qudits. We
shall first show this for a pair of qutrits, and further on
present a calculation for an arbitrary dimension. The fact
that two maximally entangled two-qubit states violate chained
inequalities, which in the d = 2 case are equivalent to the ones
presented, is well known.

Chained inequalities work well for measurements which
are close to perfect correlations. Therefore, let us first assume
that the state that Alice and Bob share is maximally entangled,

|ψ〉AB = 1√
3

(|00〉 + |11〉 + |22〉), (11)

and the observable that Alice measures, Â0, has eigenstates
|0〉,|1〉, and |2〉. However, Bob’s observable B̂1 is slightly
detuned, with eigenstates |0′〉,|1′〉, and |2′〉. They satisfy

ÛB(θ )|j 〉 = |j ′〉, (12)

and one has a formal equivalence,

B̂1 = ÛB(θ )B̂0[ÛB(θ )]−1, (13)

where in this formula only B̂0 stands for an operator for Bob’s
subsystem which has, in his computational basis, the same
representation as Â0 of Alice. Thus, in such a case,

P (i,j ) = |A〈i|B〈j ′|ψ〉AB |2, (14)

which is equal to

P (i,j |A0,B1) = ∣∣
A
〈i|B〈j |Û−1

B (θ )|ψ〉AB

∣∣2
. (15)

This, in turn, because of the specific properties of the
maximally entangled state (11), can be put as

P (i,j |A0,B1) = |A〈i|B〈j |Û ∗
A(θ )|ψ〉AB |2, (16)
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where ÛA(θ ) stands for an operator for Alice’s subsystem
which has, in her computational basis, the same representation
as ÛB(θ ) of Bob. This is because

d∑
j=1

|j 〉AÛ−1
B (θ )|j 〉B =

d∑
i=1

Û ∗
A(θ )|i〉A|i〉B. (17)

Of course, this a general relation holding for any unitary
transformation. Note, however, that for unitary transformations
which are real (orthogonal), one has

d∑
j=1

|j 〉AÛT
B (θ )|j 〉B =

d∑
i=1

ÛA(θ )|i〉A|i〉B. (18)

From now on, because of this property, we shall use orthogonal
ÛB(θ ).

The next pair of measurements can be Â2 and B̂1 with the
eigenstates of Â2 given by |i ′′〉 = ÛA(θ )2|i〉A. Thus,

P (i,j |A2,B1) = ∣∣
A
〈i|B〈j |[Û T

A (θ )
]2

Û T
B (θ )|ψ〉AB

∣∣2
. (19)

One has

Û T
A (θ )2Û T

B (θ )|ψ〉AB = Û T
A (θ )|ψ〉AB, (20)

and

P (i,j |A2,B1) = ∣∣
A
〈i|B〈j |Û T

A (θ )|ψ〉AB |2

= |A〈i|B〈j |ÛB(θ )|ψ〉AB |2. (21)

Let us now introduce specific transformation for the case
of two qutrits:

Û (θ ) =

⎛
⎜⎝

x y z

z x y

y z x

⎞
⎟⎠, (22)

where x = 1
3 (1 + 2 cos θ ), y = 1

3 (1 − cos θ − √
3 sin θ ), z =

1
3 (1 − cos θ + √

3 sin θ ), and we assume that θ = 2π
3(2n−1) .

An important property of Û (θ ) is that [Û (θ )]k = Û (kθ ).
This is because Û (θ ) is an orthogonal matrix, representing a
rotation with respect to the axis given by vector (1,1,1) by an
angle θ . Obviously, in such a case, Û (θ )Û (θ ′) = Û (θ + θ ′).
Therefore,

Û 2n−1
B (θ ) = ÛB

(
2π

3

)
=

⎛
⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎠. (23)

It transforms the state from |0〉 to |2〉, |1〉 to |0〉, and |2〉 to |1〉.
Now define

Âk = ÛA(θ )kÂ0ÛA(θ )−(k),

B̂k = ÛB(θ )2n−1Â0ÛB(θ )−(k). (24)

The measurement of Â2n−2 ⊗ Î and Î ⊗ B̂2n−3 results in the
following probabilities:

P (i,j |A2n−2,B2n−3) = ∣∣
A
〈i|B〈j |Û T

A (θ )|ψ〉AB

∣∣2
, (25)

whereas

P (i,j |A2n−2,B2n−1) = ∣∣
A
〈i|B〈j |Û T

B (θ )|ψ〉AB

∣∣2
. (26)

