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Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles
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Laser Doppler velocimetry is a technique used to measure linear velocity, ranging from that of exhaust gases to
blood flow. A rotational analog of laser Doppler velocimetry was recently demonstrated, using a rotationally sym-
metric interference pattern to probe the angular velocity of a spinning object. In this work, we demonstrate the use
of a diffraction-limited structured illumination pattern to measure the angular velocity of a micron-sized particle
trapped and spinning at tens of Hz in an optical trap. The technique requires no detailed knowledge of the shape of
the particle, or the distribution of scatterers within it, and is independent of the particle’s chirality, transparency,
and birefringence. The particle is also subjected to Brownian motion, which complicates the signal by affecting
the rotation rate and the rotation axis. By careful consideration of these influences, we show how the measurement
is robust to both, representing a technique with which to probe the rotational motion of microscale particles.
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Beyond the straightforward use of the Doppler shift in the
measurement of the linear velocity of an approaching object,
it is also possible to exploit the Doppler shift to measure its
transverse velocity vt . Key to this latter application is that
an illuminating beam diffusely scatters from the translating
object. Any light scattered away from the angle of reflection
undergoes a change in its transverse momentum. Scattered
light detected at such an angle has a frequency shift determined
by the transverse velocity of the scattering surface. For
example, if the particle is illuminated at incident angle α and
viewed at normal incidence, then the Doppler shift is reduced
from the linear case and is given by �ω = sin αkovt , where
ko = 2π/λ. If two beams are incident at ±α, as shown in
Fig. 1(a), the Doppler shifts are in opposite directions and
interference between the two beams at the detector gives a
time-dependent intensity modulation in the backscattered light
of ωmod = 2|�ω| = 2 sin |α|kovt . This technique is commonly
referred to as laser Doppler velocimetry [1].

Exactly the same expression for the intensity modulation
in the backscattered light can be obtained by considering the
scattering particle translating through the fringe pattern created
by the interference of the two plane waves incident at ±α.
Whereas the Doppler shift is an explanation of this effect in
the frequency domain, the periodic modulation in scattered
light as the particle traverses high- and low-intensity regions
of the fringe pattern (where the fringe spacing is given by
λ/ sin |α|) is an explanation of the same phenomenon in the
time domain.

A rotational analog to linear Doppler velocimetry was
recently demonstrated [2]: The angular velocity of a spinning
disk was measured by observing the modulation in scattered
light as it spanned through a rotationally symmetric “petal”-
shaped pattern created by the interference of two beams carry-
ing orbital angular momentum (OAM) of opposite helicity [3].
As in the linear case, this method can also be interpreted in
two ways. In the time domain, consideration of the motion of
scattering centers around a petal pattern of rotational symmetry
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N = 2� [4], where � is the azimuthal mode number defining
the helicity of the beams, results in a modulation in scattered
light of angular frequency ωmod = N�, where � is the angular
velocity of the particle. In the frequency domain, the signal is
again interpreted as a beat frequency generated by the interfer-
ence of red and blue Doppler-shifted light at the detector [5–7].
In an analogous way to the linear Doppler shift experienced
by plane-wave scattering from a translating surface, a beam
carrying OAM experiences a frequency shift when scattered
from a rotating surface. The helical phase fronts of an OAM
beam of mode � result in a Poynting vector that is skewed with
respect to the beam axis by an angle β = sin−1(�/kor), where r

is the radius from the beam axis [8]. Light scattered back along
the beam axis from a rotating object will be shifted in frequency
by �ω = sin βkovt = ��, where vt = �r . Two beams with
opposite values of � undergo frequency shifts in opposite direc-
tions, and the two components interfere at the detector to give
an intensity modulation of ωmod = 2|�ω| = 2|�|� = N�,
equivalent to the above. This situation is shown in Fig. 1(b).

