
PHYSICAL REVIEW A 90, 012102 (2014)

Environment-induced dephasing versus von Neumann measurements in proton tunneling
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In this work we compare two theoretical approaches to modeling the action of the environment on an open
quantum system. It is often assumed that as the temperature of the environment surrounding a quantum system
increases, so does the speed of environment-induced dephasing, or decoherence (dynamical noise), and so
the efficacy of processes such as quantum tunneling drops. An alternative way of viewing the action of the
environment is to consider it as carrying out von Neumann–type measurements that, in the limit of continuous
observation, lead to the so-called quantum Zeno effect, whereby the system is never allowed to evolve because
its wave function is collapsed to its initial state with overwhelming likelihood. However, it has been established
in recent years that under certain conditions quantum processes such as tunneling can actually be enhanced
(thermally assisted) when the system couples to its environment, as this allows transitions to higher-energy
eigenstates closer to the top of the potential barrier. Here we show that, over a specific temperature range,
increasing the temperature of the heat bath to encourage such thermally induced tunneling is equivalent to
increasing the frequency of a von Neumann–type measurement on the system by the environment (an anti-Zeno
effect). However, this correspondence between these two independent pictures of quantum measurement breaks
down above a certain limit: Increasing the frequency of measurement above this limit leads to a reversal from an
anti-Zeno to a Zeno effect and the tunneling rate decreases again, whereas raising the temperature further leads
to a leveling off in the tunneling probability.
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I. INTRODUCTION

There are many examples in physics, chemistry, and,
more recently, even biology of open quantum systems in
which the relevant microscopic mechanisms or processes
behave quantum mechanically, but which cannot be treated
in isolation from their surrounding environment. Such systems
are often embedded within complex molecular structures or are
surrounded by water molecules. This external environment is
often modeled as a heat bath of harmonic oscillators to describe
thermal fluctuations arising from, for example, molecular
vibrations. In such open quantum systems, coupling to the
environment leads to the loss of quantum coherence at time
scales that depend on the temperature of the heat bath and
the strength of the coupling [1,2]. Many different terms are
used to describe this process, such as relaxation, dissipation,
dephasing, and decoherence. Open quantum systems are these
days a subject of detailed study in situations where the coupling
of the quantum system to its environment is a crucial feature of
the phenomenon or mechanism of interest, such as in nuclear
magnetic resonance. However, by and large, many of the
best-studied features of the atomic and subatomic world are
still dealt with as idealized isolated quantum systems.

In this paper we focus on one mechanism in particular:
quantum tunneling. There are many examples in physics and
chemistry where quantum tunneling only plays a role when the
systems involved are at low temperatures or when the tunneling
either involves low mass particles, such as electrons, or takes
place over short, atomic, distances.

A well-studied example of proton tunneling in chemistry
has been the double-H-bonded benzoic acid dimer [3–13],
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making this simple structure useful for modeling more com-
plex chemical and biological systems that may involve proton
tunneling. The first experimental evidence for proton tunneling
in biological systems came in fact from the study of enzyme
catalysis in 1989 (for the enzyme alcohol dehydrogenase,
which transfers a proton from an alcohol molecule to a
molecule of nicotinamide adenine dinucleotide), where the
effects of atomic mass on reaction rates through isotopic
substitution revealed clear evidence of quantum tunneling even
at relatively high temperatures [14]. Since then, many other
enzymatic reactions have been ascribed to proton tunneling
and it has been established that, at low temperatures, proton
tunneling dominates the proton-transfer dynamics [15–18].

It is now well established that in a number of biochemical
processes there exists a subtle interplay between quantum
coherence and environmental noise such that the action of the
latter can assist rather than hinder the former. In this paper we
examine a model of proton tunneling in a double-well potential
under the influence of an external environment. We consider
the link between quantum measurement and decoherence
using numerical simulations such as has been described by
several authors [19,20], who consider a particle that starts
off on one side of a double-well potential and investigate
the effects of measurement on the time it takes for the
particle to tunnel between the wells. However, in those studies
conflicting conclusions are reached as to whether continuous
measurement slows down the tunneling process [the quantum
Zeno effect (QZE)] or speeds it up [the anti-Zeno effect (AZE)]
[21]. For instance, the standard argument is that repeated
measurement continually collapses the state of the particle with
overwhelming likelihood back to its initial state on one side of
the barrier. On the other hand, it is acknowledged that the act
of measurement can excite the particle to higher energies and
thus enhance the probability of barrier penetration. However,
these models are relatively complex and make it difficult to
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see what is happening in a transparent way. The review by
Koshino and Shimizu [22] provides a survey of the field, but
also highlights the complexity of the problem to the extent that
the physics can only be appreciated fully by the aficionados.