Note that since in both cases

P (i �= j ) = 1 − 1

3

∑
i

|U (θ )ii |2,

where U (θ )ij stand for matrix elements of Û (θ )A/B , one has,
for both formulas,

P (i �= j ) = 1 − 1

9
(1 + 2 cos θ )2

= 1

9

(
8 sin2 θ

2
+ 4 sin2 θ

)
. (27)

Concerning the last pair of observables, Â0 and B̂2n−1, from
the above discussion, it is obvious that

B̂2n−1 = [ÛB(θ )]2n−1B̂0[ÛB(θ )]−(2n−1). (28)

The idea is to obtain perfect correlations for the pair of
observables Â0,B̂2n−1 which are completely opposite to the
ones for Â0 and B̂0. This is the reason why the total angle
of “rotation” on Bob’s subsystem for the last measurement,
B̂2n−1, must be 2π

3 . This leads to the optimal value of θ given
by θ = 2π

3(2n−1) . The probabilities read

P (i,j |A0,B2n−1) =
∣∣∣∣
A

〈i|B〈j |Û T
B

(
2π

3

)
|ψ〉AB

∣∣∣∣
2

. (29)

However,

Û T
B

(
2π

3

)
|ψ〉AB = 1√

3
(|02〉 + |10〉 + |21〉). (30)

Therefore,

P (i �= j |A0,B2n−1) = 1. (31)

Thus, summing over all probabilities on the left-hand side
of the chained inequality (10) and comparing them with the
supposedly lower value of the right-hand side, which is by (31)
equal to one, we get

N − 1

9

(
8 sin2 θ

2
+ 4 sin2 θ

)
� 1, (32)

where N is equal to 2n. This inequality cannot hold already for
N = 2, and for all higher values of it. Moreover, the left-hand
side tends to zero when N goes to infinity. This is because the
rule sin x

x
→ 1, for x → 0, can be applied in both terms. With

N → ∞, one has 0 � 1. In this limit, if local realism holds,
the right-hand side of the inequality (10) as it approaches
zero implies that for measurements of Â0 and B̂2n−1, one
should expect a perfect correlation, that is, P (i = j ) = 1.
However, quantum mechanics predicts a perfect correlation
satisfying P (i = j + 1) = 1 (modulo 3). We have a kind of
GHZ contradiction in the limit of infinitely many infinitely
close settings.

III. ARBITRARY DIMENSIONS

Let us now extend the above results to an arbitrary
dimension d. The case of d = 2 is well known, but it can
be recovered from what we put here for d = 4, which we
discuss first.
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A. Four-dimensional systems

One can get similar results as for d = 3 with the use of the
following simple unitary (orthogonal) matrix:

Û (θ1) =

⎛
⎜⎜⎜⎝

cos θ1 sin θ1 0 0

− sin θ1 cos θ1 0 0

0 0 cos θ1 sin θ1

0 0 − sin θ1 cos θ1

⎞
⎟⎟⎟⎠, (33)

where θ1 = π
2(2n−1) . After (2n − 1) iterations, this gives

Û (θ1)2n−1 = Û

(
π

2

)
=

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠. (34)

The operation fully permutes initial computational basis states
(although this is not a cyclic permutation). We apply these
unitary transformations to four-dimensional observables on
Alice’s and Bob’s sides; the formal relations of consecutive
measurements are the same as in the case of d = 3. However,
now the probabilities entering into each term on the left-
hand side of (10) are, because of the form of the unitary
operation (33), equal to sin2 θ1. Because of the permutation
given by (34), the right-hand side of (10) is always 1. So, in
the end, the quantum mechanical values of (10) are given by

(N − 1) sin2

[
π

2(N − 1)

]
� 1, (35)

where N is equal to 2n. Again, this is a contradiction, and with
large N , it approaches a 0 � 1 one, which can be given a GHZ
interpretation.