OAM beams have also been used to measure the rotation
of a chiral object [10], the tangential component of the
motion of rubidium vapor, by observing the broadening of an
absorption band [11], and to structure the phase profile of an
illuminating beam before interfering the scattered light with
a plane wave [12]. The rotational Doppler effect associated
with spin angular momentum has also been used to measure
rotation, by observing the change in polarization of light
transmitted through a rotating birefringent particle [13,14], and
change in wavelength of circularly polarized light transmitted
through a gas of synchronously spinning molecules [15].

In this Rapid Communication, we demonstrate the use
of a structured illumination pattern to measure the angular
velocity of a micron-sized particle spinning in an optical
trap. We generate the pattern by shaping a Gaussian beam
holographically [16] into two overlapping beams of opposite
helicity that are focused to the sample. However, the phase
profile is unimportant—any method of generating a rotation-
ally symmetric intensity pattern will work. Our technique is
quite general, requiring no detailed knowledge of the shape
of the particle, or the distribution of scatterers within it,
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FIG. 1. (Color online) (a) Laser Doppler velocimetry. Two plane waves are incident at angles ±α, creating interference fringes that a
scattering object translates through. (b) Rotational Doppler velocimetry. Two overlapping helical beams of opposite helicity (±�) create
a rotationally symmetric “petal”-shaped interference pattern that a scattering object rotates though. The red and pink colors indicate each
overlapping beam of the same wavelength. The arrows indicate the local direction of the Poynting vector of an equivalent position on each
beam. (c) Experimental setup. The system is adapted from that described in Ref. [9]. A solid-state laser (Laser Quantum, Opus) provides a
trapping beam, which is circularly polarized using a quarter-wave plate. A titanium sapphire laser (M2, SolsTiS) provides a probe beam. The
probe beam is shaped using a spatial light modulator (SLM) (Boulder Nonlinear Systems, XY Series), and focused into the sample to the same
plane as the trapped calcite particle, with the optical axis collinear with the rotation axis of the particle. In the detection arm a high-speed
complementary metal-oxide-semiconductor (CMOS) camera (Dalsa Genie, HM1024) is used to observe the trapped particle and an amplified
silicon photodetector (Thorlabs, PDA36A-EC) monitors the intensity modulation of probe beam light that is backscattered from the particle
(shown in dashed red). A 532-nm block filter and an IR long pass filter prevents any unwanted light from reaching the photodetector.

and is independent of the particle’s chirality, transparency,
and birefringence. The only conditions are that the particle
must scatter light anisotropically (i.e., it is not a homogenous
sphere), be rigid on the time scale of the measurement, and
be rotating about a reasonably well-defined axis. We explore
the fundamental limits of the technique, as the particle size
is of the same scale as the diffraction-limited beam waist. In
addition, the particle is also subjected to Brownian motion,
which affects both the rotation rate and the rotation axis,
making the measurement more challenging. Nevertheless, we
show that a rotationally symmetric structured illumination
pattern can be used to unambiguously recover information
on the microscale particle’s rotation rate.

Experimental setup. Figure 1(c) shows a schematic of the
experiment, consisting of an inverted microscope integrated
with two optical tweezers of different wavelengths. We trap
and drive the rotation of a birefringent calcite particle at a
rate of 20–30 Hz using a 50-mW circularly polarized single-
beam optical trap (shown in green) [17]. In order to make a
measurement of the rotation rate of the particle independently
from the driving beam, we also illuminate it with a lower-
power (such that it has a negligible effect on the rotation rate,
estimated to be less than 1 mW reaching the sample), structured
probe beam (shown in red). Figure 2(a) shows an example of
the intensity cross section through these patterns for different
values of N . Light from the probe beam is scattered from the

rotating particle back onto the optical axis and imaged onto a
photodetector.

Measurements. When trapped, the particle experiences a
torque from the circularly polarized trapping beam, hydrody-
namic drag from the surrounding fluid, and a stochastic torque
due to Brownian motion. The balance of these effects results
in the particle rotation rate fluctuating about its mean value. To
validate our measurements, we also measure the rotation rate
of the particle by tracking its orientation from a sequence
of high-speed camera images [10 000 images recorded at
2786 Hz, sample images shown in Fig. 2(b)], using the methods
described in Ref. [18]. The mean rotation rate was measured
as 25.6 Hz, and found to vary by a standard deviation of 1.1 Hz
owing to stochastic effects.