In particular, a model proposed by Kofman and Kurizki [23]
is useful for highlighting the advantages of our approach. Their
model deals with energy measurements associated with the de-
cay of an unstable state. They derive a universal result that they
claim shows that the anti-Zeno effect of accelerated decay is
much easier to achieve than the Zeno effect itself, the latter be-
ing restricted to a limited class of systems due to a competition
between the frequency of measurement and the energy spread
brought about by this measurement due to the uncertainty
principle. Moreover, as the energy uncertainty grows with
the frequency of the measurements, the state is able to decay
into a larger number of channels, thus accelerating the decay
process. Their universal relation involves the convolution of
two distributions: the measurement-induced level width and
spectrum of energies to which the decaying state can couple.

The above model was extended in the work by Ruseckas
and Kaulakys [24,25], who took into account both the finite
duration and finite accuracy of the measurement. They showed
that in fact both the QZE and the AZE can be realized
depending on the properties of the system and the strength and
frequency of the interaction. Just as in Kofman and Kurizki’s
work, this model also relies on the convolution of the two
distributions. When the width of the spectral line (containing
the physics of the interaction) is much broader than the width
of the reservoir (the range of energy eigenstates available
for the decay) the overlap between the two is small and the
decay is inhibited (QZE). On the other hand, if the spectral
line is narrow then more frequent measurements can broaden
it and enhance its overlap with the reservoir spectrum, thus
accelerating the decay.

The purpose of the work described in this paper is to
compare the above lines of reasoning with the more traditional
approach of dealing with dissipation in an open quantum
system using a reduced density matrix model. Here we
compare two very different ways of modeling the measurement
problem. The first simulates a von Neumann–type process
of irreversible reduction [26] via a position (Pointer state)
measurement that entangles the state of the system with
that of the measuring device (in this case the surrounding
environment) causing a decay of the off-diagonal elements of
the density matrix. The second involves adding a dissipative
(Lindblad) term in the master equation for the time-dependent
density matrix in order to model the (continuous) coupling
of the system to a surrounding heat bath of oscillators. We
refer to these two approaches as the Pointer and Lindblad
methods, respectively. The latter method in particular is well
known and has been studied extensively for various systems
[27–44]; the comparison between the two methods and the
possibility of opening up an alternative way of looking at the
system-environment interaction are the primary goals of this
paper, in addition to the hunt for the AZE, which may be
necessary for the warm, wet environments found in biological
organisms to exhibit quantum behavior.

In both approaches, our quantum system consists of a single
proton in an asymmetric double-well potential, as found in
many biological systems. The one-dimensional (1D) potential

well we use is defined as a quartic function of position (defined
in Sec. III) with parameters chosen to describe a benzoic acid
dimer molecule in a crystal field. The two minima along the
energy surface for a single benzoic acid dimer are highly
symmetric, but introducing a crystal field causes asymmetry,
which had previously been determined from temperature-
dependent infrared absorptions and NMR data, making one
state more energetically favorable than the other [5]. While
our simple parametrization gives a good approximation of the
behavior of the physical system, it is worth stating that our
interest is to ultimately apply these techniques to study proton
tunneling in biological systems, such as in enzyme catalysis
and in hydrogen bonds between DNA base pairs, which
feature similar asymmetric well potentials. That work will
involve generating a more realistic double-well potential using
density-functional theory to take into account the complex
structure of large biomolecules.