B. Higher dimensions

Dimension d = 5 holds the key to all higher ones. The
appropriate unitary matrix can be put as

Û (θ1,θ2) =

⎛
⎜⎜⎜⎜⎜⎝

a b 0 0 0

−b a 0 0 0

0 0 x y z

0 0 z x y

0 0 y z x

⎞
⎟⎟⎟⎟⎟⎠, (36)

where a = cos θ1, b = sin θ1, x = 1
3 (1 + 2 cos θ2), y = 1

3 (1 −
cos θ2 − √

3 sin θ2), and z = 1
3 (1 − cos θ2 + √

3 sin θ2). This
matrix follows all of the properties mentioned previously in
the case of qutrit rotation, d = 3, and the qubit case, d = 2.
Namely, if we put the angles θ1, θ2 as π

2(2n−1) and 2π
3(2n−1) ,

respectively, we have

Û (θ1,θ2)2n−1 = Û

(
π

2
,
2π

3

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠.

(37)

This matrix permutes initial computational basis states for d =
5. Each of the probabilities on the left-hand side of inequality
(10) is equal to 1 − 1

5 [2 cos2 θ1 + 3
9 (1 + 2 cos θ2)2].

After adding up all of the functions in (10), we get

(N − 1) − N − 1

5

(
2 cos2

[
π

2(N − 1)

]

+ 3

9

{
1 + 2 cos

[
2π

3(N − 1)

]}2)
� 1, (38)

where again N is equal to 2n. This again leads to a
contradiction, which with N → ∞ can be put as 0 � 1.

We can generalize this approach to an arbitrary dimension
d. We can always express any number d, which is greater than
one, in terms of 2 and 3, i.e., one can always write

d = m2 + s3, (39)

where s = d−2m
3 , and m and s must be positive integers. In

such a case, we can apply in a generalization of (36) a qubitlike
transformation to m pairs of dimensions, and a qutritlike one
to s triples of dimensions. Of course, for odd-dimensional
systems, the easiest choice is to put m in such a way that
s = 1, whereas for even dimensions, one simply has m

qubitlike transformations. The basic unitary operation that we
need can be constructed like (36), but now with m 2 × 2 blocks
of qubitlike form (defined by a and b), and the last 3 × 3 block
just as in (36). Obviously, 2n − 1 applications of such a matrix
lead to a complete permutation of basis states. Under such
operations, the chained inequality (10) leads to

(N − 1) − N − 1

d

(
2m cos2

[
π

2(N − 1)

]

+ d − 2m

9

{
1 + 2 cos

[
2π

3(N − 1)

]2})
� 1. (40)

In (40), as N tends to infinity, the left-hand side of the
inequality goes to zero, although the right-hand side is
always 1. So, distancelike inequalities for any local realistic
description are violated by quantum mechanics. As before,
any local realistic prediction based on the left-hand side
implies a perfect correlation of a completely different kind,
P (i = j |Â0,B̂2n−1) = 1, than quantum prediction for the
right-hand-side measurements—also a perfect correlation but
with P (i = j |Â0,B̂2n−1) = 0.

IV. GENERALIZATION

These results can be further amplified. We can abandon the
constraint to our walk on the polygon, which is, in the case of
inequality (10), from A0 to B1, next from B1 to A2, and so on
until we reach the next-to-last step from A2n−2 to B2n−1 (all
this is a “longer way” than directly from A0 to B2n−1). We can
add one more step from B2n−1 to A2n, and compare this with
the separation of the first and the last event that is A0 and A2n.
In this way, we get an inequality which holds for local hidden
variables in the form of

i=2n,j=2n−1∑
|i−j |=1

P (Ai �= Bj ) � P (A0 �= A2n), (41)
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with i = 0,2, . . . ,2n and j = 1,3, . . . ,2n − 1. At first glance,
this inequality seems as useless in quantum mechanics as the
triangle one. However, if A0 and A2n are compatible, that
is, they commute, then it can be compared with quantum
predictions. The idea, therefore, is to use transformations U1

which after 2n applications, that is, for U 2n
1 , give a permutation

of the original basis [this would mean for the ones introduced
earlier, putting θ1, θ2 as π

2(2n) and 2π
3(2n) ]. One can repeat

all reasonings given earlier to get a 0 = 1 contradiction for
P (A0 �= A2n). This directly implies an absolute contradiction
in the local hidden-variable prediction, as for any theory one
must definitely have P (A0 �= A2n) = 1 since the difference
between the two observables is just a permutation of the results
(eigenvalues). Compare [17], where such a contradiction is
explicitly shown for only d = 2.

