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Aharonov-Bohm effect for light in a moving medium
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In this paper we propose a way to detect the Aharonov-Bohm effect for light in a moving medium. We use
the position-dependent photon wave function to describe the propagation of the photon in order to evaluate
the phase shift acquired by the photon while it passes around a rotating cylinder embedded in a viscous fluid.
We show that this phase depends on the speed of the fluid as well as the electromagnetic properties of the
cylinder.
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I. INTRODUCTION

Bialynicki-Birula [1–3] has described a photon as a
quantum-mechanical particle and proposed a theory based on
the first quantization for this particle. This approach resulted
in obtaining of the wave function describing the photon. The
theory by Bialynicki-Birula is based on the fact that the
photon is a quantum particle; thus its pure states are described
by a wave function. Bialynicki-Birula has claimed that a
complex combination of electric and magnetic field vectors
represented by the Riemann-Silberstein vector is a most natural
and convenient way to describe photons. This affirmation
is supported by the fact that the Riemann-Silberstein vector
contains all information about the classical electromagnetic
field and can be used in a quantum theory of a photon as a wave
function of this particle. Independently, Sipe [4] also obtained
a photon wave function. This theory has been denominated as
the theory of a photon wave, or the Bialynicky-Birula–Sipe
theory of photons. Recently, this theory has been used in
solving a number of problems in physics. Among these
applications, we note the study of photonic tunneling [5], the
analysis of two-photon wave mechanics [6] with application
to the Lamb shift [7], the study of interaction between light
and matter [8], the analysis of propagation of photons in
resting and moving media [9], the study of the equivalence
between the wave functions of photon wave mechanics and
mode functions of quantum field theory, evolving via identical
equations of motion and completely describing the quantum
state [10], and the development of the covariant formulation
of photon wave mechanics and proof of its equivalence with
QED photonic states [11]. In this paper we investigate the
Aharonov-Bohm effect for light in moving media using the
theory of a position-dependent [9] photon wave function to
describe the propagation of the photon.

Aharonov and Bohm [12] demonstrated that the electro-
magnetic vector potential has a physical meaning in quantum
mechanics. Charged particles are affected by this potential,
even if they are localized in regions with no magnetic
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fields. The best known form of the Aharonov-Bohm effect
describes a charged particle affected by the potential vector
corresponding to a solenoid; the particle acquires a quantum
phase proportional to the magnetic flux inside the solenoid.
Aharonov and Casher [13] have demonstrated that, in certain
circumstances, a neutral particle with a permanent magnetic
moment also exhibits an Aharonov-Bohm effect. When the
neutral particle makes a closed path around a line of electric
charges, its wave function acquires a phase shift proportional
to the magnetic moment of the neutral particle and to the charge
density of the line. He and McKellar [14] and Wilkens [15]
independently have investigated a quantum phase acquired by
a neutral particle with a permanent electric dipole moment.
In the same way as within the Aharonov-Casher (AC) effect,
the wave function of the neutral particle acquires a phase shift
due to the coupling between the electric dipole moment of
the neutral particle and the magnetic field of the monopoles.
The He-McKellar-Wilkens (HMW) phase is the Maxwell
dual of the AC phase. A more realistic field configuration
of the HMW effect has been proposed by Wei, Han, and
Wei (WHW) [16]. In their work, the neutral particle is
exposed to a nontrivial field configuration characterized by
the simultaneous action of the electric field and a uniform
magnetic field. This field configuration induces an electric
dipole moment for the neutral particle. The WHW proposal is
physically more realistic because it avoids the necessity of the
field generated by magnetic monopoles. The quantum phase
for electric dipoles has been investigated in [17,18], where
a quantum phase different from that proposed by Wilkens
by the presence of an extra term was obtained. Analogs of
the Aharonov-Bohm effect have been investigated in several
contexts such as gravitation [19,20], dynamics of quasiparti-
cles in a superfluid [21,22], propagation of light in moving
media [23], dynamics of a quasiparticle in a medium with
disclination [24], and the quantum dynamics of quasiparticles
in graphene in the presence of a topological defect [25]. Cook
et al. [26] have investigated the Aharonov-Bohm effect for
light using the electromagnetic wave equations for a moving
medium and have demonstrated that the Fizeau experiment
for the velocity of light in moving media is an example of
this classical analog of the Aharonov-Bohm effect for light.
In this paper we investigate the Aharonov-Bohm effect for
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propagation of photons around a spinning cylinder immersed
in a fluid. Recently, a series of articles have considered the
analogs of the Aharonov-Bohm effect for an electromagnetic
wave [27,28] in an optical medium.