II. THEORY

A. Pointer measurements

Many authors have investigated the measurement process
in quantum mechanics, which entangles the state of the system
with that of the measuring device causing a decay of the off-
diagonal elements of the system’s density matrix. Wallace [45]
chose a simple example: the evolution of a one-dimensional
wave packet describing the motion of a free particle. He consid-
ered the time evolution of the density operator in momentum
space and then Fourier transformed it back to configuration
space before simulating the measurement process by setting all
off-block-diagonal elements of the density matrix to zero. He
concluded that the effects of repeated measurement can have
nontrivial dynamical effects both on the rate of the spreading of
the wave packet and on the rate of its center-of-mass motion,
sometimes speeding it up and sometimes slowing it down.
However, since he only dealt with free particles he could say
nothing about the effects of the measurement on quantum
tunneling.

Recently, we extended the idea of Wallace to the more
interesting case of the tunneling of a wave packet through a
square potential barrier [46] to investigate the more realistic
example of particle decay, which is closer in spirit to the
models of Refs. [19,20,47]. We describe this approach here and
connect it with the more physically realistic reduced density
matrix approach described in the next section.

We simulate the process of position measurement at any
given time for a certain choice of position resolution by setting
to zero the off-diagonal terms in the density matrix (expanded
in a position space basis). Specifically, we initiate an imprecise
measurement on the system to essentially determine which
well the proton is in. As such, only the off-diagonal quarters
of the density matrix are set to zero, as shown in Fig. 1. Unlike
other approaches that deal with the coupling of the quantum
system to its environment and have to take into account the
number of states available for the decay and the overlap of
this (reservoir) spectrum with the measurement induced level
width, we do not need to consider the reservoir at all.

We begin by writing the matrix elements of the den-
sity operator ρ̂(t) = |ψ(t)〉 〈ψ(t)| in 1D coordinate space
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FIG. 1. Density matrix just after measurement showing how the
off-diagonal elements in a block of size N/2 are removed. White
indicates regions of the matrix in which the elements are unchanged
and black indicates elements set to zero. Regions shown as gray have
been multiplied by a nonzero factor as determined by Eq. (7), with
y = 10−4.

representation as

ρ(x,x ′,t) = 〈x|ρ̂(t)|x ′〉 = ψ(x,t)ψ∗(x ′,t). (1)

The time evolution of the density operator of a nondissipative
quantum system is described by the master equation (often
also referred to as the quantum Liouville equation)

∂ρ̂

∂t
= 1

i�
[Ĥ ,ρ̂], (2)

where Ĥ is the Hamiltonian operator for the double-well
system. We next coarse grain the position into a discrete lattice
of position states and expand the system’s wave function
in a basis of position eigenstates (referred to henceforth as
the Pointer state basis): |ψ(t)〉 = ∑N

n=1 Cn(t) |Xn〉 so that all
quantities are represented on a grid at uniformly spaced points
Xn. Thus, Vn ≡ V (Xn) is the value of the potential at grid
point Xn.

Inserting a complete set of states
∑

k |Xk〉〈Xk| into each
term in the commutator in (2) leads to an equation for the
density matrix elements ρnm(t) of the form

i�
∂ρnm

∂t
=

∑
k

(Hnkρkm − ρnkHkm), (3)

where the Hamiltonian matrix elements are

Ĥnm = 〈n|H |m〉 =
(−�

2

2m

∂2

∂X2
n

+ Vn

)
δnm. (4)

For ease of computation we then approximate the second
derivative in the kinetic energy operator using the three-point
formula

f ′′(Xn) ≈ [f (Xn−1) − 2f (Xn) + f (Xn+1)]/�X2, (5)

where �X is the grid spacing. Equation (4) then simplifies
through the use of (5) and the fact that the potential is diagonal
to

ρ̇nm = 1

i�

[
− �

2

2m

ρn−1,m + ρn+1,m − ρn,m−1 − ρn,m+1

�X2

+ (Vn − Vm)ρnm

]
. (6)

This first-order differential equation in time is solved using
Runge-Kutta algorithm for the full N × N coupled equations
(one for each element in the density matrix).