However, we can start all that with an arbitrary Â′
0, redefine

the computational basis such that it is now built out of
eigenstates of Â′

0, and find a “conjugate” B̂ ′
0, such that its

eigenstates enter the Schmidt decomposition of the maximally
entangled state involving eigenstates of Â′

0 (recall that a max-
imally entangled state has infinitely many equivalent Schmidt
decompositions). With this, we can repeat all of the reasonings
given above. This leads us to an absolute internal contradiction
for a hidden-variable description of any observable.

As a matter of fact, one can derive a kind of Zeno paradox
for any local hidden-variable description of observables
describing a maximally entangled state. With the construction
like above, even if Â0 and Â2n are incompatible (in quantum
theory), a local hidden-variable theory must give a definite
prediction for P (A0 �= A2n). If these are two different ob-
servables, one must have P (A0 �= A2n) > 0 because P (A0 =
B2n) < 1 and P (A2n = B2n) = 1. However, for a reasoning
like above, in the limit of infinitesimally slow changes of
the observables into the consecutive ones, in the chained
inequality, the left-hand side always tends to zero, implying
P (A0 �= A2n) = 0. That is, up to sets of (probability) measure
zero, one has identical local hidden-variable models of the two
observables. We have no change if we move by infinitesimally
small steps, even if they accumulate to a finite one. Thus,
reasoning involving perfect correlations leads to absolutely
absurd contradictions for local hidden-variable models.

V. CONTRADICTION INVOLVING NEIGHBORHOOD
OF ONE PERFECT CORRELATION

Let us consider a maximally entangled state for a pair of
qudits,

|ψ〉 = 1√
d

d−1∑
k=0

|kk〉. (42)

The measurements that we shall consider will have two traits.
First of all, they will be very close to one giving perfect cor-
relations, and the unitary transformations leading us to other
measurement settings would be constrained to just the first
two basis vectors of each of the systems. Thus, in this sector,
we have basically SU(2) transformations. The probabilities
P (λAi

�= λBj
) can, in such circumstances, be put as

P (λAi
�= λBj

) = 2

d
Pq(λA′

i
�= λB ′

j
), (43)

where the primed observables are effective qubit observables
describing the effects of the measurements, and the
probabilities Pq are the ones for a two-qubit system which
effectively describes the sector within which our constrained
transformations work.

In further considerations, we shall drop the subscript q and
the primes. Thus, our calculations will be presented as if we
were considering a two-qubit system in the φ+ Bell state,

|ψ〉 = 1√
2

1∑
k=0

|kk〉. (44)

We shall use the spin-1/2 approach to qubits, with local
measurements described by the Pauli operators �a · �σ1 and
�b · �σ2, where �a and �b are the local Bloch vectors defining the
measurement direction. In such a case, the quantum predictions
for the measurement results of Alice, λA = ±1, and Bob,
λB = ±1, are given by

P (λA,λB) = 1
4 (1 + λAλB �a · T̂ �b). (45)

In the case of the φ+ state, the correlation tensor on the z-x
plane is written as

T̂ = �z ⊗ �z + �x ⊗ �x − �y ⊗ �y. (46)

If we use Bloch vectors defining the local settings, �a and �b,
which are constrained to the z-x plane, then only the first two
terms matter.

A chained inequality for a pair of qubits with 2n settings
reads ∑

|i−j |=1

P (λAi
�= λBj

) � P
(
λA0 �= λB2n−1

)
, (47)

where λAi
,λBj

are the measurement outcomes on Alice’s and
Bob’s sides, respectively, while measuring observables Ai and
Bj .

For a pair of observables with dichotomic outcomes, one
has

P
(
λAi

�= λBj

) = 1
2 (1 − �a · T̂ �b), (48)

where �a,�b are measurement directions for Alice and Bob,
respectively. Using the above, (47) can be written in the
following form:

T̂ · [( �a0 + �a2) ⊗ �b1 + ( �a4 + �a2)

⊗ �b3 · · · + (�a2n−2 − �a0) ⊗ �b2n−1] � (2n − 2). (49)

Assume the following settings:

�a2i−2 = �z cos

[
π (2i − 2)

γ (2n)

]
+ �x sin

[
π (2i − 2)

γ (2n)

]
,

(50)

�b2i−1 = �z cos

[
π (2i − 1)

γ (2n)

]
+ �x sin

[
π (2i − 1)

γ (2n)

]
.