In this paper we investigate the Aharonov-Bohm (AB) ef-
fect using the Minkowski nonrelativistic constitutive relations
for moving media [29]. We study the geometric phase acquired
by the wave function of the photon in the interferometric
path around of a rotating cylinder in a viscous medium.
This paper is organized in the following form: in Sec. II
we present the description of electromagnetism in moving
media; in Sec. III, we investigate the AB effect for light in a
moving medium. Finally, in Sec. IV we present the concluding
remarks.

II. ELECTROMAGNETIC WAVES IN MOVING MEDIA

Now, we use the Maxwell equation in a moving
medium [29] to obtain a position-dependent photon wave
function [9]. We follow the procedure of Zaleśny [9,30] to
describe the propagation of an electromagnetic wave in moving
media and to define the concept of vector potential associated
with the velocity of a medium. The aim of this paper is
the investigation of the Aharonov-Bohm effect for classical
electromagnetic waves. We start with the Maxwell equations
for moving media without sources:

∇ · D = 0, (1a)

∇ · B = 0, (1b)

∇ × E = −∂E
∂t

, (1c)

∇ × H = ∂D
∂t

. (1d)

The constitutive relations for nonrelativistic moving media are
given by Minkowski relations [29],

D = ε0εE + (εμ − 1)
v
c2

× H, (2a)

B = μ0μH − (εμ − 1)
v
c2

× E, (2b)

where ε and μ are, respectively, the dielectric constant and
the magnetic permeability of the medium and v is the velocity
field associated with the motion of the medium.

For monochromatic waves, the electric and magnetic fields
are given, respectively, by

E(r,t) = E(r)e−iωt , (3a)

H(r,t) = H(r)e−iωt . (3b)

Assuming that the velocity field depends only on the position
v = v(r) and combining (2b), (3a), and (3b) in the Maxwell
equations, one can write the curl equations as(

∇ + iω
εμ − 1

c2
v(r)

)
× E(r) = iωμ0μH(r), (4a)

(
∇ + iω

εμ − 1

c2
v(r)

)
× H(r) = −iωε0εE(r). (4b)

We can make an analogy between the electromagnetic and
quantum approaches by multiplying Eqs. (4a) and (4b) by −i�,
where � is the Planck constant. Thus we get the following set
of equations:

[p̂ + qv(r)] × E(r) = �ωμ0μH(r), (5a)

[p̂ + qv(r)] × H(r) = −�ωε0εE(r), (5b)

where p̂ = −i�∇ is the momentum operator and q = �ω
εμ−1

c2 .
The parameter q is identified as “effective charge for the
radiation.” Zaleśny [9] showed that when a relative movement
is introduced into the medium, the velocity field acts as an
effective potential vector for the radiation. This conclusion
can be made on the basis of Eqs. (5a) and (5b). It allows us to
identify the vector potential for the electromagnetic radiation
as

A(r) ≡ v(r). (6)

In the next section, we present an explicit expression for
the vector potential A(r), as well as a description of a
physical system that displays the Aharonov-Bohm effect for
an electromagnetic wave.

III. THE AHARONOV-BOHM EFFECT FOR THE PHOTON

In the context of quantum mechanics, the Aharonov-Bohm
effect occurs when an electrically charged particle is affected
by the presence of a magnetic field B, despite this particle
being confined to a region in which B is zero but the vector
potential A is not zero. It is necessary only that ∇ × A = 0 in
regions where the particle is confined.

How can the Aharonov-Bohm effect be observed in the
case of the photon? In order to answer this question, we
ensure that ∇ × A = 0 and propose the following physical
system as a laboratory. Let us consider a rotating, rigid, and
long cylinder. This cylinder has a radius R and rotates with
a constant angular frequency �ẑ. Moreover, let us suppose
that the cylinder is inserted in a viscous medium with uniform
and constant viscosity (see Fig. 1). The situation is similar
to that of an electron beam which is separated into two
beams passing around the solenoid and then recombining. The
same occurs with the photons around the spinning cylinder
described above. To show how this happens, we need to choose

FIG. 1. (Color online) A cylinder of radius R, rotating about an
axis with angular velocity � immersed in a viscous fluid. The field
of velocity in the fluid is represented by blue circles.
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properly the velocity field of the fluid. In the closest layers, the
angular velocity caused by the rotating cylinder is simply �R.
However, for more distant layers, this velocity drops off with
distance from the center of the cylinder. Thus it is reasonable
to write the velocity field as follows:

�v(�r) =
{

�rθ̂, 0 � r � R,

�a2

r
θ̂ , r > R.