Simulating a Pointer measurement is relatively simple.
First, a block size (from anywhere between 1 and N/2, where
N is the number of Pointer states) is chosen to determine
the precision of the measurement. In this study we choose a
block size of N/2, which effectively allows us to know, upon
measurement, no more than which side of the barrier the proton
is on (an imprecise measurement). At certain chosen intervals,
greater than the step size in time in the numerical integration
of Eq. (6), we carry out our measurement by multiplying all
elements in the off-diagonal blocks of the density matrix by a
decay factor

ρnm = ρnme−y(n−m)2
, (7)

where y � 0 is a harshness parameter. This parameter is
necessary to avoid discontinuities in the wave function and
its derivative, both of which must be continuous across the
block boundaries and therefore so must the elements of the
density matrix. A smooth and continuous decay of the matrix
elements across block boundaries also makes sense physically
in terms of the action of a measurement on the system by
its environment. The effect of this is visible in the gradients
shown in Fig. 1.

It is clear from Eq. (7) that the closer to the diagonal the
element is (n − m is small) the less affected it is, but for those
further away (n − m is large) the closer to zero the decay
factor is, effectively eliminating the matrix element, as shown
in Fig. 1.

B. Lindblad method

The density matrix can also be expanded in the basis of
energy eigenstate of the double well, where a smaller matrix is
required (since the number of eigenstates needed to describe
the wave function is far fewer than the number of grid points
considered in the Pointer basis). In this basis the density
matrix is

ρ̂ = |ψ〉 〈ψ | =
∑
ij

αiα
∗
j |φi〉 〈φj | , (8)

where

Ĥ |φi〉 = Ei |φi〉 , (9)

which gives a particularly simple form for the time evolution
of the density matrix elements

ρ̇ij = 1

i�
(Ei − Ej )ρij . (10)
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We will discuss later the number of eigenstates necessary in
order to achieve good enough accuracy.

In order to model an open (dissipative) system, coupling to
the environment (in the limit of weak coupling to a Markovian
bath) can be included in the Liouville equation (2), which is
generalized to include a dissipative (Lindblad) term on the
right-hand side [48,49]

∂ρ̂

∂t
= 1

i�
[Ĥ ,ρ̂] + L̂ρ̂, (11)

where this extra term generally takes the form

L̂ρ̂ =
∑

β

(Âβ ρ̂Â
†
β − 1

2 [Â†
βÂβ,ρ̂]+) (12)

and the operators Âβ are defined as [50]

Âβ = √
Wij |i〉 〈j | . (13)

The index β labels ordered pairs (i,j ) of energy eigenstates
and Wij are environment-induced transition rates between well
states |i〉 and |j 〉. This leads to

L̂ρ̂ =
∑
ij

Wij (|i〉 〈j | ρ̂ |j 〉 〈i| − 1
2 [|j 〉 〈j | ,ρ̂]+). (14)

Substituting the above back into Eq. (11) leads to diagonal and
off-diagonal density matrix elements in the eigenstate basis

ρ̇ij = 1

i�
(Ei − Ej )ρij − 1

2
ρij

∑
k

(Wki + Wkj ), i �= j,

(15)

ρ̇ii =
∑

k

(Wikρkk) − ρii

∑
k

(Wki).

There are a number of ways of calculating the transition
(relaxation) matrix elements Wij . They are derived here using
the microscopic theory of Meyer and Ernst [5]. We will not
repeat the details of the derivation, but will summarize the
assumptions and inputs to the model briefly. The full system
plus bath Hamiltonian is written as

Ĥ = Ĥs + Ĥb + �Ĥ, (16)

where Ĥs is the system Hamiltonian involving a kinetic energy
operator for the tunneling particle along with the double-well
potential and Ĥb is the bath Hamiltonian defined as a sum of
harmonic oscillators

Ĥb = 1
2

∑
m

(
p2

m + ω2
mq2

m

)
, (17)

where m is the set of bath oscillators, pm are their momenta, qm

are their spatial positions, and ωm are their frequency. Finally,
�Ĥ = ζ

∑
m fmqm is the interaction between the system and

bath, with coupling constant fm.
The transition probability Wij between states i and j is

defined as

Wij = 1

�2

∫ ∞

−∞
dτ e−iωij τCij (τ ), (18)

Wjj = −
∑
i �=j

Wij , (19)

where ωij is a transition frequency depending on the energy
of the eigenstates i and j ,

ωij = Ei − Ej

�
, (20)

and the transition probabilities Wij according to this definition
will automatically fulfill the principle of detailed balance [5].