Now, each pair of consecutive direction vectors is separated
by the same angular separation, (π

γ
1

2n
). So, they follow the

relation

�a2k + �a2k+2 = 2�b2k+1 cos

(
π

γ

1

2n

)
, (51)
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where k ∈ {0,1, . . . ,(n − 2)}. Next we insert (51) in (47) to
obtain a compact form,

2T̂ ·
[

cos

(
π

γ

1

2n

) i=n−1∑
i=1

�b2i−1 ⊗ �b2i−1

]

+ T̂ · ( �a2n−2 − �a0) ⊗ �b2n−1 � 2n − 2. (52)

Now, using (46), the left-hand side of (52) is reduced to

2 cos

(
π

γ

1

2n

) {
i=n−1∑
i=1

cos2

[
π (2i − 1)

γ (2n)

]

+
i=n−1∑
i=1

sin2

[
π (2i − 1)

γ (2n)

]}
+ T̂ · (�a2n−2 − �a0) ⊗ �b2n−1

� 2n − 2, (53)

and this, of course, reduces to

2(n − 1) cos

(
π

γ

1

2n

)
+ T̂ · (�a2n−2 − �a0) ⊗ �b2n−1 � 2n − 2.

(54)

Our next task is to estimate the value of T̂ · (�a2n−2 − �a0) ⊗
�b2n−1. According to (50),

�a0 = �z,

�a2n−2 = �z cos

[
π (2n − 2)

γ (2n)

]
+ �x sin

[
π (2n − 2)

γ (2n)

]
,

�b2n−1 = �z cos

[
π (2n − 1)

γ (2n)

]
+ �x sin

[
π (2n − 1)

γ (2n)

]
. (55)

Thus,

T̂ · (�a2n−2 − �a0) ⊗ �b2n−1

=
{

cos

[
π (2n − 2)

γ (2n)

]
− 1

}
cos

[
π (2n − 1)

γ (2n)

]

+ sin

[
π (2n − 2)

γ (2n)

]
sin

[
π (2n − 1)

γ (2n)

]

= cos

[
π

γ (2n)

]
− cos

[
π (2n − 1)

γ (2n)

]
. (56)

After adding up all of the terms in (52), we get

2(n − 1) cos

(
π

γ

1

2n

)
+ cos

[
π

γ (2n)

]
− cos

[
π (2n − 1)

γ (2n)

]
� 2n − 2, (57)

or

2(n − 1)

[
cos

(
π

γ

1

2n

)
− 1

]
+ cos

[
π

γ (2n)

]

− cos

[
π (2n − 1)

γ (2n)

]
� 0. (58)

But, when n tends to infinity for any fixed finite γ , the
left-hand side of (57) is sooner or later greater than zero.
Hence, the inequality in (47) is violated without going through
the entire Bloch sphere. For very large γ , the derivation
involves basically only perfect correlations. Thus, we have
a kind of an approximate GHZ contradiction for maximally
entangled two-system states—as it is based on correlations
which can be infinitesimally close to a (single) perfect one.
However, it is not “all or nothing.” Nevertheless, the interesting
aspect is that it is based on correlation in the “epsilonic”
neighborhood of the one single perfect one. This might be
seen as a rigorous version of the heuristic argument given by
Ballentine (Ref. [15], p. 587), and, as a bonus, one working
for a system of arbitrary dimensions.

VI. CONCLUSIONS

The main results of our work can be summarized as follows.
The Pykacz-Santos chained inequalities can be generalized to
situations in which we have entangled systems of arbitrary
dimension. This, in turn, in the limit of infinitely equally
spaced settings, leads to a no-go theorem for a local realistic
description involving perfect correlations only. Another result
is that one can also have conclusions of a similar kind involving
only correlations infinitesimally close to just one in which we
have a perfect correlation.

As the discussed inequalities are valid for any dimension,
the results can also be applied to the case of the dimension
of the systems approaching infinity. In a forthcoming work,
we shall analyze the so-called bright squeezed vacuum (BSV)
with the methods presented here, seeking drastic consequences
for the hypothesis of local realism. Note that the BSV is a
(physical) approximation of the original (unphysical) EPR
state.

ACKNOWLEDGMENTS

M.Z. is supported by the BRISQ2 EU project, while A.D.
is supported by an MPD Project of FNP.

[1] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
Rev. Mod. Phys. 86, 419 (2014).

[2] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter,
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