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Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation
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The nonequilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is
studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial
dynamics where aggregates of excited Rydberg atoms slowly nucleate and grow, eventually reaching long-lived
metastable arrangements which then relax further on much longer time scales. This growth dynamics is governed
by an effective Master equation which permits a transparent and largely analytical understanding of the underlying
physics. By means of extensive numerical simulations we study the many-body dynamics and the correlations
of the resulting nonequilibrium states in various dimensions. Our results provide insight into the dynamical

richness of strongly interacting Rydberg gases in noisy environments, and highlight the usefulness of these kinds
of systems for the exploration of soft-matter-type collective behavior.
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Ultracold gases of atoms permit the observation of many-
body phenomena within a setting that offers tunable interac-
tions together with the ability to also control the dissipative
environment. Of great current interest are atoms in highly
excited states, so-called Rydberg atoms [1], as they feature
strong and long-ranged coherent forces which typically man-
ifest in pronounced collective behavior. Recent experiments
have exploited this for the exploration of dynamically pre-
pared correlated states in lattice spin systems [2,3] and the
study of nonequilibrium phase transitions [4,5]. Furthermore,
excitation transport [6—8] and the formation of small aggregate
structures [5,9—11] were observed in driven Rydberg gases.
Implicitly, all these experiments highlight a link between
problems in interacting cold atomic systems and those in
(classical) soft-condensed matter, which traditionally deals
with the static and dynamical collective behavior, both in
and out of equilibrium, of many-body systems with excluded
volume or more complex interactions [12].

In this work we connect to this perspective by investigating
in detail the nonequilibrium dynamics of a cold atomic gas in
which atoms are off-resonantly excited to high-lying Rydberg
states where they strongly interact. We find an intricate
sequence of distinct dynamical regimes due to the competition
of interactions between excited atoms and the drive towards a
high density of excitations. The initial stages of this dynamics
is one of nucleation and subsequent growth of aggregates of
excited atoms, leading to long-lived metastable states which
can display pronounced anticorrelations. Eventually, on much
longer time scales, the long-lived states relax towards true
stationarity. We analyze all these nonequilibrium features, in
spatial dimensions 1, 2, and 3, by means of effective Master
equations with operator-valued rates. We use this approach
to gain a largely analytical understanding of the time scales
involved, and to study the correlation properties of metastable
states by means of large scale numerical simulations. Beyond
uncovering the dynamical richness of this system our goal is to
highlight the general usefulness of Rydberg gases as a platform
for exploring collective phenomena traditionally associated to
soft-matter physics. We hope that this perspective stimulates
new experiments exploring the role of strong interactions and
quantum and thermal noise on the nonequilibrium structures
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of driven many-body systems, e.g., in the context of glassy
relaxation [13,14].

We follow the standard description of a frozen Rydberg
gas in terms of an ensemble of N two-level atoms, with
internal states |1) (Rydberg state) and ||) (ground state).
The atoms are localized at positions r; which (for the
sake of simplicity) are taken to be the sites of a regular
d-dimensional lattice with spacing a. Excited atoms, i.e.,
atoms in state |1), interact with a van der Waals potential
of the form V(ry,r,) = Cg/|ri — r,|® which is parametrized
by the dispersion coefficient Cg. Atoms are (de)excited via a
laser with Rabi frequency 2 and detuning A. Furthermore, we
consider the presence of noise that dephases superpositions
of the atomic ground and excited state at a rate y as, e.g.,
discussed in Refs. [15-23]. In our description we neglect the
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FIG. 1. (Color online) (a) Relevant atomic levels and interaction
energy shifts. Atoms are excited with an off-resonant laser with
detuning A < 0 and Rabi frequency 2. The interaction with an
excited atom (red) shifts the transition of a second atom, positioned
at the facilitation radius rg,. into resonance. (b) Shape of the rate
function I'(r) for two atoms (one is excited and positioned at the
origin) for re,e = £, 28 IR R.(c) Facilitation dynamics in two
dimensions. A single atom facilitates the excitation of (blue) atoms
within a shell (gray region) of width Ar. Upon a subsequent excitation
on this shell the facilitation region is changed to an ellipsoid. Note
the deviation of the facilitation region in step 2 (3) from that of two
(three) overlapping circles.
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(radiative, black-body) decay of the excited state to other states
which will be justified a posteriori. The many-body density
matrix p of this system evolves under the quantum Master
equation 3,0 = (QLg + ALA + %Ev + vy L,)p with the Li-
ouvillians Lo = —i YN0 0], La = —i Y [ni,el, Ly =
~(i/2) X (V FroF) | Co)lni 0] and - L, = 3 (nyc o
ng — (1/2) {ny,e}). The operators a,f (i = x,y,z) are Pauli
matrices acting on site k, and we have introduced the scaled
positions 7, = ry/a, as well as the projector onto the excited
state of the kth atom, n; = (1 4+ o)/2.