The correlation functions Cij required in Eq. (18) are
calculated from an appropriately chosen power spectral density
function of the active bath displacement

Jrr (ω) = 4
√

2�VR�ωpω3(
ω4

p + ω4
)
(e�ω/kBT − 1)

, (21)

where T is temperature, ωp is a characteristic phonon
frequency of the heat bath, and �VR is the rearrangement
energy gained by the bath oscillators upon displacement from
qm = 0 to their optimal values at the potential minima [5]. This
definition of the power spectral density function is related to
the chosen model for the bath oscillators, using Debye theory,
whereby the product of the square of the coupling constants
and the density of modes increases with ω4 at low frequencies
and becomes constant at ωp.

III. NUMERICAL RESULTS

We use an analytic one-dimensional asymmetric double-
well potential with a quartic dependence on position [5]

V (ζ ) = [B(1 − ζ 2)]2 + �V

2
ζ, (22)

where B is the barrier height, �V is the asymmetry parameter,
and the dimensionless variable ζ is a reduced proton position
transfer coordinate. The parameters were chosen, as in [5],
to describe the benzoic acid dimer: B = 620 cm−1 and
�V = 63.6 cm−1. Figure 2 shows the chemical structure of
the benzoic acid dimer, with its double H bond, and the shape
of the resulting double-well potential. Also plotted are the first
six eigenfunctions and their corresponding energies, calculated
from a numerical solution of the Schrödingerequation using
the a Runge-Kutta routine.

As a test of the two approaches, we first carry out
calculations for the isolated system, that is, without setting
the off-diagonal elements of the density matrix to zero in
the Pointer method and without the Lindblad term in the
eigenstate basis (achieved by setting the temperature T = 0
in the spectral function J ). An initial Gaussian wave function,
centered at ζ = −1, was chosen to represent a proton that
starts off at t = 0 in the deeper well. The density matrix
was then evolved in time in each case and the probability
of finding the proton in the shallow well was calculated at
appropriate time steps. Due to the asymmetry of the double
well, the ground-state eigenfunction exists mainly in the deeper
well and the initial Gaussian wave function consists almost
entirely of this lowest eigenfunction. Crucially of course, it
will contain small components of higher eigenstates and is
thus not a stationary state. A small component of the wave
function will therefore tunnel through to the shallow well.

In the absence of any interaction with the environment, the
numerical accuracy of the two methods can be tested against
each other to determine the sizes of the basis sets required
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FIG. 2. (Color online) Double-well potential for hydrogen trans-
fer in benzoic acid dimer, showing the first six energy eigenstates
plotted at their appropriate energies on the y axis. States 1 and 2
are wholly localized in their respective wells and states 3 and 4 are
mostly localized in their respective wells.

for sufficient accuracy. It was found that the eigenstate basis
required 16 terms, which produces results matching those
obtained in the Pointer state basis to within an accuracy of one
part in 105 over the whole time period of interest. Although
rather difficult to see, there are in fact two curves in Fig. 3.
The low probability of finding the proton in the shallow well
reflects the choice of initial wave function and we stress the
agreement between the two approaches is no more than a test
of the numerical calculations.

It is important to add that the many fluctuations seen in
this figure are not indicative of individual proton-tunneling
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FIG. 3. (Color online) Probability of a proton being in the shal-
low well over a period of 3 ps using optimum basis sizes with
no measurement or environmental coupling. The results match
extremely well, demonstrating the accuracy of the two quite different
approaches.

events, but are due to the complex physical interference
effects resulting from the time dependence of the part of
the wave function in the shallow well. As such, this figure
is no more than a test that both numerical procedures are
describing the same physics. We have investigated the time
scales for tunneling to take place and find that, for the case of a
symmetric, or very near symmetric, double well, the tunneling
time is in the range of 10–20 ps. (Note that, in the absence
of measurement we cannot obtain a tunneling time using
our asymmetric well because it is only the action of the
environment in exciting the initial state that triggers any
measurable tunneling.)