The calcite particle was positioned approximately 20 μm
from other surfaces to reduce the amount of probe beam
light scattered from the cover slip to the detector. Figure 2(c)
shows a segment of the time-varying signal measured by the
photodetector for an N = 2 probe beam. Thirty data runs,
each consisting of 20 000 measurements at a sampling rate
of 20 kHz, were recorded for illumination patterns consisting
of N = 0, 2, 4, and 6. In each case the data was Fourier
transformed to produce a power spectrum, with the average
power spectrum for each petal number N shown in Fig. 3.

Results. The average power spectra show growth in peaks
corresponding to N� (marked with arrows), as found for the

011801-2



RAPID COMMUNICATIONS

ROTATIONAL DOPPLER VELOCIMETRY TO PROBE THE . . . PHYSICAL REVIEW A 90, 011801(R) (2014)

(a)

N=2

N=0

N=4

N=6

(b)

(c)

0.06

0.07

0.08

0.09

0.10

52.00 0.200.150.100.05

N=2

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Time (s)

1µm1µm

FIG. 2. (a) “Petal”-shaped intensity patterns of the probe beams
when focused on the cover glass. (b) Selected images of the calcite
particle rotating in the optical trap. (c) A small segment of the
time-varying signal measured by the photodetector for an N = 2
illumination pattern. The beat frequency at N� can be seen (period
∼0.02 s), along with noise introduced by Brownian motion.

case of light scattered from a spinning disk [2]. The power
spectra also feature frequencies other than at N� because the
photodetector signal is not purely sinusoidal. There are no
other resonant signals present, i.e., all pronounced peaks in
the power spectra are harmonics of the particle’s fundamental
rotation rate, due to the fact that our system is heavily
overdamped. However, it is the scaling of the magnitude of the
harmonic at N� with N that provides a signature of rotational
motion.

The presence of harmonics at frequencies other than N�

(and, in particular, the presence of the lower harmonics we
observe) is predicted by considering the rotation of the particle
in the presence of Brownian motion. First consider a particle
rotating about a fixed axis. We take the particle rotation axis as
the origin, which is not necessarily perfectly coincident with
the center of the illuminating light. We can expand the complex
amplitude of the light illuminating the particle u as a Fourier
series in cylindrical coordinates, u(r,φ) = ∑∞

n=0 un(r)einφ ,
where r is the radial coordinate, φ is angular coordinate, and
n the mode number of the expansion. The particle will scatter
this light in a spatially dependent manner. We can express
the scattered field as s(r,φ,t) = u(r,φ)f (r,ϕ(t)), where f is a
function that depends upon the properties of the scatterer, such
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FIG. 3. (Color online) Power spectra for probe beams consisting
of N = 0, 2, 4, and 6. The fundamental rotation frequencies for (a)–
(d) are 23.9, 25.3, 25.5, and 25.5 Hz, respectively, which compares
well with the rotation rate determined using video tracking. Arrows
indicate frequencies of N�. The high on-axis intensity of the N = 0
probe beam results in a slight reduction in the rotation rate of the
particle.

as its geometry and reflectivity. Function f also encodes the
orientation of the particle at time t , which is given by ϕ(t) =
φ0 − �t + θ (t). Here φ0 is the initial orientation of the particle,
� is the average angular velocity as above, and θ (t) is a zero-
average fluctuating angle, driven by Brownian motion. We can
also expand f as a Fourier series in cylindrical coordinates,
f (r,φ0 − �t + θt) = ∑∞

m=0 fm(r)eim[φ0−�t+θ(t)], where m is
the mode number of the expansion. The measured photocurrent
i(t) is proportional to the intensity of the backscattered light
integrated over the on-axis detector area A [here we assume
A(r) = 1 for a radius r less than the radius of the detector,
and 0 otherwise]. Therefore, the expected frequency spectrum
SN (ν) of the detector signal for light scattered by a particle
illuminated with a probe beam with N petals can be found
from the Fourier transform of the autocorrelation function of
i(t), using a diffusion model for Brownian motion [19]. This
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results in