In order to understand the relative importance of the
individual terms we introduce the scaled time 7 = yt/a?,
that depends on the dimensionless parameter o = y/(2€2),
and which quantifies the strength of the dephasing noise
relative to the coherent driving. We furthermore introduce the
scaled detuning § = 2A /(y R®), and the interaction parameter
R = a~'(2Cs/y)'/® that serves as a measure for the range of
the interaction among Rydberg states. The Master equation
acquires now the form

2
3p = [%‘L:Q + %RG ($La+Ly) + azﬁyi| p. ()

This equation can be further simplified in the regime of
strong dephasing noise, i.e., « > 1, by the use of second-order
perturbation theory in 1/«. This leads to an effective Master
equation that governs the evolution of the populations in the
classical basis formed by products of the o° eigenstates || )
and |1) (see Ref. [22]):

dp=) Ti[ofuot —pu]. 2)
k

Here u = Pp, where P is a projector on the aforementioned
classical basis. The effective dynamics is that of single spin
flips whose rate

Ty =

3)

is determined by the operator €, = R°(8+ ), 2k If;#\“)’
i.e., the classical interaction energy (in scaled units) that is
gained or released by flipping the kth spin. When this energy
change is large the rate is highly suppressed. This can be
regarded as kinetic constraints which are known to be central
to the correlated dynamics of certain soft-matter systems. Their
explicit form is, however, often difficult to construct [24] while
here it is emerging naturally from a perturbative expansion.
Note that the treatment of the dynamics of Rydberg gases in
terms of rate equations has been employed previously also by
other authors [11,15,18-21,25].

Let us first analyze the rate function (3) and the resulting
dynamics on a few-body level. To this end we consider a
situation in which there is an excited atom positioned at
71 =0 and all other atoms are in the ground state [see
Fig. 1(a)]. The flip rate I'(r) of an excited atom at (scaled)
distance r is then given by I'(r) = [1 4+ R'>(8 +r~%)2]"\.
For negative detuning, this rate is optimal at a distance
given by the “facilitation radius” [26], rpe = [8]~1/°, in terms
of which it reads T'(r) = {1 + [(R/7)® — (R/rt.c)®1>} L. The
rate function is displayed in Fig. 1(b) for various values of
rrac. For small distances r it is strongly suppressed before
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FIG. 2. (Color online) Snapshots of a two-dimensional system
with N = 200 x 200 atoms. The interaction parameter is R = 10 and
the facilitation radius is rp = %. Red dots correspond to excited
atoms. Blue dots correspond to atoms where state changes in the
next step are facilitated, i.e., where the corresponding rate for a state
change is larger than 0.1.

a peak emerges at rp.. Here the negative detuning matches
the change in interaction energy caused by a single spin
flip making this process resonant and therefore facilitated.
For large interparticle distances I'(r) saturates at ['(co) &
R712672 = (rpae/R)'2. The latter expression is only valid if
R > rge, and only when this is satisfied the rate function
gives rise to a clearly delimited peak which facilitates the
excitation of atoms within a thin shell [see gray region in
Fig. 1(c)] of width Ar ~ 1/(3R®|8|7/®) = (rgac/3) X (rpac/R)°.
These considerations give rise to a qualitative understanding
of the dynamics [15,19,23]: From an initial state without
excitations the off-resonant laser driving creates Rydberg
atoms at a rate ['(co). The first Rydberg atom [see Fig. 1(c)]
serves as nucleation center that facilitates the creation of
excitations in its vicinity at a time scale ~1. We anticipate this
to lead to the successive growth of aggregates that eventually
fill up all available space at a density Nrf;cd . These aggregates,
however, can only be transient states of the master equation
(2) whose actual stationary density matrix is given by the
completely mixed state pg = 1/2V.