We next include the coupling to the environment by (a)
adding the dissipative Lindblad term in the eigenstate basis
and (b) carrying out Pointer measurements at regular intervals.
Instead of taking a Gaussian centered in the deeper well for the
initial wave function (depicting a proton that is definitely in the
deeper well to begin with), we now choose the more realistic
case of the ground-state eigenfunction |ψ(t = 0)〉 = |φ0〉. Due
to the asymmetry of the well, this eigenfunction is almost
entirely in the deep well anyway and closely resembles the
Gaussian shape. However, this is a stationary state and any
tunneling will now be due entirely to the coupling of the system
to the environment. In the Lindblad method, this is due to the
external heat bath inducing transitions between the ground
state and higher-energy eigenstates that have larger compo-
nents in the shallow side of the well (which is just another way
of saying it enhances the tunneling probability). Since this cou-
pling depends on the temperature of the bath we should expect
an enhanced tunneling probability with higher temperature
(thermally assisted tunneling). In contrast, the interpretation
in the Pointer method is that repeated measurement (setting
the off-diagonals of the density matrix to zero) provides an
unavoidable kick to the proton pushing it to higher-energy
states.

Clearly, if the coupling is strong enough in both pictures
the proton could be induced into hopping over the barrier
classically rather than tunneling through it. To test this, we
compared two eigenstate basis calculations with basis sizes
of 4 and 16 eigenstates, respectively. The first four energy
eigenvalues lie below the top of the barrier and so, with a basis
that only includes coupling between these states, quantum
tunneling would be the only way for the proton to find itself
on the other side of the barrier. On the other hand, including
an additional 12 states would allow classical over the barrier
hopping. Hardly any difference at all was found between the
two cases, implying that tunneling is the dominant mechanism
in this case. In addition, the occupation probability of each
eigenstate (obtained by finding the overlap between the wave
function and each eigenstate) over time was checked for the
two cases of basis size.

Figure 4 shows how the occupation probability for first
four eigenstates changes over time. When using the larger
basis, the 12 higher-energy eigenstates have a cumulative
occupation probability of 6% at 20 ps. What is clear is
that adding the dissipative Lindblad term allows primarily
for strong transitions between the ground state and the first
excited state (which is predominantly in the shallow well).
Thus, the thermally assisted tunneling is almost entirely due
to populating this state.
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Figure 5 shows a comparison between two sets of curves.
The solid lines are from the eigenstate basis calculation at three
different bath temperatures (115, 155, and 200 K). Overlaying
these are the results (dashed lines) from the Pointer calculation
with measurements being made at three different frequencies
of 20, 100, and 3300 ps−1. (Note the numerical step size
in t is 0.05 fs.) It is clear from this graph that increasing
the temperature of the bath leads to stronger coupling to the
environment and hence enhanced rate of thermally assisted
tunneling. This is very strongly and neatly correlated with a
similar enhancement in tunneling probability with increased
frequency of observation and measurement, what might be
referred to as an anti-Zeno effect. Making the link in this way
with the dissipative Lindblad approach clarifies why this is so.

Figures 6 and 7 consider two different snapshots in time,
at t = 10 and 100 ps, and compares the probability of the
proton having tunneled as a function of temperature in the
Lindblad approach with its probability of having tunneled as a
function of observation frequency in the Pointer approach. A
similar picture is seen at both times: Increasing the frequency
of measurement by the environment is equivalent to raising its
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temperature; both lead to enhanced tunneling probability, or
anti-Zeno effect.

Beyond 200 K in the Lindblad approach, the tunneling
probability continues to rise until it reaches a maximum of
P � 0.5, depending on the asymmetry in the double well.
Figure 4 explains the reason for this leveling off since, after
about 20 ps, the occupation probabilities of each energy
eigenstate remain constant. On the other hand, increasing the
measurement frequency in the Pointer model is equivalent
to imparting a kick to the proton, exciting to higher-energy
states where it can tunnel more easily. However, when the
measurements are made too frequently (beyond 1000 ps−1)
we see a drop in tunneling probability and a clear change from
the anti-Zeno to the Zeno effect. This can be interpreted as
the wave function being collapsed back to its initial state (by
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setting the off-diagonals of the density matrix to zero) so often
that it does not have as much chance to evolve and the proton
is less likely to tunnel.