SN (ν) = 2T

∞∑
q=0

|G(N,q)|2
[

2Dq2

(q� − ν)2 + D2q4

]
. (1)

Here ν is the angular frequency of the power spectrum, T is
the length of the measurement, D is the rotational diffusion
coefficient of the particle, and q is the azimuthal mode number
of each expansion (equivalent to the harmonic number in
Fig. 3). Equation (1) indicates that we can expect peaks in
the power spectrum at harmonics of the rotation rate, as
observed. G(N,q) contains information about the angular
Fourier components of the scatterer f , and of the illuminating
beam u. It encodes the weighting of each harmonic: The greater
the overlap integral between angular Fourier components of
f and u, the greater is the power in harmonics of those
modes. Therefore, as would be expected, the shapes of both
the light field and the particle itself play a role in determining
the spectra. By illuminating with an intensity pattern of a
defined rotational symmetry N = 2|�|, we effectively boost
the overlap integral between the particle and the light field at
mode |�|. It is because of this that we observe a significant
increase in the power in peaks at N�, shown in Fig. 3. Any
small aberrations in the illuminating probe beam, or slight
misalignments between the rotation axis of the particle and the
optical axis of the probe beam, which will occur as the particle
is buffeted around by Brownian motion, act to broaden the
Fourier components of u (when decomposed about an origin
taken as the particle’s current rotation axis), and result in a
spread of power into nearby harmonics. As the size of each
peak is governed by the overlap integral of u and f , even
a small amount of optical power into a neighboring mode
can result in large harmonics, if the corresponding Fourier
component of f has a large amplitude.

Our analytical model also captures another aspect of the
effect of Brownian motion on the measured spectra, given
by the Lorentzian term in square brackets in Eq. (1). As the
particle rotates, it experiences a stochastic Brownian torque,
causing the rotation rate to fluctuate with a characteristic
variance. These fluctuations cause a spread in each peak of the
power spectrum, an effect that becomes increasingly severe for
higher-frequency harmonics, as can be seen from Eq. (1). The

Lorentzian term modulates the shape of each harmonic so that
the width increases as ∼q2, and hence the height decreases as
∼q−2. We clearly observe this effect in our measured spectra
in Fig. 3. Therefore, even if power is spread symmetrically into
adjacent harmonics, the resultant spectral density of the peaks
is asymmetric, resulting in the magnitude of harmonics higher
than N� rapidly falling off. In our experiment, increasing
N also increases the diameter of the petal pattern, therefore
reducing the overlap integral with the particle, and hence the
power in the rotational Doppler shift peak.

The presence of the additional harmonics in the power
spectra can also be understood in the frequency domain: A
spread in the OAM mode content will result in a different
Doppler shift for each mode, as each is incident from a
different angle β. Interference between all combinations of
these frequencies at the detector results in the harmonics in
the power spectrum.

In summary, we have shown that it is possible to use
rotationally symmetric structured illumination to measure
the rotation rate of a microscopic calcite particle spinning
in an optical trap. As the rotational symmetry N of the
probe beam is varied, we observe a significant increase in
power at the harmonic at N�, and it is this scaling which
provides a signature of rotational motion. We also show how
additional harmonics in the power spectra arise from any
small misalignments between the beam and rotation axes, and
the effects of Brownian motion. We have demonstrated this
measurement on a particle of five orders of magnitude smaller
in size than that used in the recent demonstration of angular
velocity measurement on a macroscale spinning disk [2]. Our
work shows the method to be robust to Brownian noise, and
allows us to distinguish the rotation of the particle from the
fluctuations arising from linear motions. As our measurements
are performed using a photodetector, our technique may also
be important in discerning the high-frequency motion (beyond
video tracking rates) of particles that are trapped at low
pressure where translational resonances are also present, a
field attracting significant interest due to its applications to
mesoscale preparation of quantum state objects [20].
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