(7)

Thus the effective vector potential (6) produced by the medium
has the form

A(r) =
{

�rθ̂, 0 � r � R,

�a2

r
θ̂ , r > R.

(8)

In this way, we can calculate the effective magnetic field
produced by moving medium, calculating ∇ × A(r) using
Eq. (9),

H̄ =
{

�ẑ, 0 � r � R,

0, r > R,
(9)

and the associated magnetic flux is �̄ = πR2�. We have
noticed that the angular velocity field of the medium plays
the role of a effective magnetic field. Suppose then that a
beam of photons is divided into two along a circumference of
radius b and then recombines (see Fig. 2), similar to the case
of the Aharonov-Bohm effect. Now, we consider the wave
equation in the presence of the photon vector potential (6).
Let us suppose the following ansatz for the solutions of the
Maxwell equations:

E(r) = eiϕ(r)E′(r), (10)

H(r) = eiϕ(r)H′(r). (11)

In the regions where the radiation beam is confined, ∇ ×
A(r) = 0; then ϕ(r) is given by

ϕ(r) = q

�

∫
A · dr. (12)

In the expression above, the integral does not depend on the
path. Note that E′ and H′ are the fields for the medium in the
rest frame, when v = 0. Thus, substituting (10) and (11) in

FIG. 2. (Color online) A pictorial representation of a beam of
photons γ in a closed path of radius b around the rotating
cylinder.

Eq. (6), we obtain the following wave equation:

∇ × E′(r) = iωμ0μH′(r), (13)

∇ × H′(r) = −iωε0εE′(r). (14)

The above equations correspond to the field equations for
a linear, isotropic, and nondispersive medium in the rest
frame. Now, we obtain the geometric phase acquired by the
electromagnetic fields. The analog of the Aharonov phase of
a photon is given by

ϕ = q

�

∮
C

A · d�r. (15)

Substituting the expression for A and q, we obtain

ϕ = 1

�

∫ 2π

0

�ω

c2
(εf μf − 1)�

R2

b
θ̂ · bdθθ̂ . (16)

Explicitly calculating the phase shift, we find the result

ϕ = 2π
ω

c2
(εμ − 1)�R2; (17)

this is the phase acquired by the wave function of the photon
transported along a closed path which encircles the rotating
cylinder in the fluid.

IV. CONCLUDING REMARKS

We have investigated the Aharonov-Bohm effect starting
from Maxwell equations, using the Minkowski relations for
nonrelativistic moving media. We have proposed a possible
experiment to measure the geometric phase for the photon. We
have considered photon beam propagation in a fluid where a
cylinder rotates around its axis with an angular velocity �. This
result shows that even when one considers the photon beam
propagating in a region outside the rotating cylinder, the phase
shift depends directly on the electromagnetic properties of the
cylinder, characterized by electric permittivity and magnetic
permeability of the material composing the cylinder. With this
we inferred that the rotation of the cylinder acts on the photon
beam at a “distance” in a way analogous to was the mag-
netic vector potential acts on an electron beam within the
electromagnetic Aharonov-Bohm effect. This influence in the
present case is mediated by the presence of a viscous fluid.
Again, we draw an analogy between the usual AB effect and
the analog AB effect for the photon. The phase difference
between the two beams is the usual AB effect, which is given
by

ϕ = e

�

∮
C

A · d�r = e�m

�
, (18)

where e is the charge of an electron, � is the Planck constant,
and �m is the magnetic flux. The path of integration C is
a curve around the solenoid. Now, let us consider the photon
beam. The phase difference obtained when the beam circulates
around the cylinder is given by

ϕ = q

�

∮
C

A · d�r = q�L

�
. (19)

The flux �L = �πR2 is generated by the curl of the field of
velocities, and q = �ω

c2 (εμ − 1).
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We can also note that if the cylinder is metallic, the
phase difference can be complex. This means that the phase
shift causes a damping of the amplitude fields, even when
a constructive interference occurs. We also noted that this
difference also depends on the rotation of the viscous fluid.
In conclusion we claim that this experiment can be performed

and the Aharonov-Bohm effect for a photon in this moving
medium can be detected.
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