IV. DISCUSSION

We have modeled proton tunneling in an asymmetrical
double-well potential such as that which can be found in
many chemical and biological systems, including the benzoic
acid dimer considered here, and simulated the way the system
evolves in time by calculating the probability of finding the
proton on the opposite side of the potential barrier. For an
isolated quantum system and our chosen potential parameters,
the proton is very unlikely to tunnel across into the shallow
well since the initial wave function is almost entirely in the
deep well. However, when the system is allowed to couple to
an external environment its evolution is altered dramatically.
We have considered two very different pictures of the way this
environmental coupling takes place and have shown that within
a certain domain there is a clear correspondence between the
two.

More specifically, at any given temperature of the surround-
ing heat bath, but below a certain upper value, and allowing the
combined system of well plus bath to evolve in time, one can
always find a corresponding frequency of von Neumann–type
observation (collapse of the wave function) that mimics the
same evolution in time of the tunneling probability. For
example, by starting the proton in the deeper well at t = 0,
coupling to a bath at some temperature, and then allowing it
to evolve in time, we show that the probability of tunneling
gradually increases over time. This well-known behavior is
due the interaction with the bath leading to transitions between
energy eigenstates and hence contributions to the proton wave
function from higher states, and a correspondingly significant
and growing amplitude in the shallow well. Physically, we can
think of the proton as populating higher-energy states closer to
the top of the potential barrier. In principle, these could even
include states above the barrier, allowing for the proton to
get across via over the barrier classical hopping. However, we
find that for our chosen potential well geometry, the transition
probabilities to energies above the barrier are too small to
contribute. Therefore, the enhanced probability of finding the
proton in the shallow well is indeed due almost entirely to
tunneling.

When we consider the quite different picture of simulating
decoherence by setting the off-diagonal elements of the
density matrix to zero at regular intervals (with a well-defined
frequency) we see the same increase over time in the tunneling
probability. For example, the behavior of the system coupled
to a heat bath at 155 K looks like one in which the off-diagonal
elements of the density matrix are collapsed every 0.01 ps. Of

course, the absolute numerical values stated here are model
dependent and therefore only qualitative conclusions should
be drawn from these results.

This mapping suggests that despite the two quite different
models of decoherence, they must be describing the same
physical process. In the Pointer approach, rather than using
the language of transition probabilities between energy eigen-
states, we can think of frequent measurements as disturbing
the system: exciting the proton by giving it a kick to higher-
energy levels where tunneling is easier. This correspondence
suggests that quantum measurements may effectively drive
a system to a given virtual temperature: The more frequent
the measurements, the higher the virtual temperature of the
environment carrying out these measurements.

However, this mapping only works up to a point. Above
a certain temperature and frequency of measurement, the
correspondence between the two pictures breaks down. In
contrast, increasing the bath temperature further continues
to enhance the tunneling probability, albeit at a slower rate
as it reaches saturation: A maximum tunneling probability
that depends on the geometry of the well, increasing the
measurement frequency further in the Pointer method, causes
a reversal in behavior and the tunneling probability begins
to fall due to the quantum Zeno effect. Thus, rather than the
proton being given ever more frequent kicks to increase its
energy and enhance the tunneling probability, now a competing
mechanism starts to dominate as the wave function is being
collapsed so frequently that it does not have enough time to
evolve.

In summary, at least for the simple model described
here, increasing the strength of coupling to the environment
(achieved by raising the temperature of the heat bath) leads
to a clear anti-Zeno effect of enhancing the tunneling rate:
thermally assisted tunneling. This rate continues to rise over
time, reaching a maximum that depends on the asymmetry of
the well. Up to a certain temperature this enhanced tunneling
can be mimicked very well by increasing the frequency of
a von Neumann–type measurement. However, increasing the
frequency of measurement further leads to a changeover from
the anti-Zeno to the Zeno effect, whereby the tunneling rate
starts to decrease again. However, in the more physically
realistic Lindblad approach of continuous coupling to an
external heat bath no such Zeno effect is seen, even at high
temperatures. We conclude therefore that environmentally
induced decoherence for the case of proton tunneling leads
entirely to a quantum anti-Zeno effect.
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