To get an impression of the actual many-body dynamics
we show in Fig. 2 snapshots taken at four different times for
a two-dimensional system with R = 10 and rge = 7. Each
excited atom is represented by a red dot. To visualize the
actual excitation dynamics we mark atoms which are likely
to be (de)excited during the next Monte Carlo step with
a blue dot, i.e., those atoms whose flip rate is larger than
0.1. One clearly observes the growth of aggregates nucleated
by initial independent excitations. Eventually, excited atoms
fill up the available volume reaching a metastable state with
density ~rf;02 . The snapshots also show that upon nucleation
aggregates grow from the boundary and that excited atoms
located within an aggregate are actually “locked in place.” The
reason for this effect is that the rate I';, which determines the
flipping rate of the kth atom, depends on its interaction with all
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FIG. 3. (Color online) (a) Effective mean-field potential V(p)
[see Eq. (4)] for a two-dimensional gas and rge = g,%’e, ...,R.
(b) Time evolution of the density in one (N = 10°), two (N =
1000 x 1000), and three (N = 200 x 200 x 200) dimensions. The
solid lines represent data for R = 10. Broken lines in 2d show data

for R =30 and rg,e = £,2%, .. R (here N = 3000 x 3000).

other atoms. This immobilizes excited atoms that are located
in close vicinity to two or more excitations. An example is
shown in Fig. 1(c): In the second excitation step where three
atoms are excited it appears as if a flip of the left red atom was
facilitated since it is located on the facilitation radius of the
upper and the lower red atom. However, there is no facilitation
as the actual interaction energy of the left atom is twice as large
as is required for making its state change a resonant process.
More insight can be gained by a simple mean-field analysis.
To this end we consider the excitation density, p = p(t) =
Y «(ni(r))/N, and using Eq. (2) we calculate the equation
of motion for (n(7)). Assuming a homogeneous system and
by breaking the emerging correlators we obtain the mean-
field equation 9, p = (I')(1 — 2p), where (I') = [1 + R2(8 +
(3, nm/m®)*17'. We consider the regime where p < 1/2,
ie.,, 1 —2p =~ 1. Here we can obtain a very crude estimate
of (I') by using the fact that initially excitations get created
at distances much larger than R in an otherwise uncorrelated
manner. In terms of the density this distance is [ ~ p~!/4,
A randomly chosen position will typically reside in a void
of size [, and the sum ), n,/ m® will be dominated by the
closest excitation, which will typically be at a distance /, so
that (3", n,,/m®) ~ 7% ~ p®4._This yields the equation

R\ -1
dep A [1 + (T) (1 = [Fpac pl/d]ﬁ)z] =—9,V(p).
fac
)

The right-hand side is written as the gradient of an effective
potential, V(p), which permits a qualitative understanding
of the dynamics. It is displayed in Fig. 3(a): In the case
of small rg,. the potential has a shallow slope for small p.
This is followed by a sudden drop near the saturation density
Psat = rf;f , indicating an accelerated increase of the excitation
density which is suggestive of the facilitated formation of
aggregates. Once this has taken place the dynamics becomes
again slow which is indicated by the second shallow portion

of V(p). We can estimate the time scale rs(ft) associated with
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the aggregate growth regime by integrating the mean-field
equation and evaluating at pg,. Thus the approximate result is

12
Ts(f:) ~ <£> X rf;Cd. (5)
Ffac

Let us now investigate whether these predictions are
actually reflected in the numerical simulations of Eq. (2). In
Fig. 3(b) we plot the density of excited atoms as a function
of time in one, two, and three dimensions for various values
of the facilitation radius rg.. The solid lines show data for
R = 10 where the time coordinate is scaled by rs(ft). All curves
show a kink due to the sudden formation of aggregates and
a (temporary) saturation at density .. The kink becomes
more pronounced the smaller rg. is, since only here a
clear distinction between the time scales of independent and
facilitated excitation is present, as can be seen from the shape
of the rate function in Fig. 3(a). The effect is also visible in
the behavior of the mean-field potential V (p): The larger r,
is, the less sudden the drop at pgy.

Curves corresponding to the same value of 7, but different
dimension exhibit their relevant features at approximately
the same scaled times. This confirms the dependence of the
saturation time [Eq. (5)] on d. In addition we show in the
2d panel data for R = 30. Curves with the same ratio R/ 7,
collapse. Differences for ry,. = R/2 arise due to the fact that
in the case of R = 10 the system still “resolves the lattice.”
Hence the saturation time scale appears to depend indeed only
on the ratio R /r¢.. What Eq. (5) appears to predict incorrectly
is the functional dependence of rsft) on this ratio. One is able
to approximately collapse the curves within each panel (such
that the kink in the density occurs at 7/ rs(f[) ~ 1) by changing
the exponent in ts(.ft) from 12 to a smaller value, typically in the
range 7-9. A quantitative prediction of this exponent would
require a more accurate estimate of (I') in Eq. (4).

The different dynamical regimes are manifested both in the
scaling with time of the average density of excitations p and in
achange in the nature of its fluctuations. The latter are naturally
quantified via the corresponding Mandel Q parameter, Q =
(X", n)*) — N?p*1/(Np) — 1, which is commonly used in
the study of interacting Rydberg gases. In Fig. 4 we display
the excitation density on a double-logarithmic plot, together
with the O parameter as a function of time. We can clearly
distinguish four regimes. (i) An initial regime with a linear
increase of the density p(t) =~ I'(co)t, as predicted by the
mean-field Eq. (4); here atoms are excited independently,
which s reflected in Q being close to zero. (ii) A second regime
of aggregation, where p increases algebraically. This can
be understood from considering that aggregates are compact
objects that grow from their boundary. In this case the growth
rate of an aggregate with a number of excitations 7,5, Would be

proportional to the surface area, ngﬁg“/ d

equation 0,7,y X nffég”/ d, leading to n,g, 79, The data in
Fig. 4 show a smaller exponent than the expected one for
d = 3. We can speculate that this may be due to the fact that
the boundary of the growing aggregates is less uniform than
what the considerations above assume. Note, moreover, that
the aggregation regime is accompanied by marked fluctuations
in the number of excitations, giving rise to a large positive

, resulting in a growth
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FIG. 4. (Color online) Density and Mandel Q-parameter (see
text) as a function of time for a three-dimensional system with R =
10. Shown are data for rg,. = § (N =30 x 30 x 30) and rg,c = %
(N =50 x 50 x 50). Broken lines sketch power-law approximations
to the time-dependence of the excitation density in four different

regimes.

value of Q. This is a consequence of spatial fluctuations due
to the “bunching” of excitations in aggregates. The regime
of aggregation, i.e., the algebraic increase of the density
with a power different from 1 and the dramatic increase of
fluctuations, becomes less pronounced the larger ry,. /R is. (iii)
After the aggregation stage the density stays approximately
constant, p ~ rf;S , for long times. Clearly, this metastable
saturated state is strongly (anti)correlated, as the excitations
are approximately a distance ry,. apart from each other. This is
also reflected in the Q parameter which exhibits a sharp drop
to its minimum value of —1, indicating that fluctuations in
the excitation number are highly suppressed. Interestingly, the
value of Q ~ —1 for these metastable states suggests that they
might be disordered yet “hyperuniform” [27]. (iv) Finally, we
enter a regime in which the density as well as the Q parameter
increase slowly, towards the uncorrelated 4. Here the system
increases its density by creating excitations within the gaps
between already excited atoms. This leads to a hierarchical
density growth with exponent 1/5 in d = 3, as discussed in
Ref. [22].
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So far we have neglected loss from excited states which
occurs at a rate k, either by radiative decay or transitions
to other states due to black-body radiation. To show under
which circumstances this can be neglected we estimate the
decay probability m,ss of an atom within the saturation time
ts(f[). In a worst-case estimate we assume that the density of
excitations is saturated at r;ad. Multiplying the loss rate by
the excitation probability and the excitation time we obtain
Tloss < 2’;—? zf;“i‘) = 2"}/—?%, which for instance, in the case

of y =10Q, Q = 10k, R = 10, and rge. = R/2, gives rise to
the probabilities 7j,es < 0.3 (1d), 1072 (2d), 5 x 10™* (3d).
Hence, high-dimensional gases are preferable for observing
the dynamical features discussed here. A second detrimental
mechanism is mechanical forces between excited atoms. The
system is partially stabilized by the fact that atoms within
an aggregate only experience a small net force. Moreover, for
sufficiently small ¢, also the lattice potential may lead to a sta-
bilization. However, with an appropriate choice of parameters
the actual aggregation dynamics discussed here takes place on
time scales where the external motion of atoms is frozen [5,11].

In conclusion, we have studied the nonequilibrium dy-
namics of a driven and dissipative cold atom gas where
Rydberg states are off-resonantly excited. The dynamics is
described by an effective master equation corresponding to
individual spin flips subject to kinetic constraints that quantify
the interactions. We found a rich behavior of nucleation
and growth of aggregates of excitations towards a highly
anticorrelated metastable state. These results highlight once
more the connections between the collective nonequilibrium
dynamics of cold atomic systems and those more traditionally
associated with soft-condensed matter.
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