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Acausal measurement-based quantum computing
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In measurement-based quantum computing, there is a natural “causal cone” among qubits of the resource state,
since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect
of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we
study the possibility of acausal measurement-based quantum computing by using the process matrix framework
[Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012)]. We construct a resource process matrix for
acausal measurement-based quantum computing restricting local operations to projective measurements. The
resource process matrix is an analog of the resource state of the standard causal measurement-based quantum
computing. We find that if we restrict local operations to projective measurements the resource process matrix
is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from
the graph state of the corresponding causal measurement-based quantum computing. We also show that it is
possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum
computing.
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I. INTRODUCTION

In Ref. [1], Oreshkov, Costa, and Brukner proposed a
novel framework, which is called the process matrix (PM)
framework, to study general physics on multipartite systems
where locally quantum physics is assumed but globally no
restriction, such as the no-signaling and the causality, is set
(see also Refs. [2–5]). They showed that this framework
can describe general theory beyond the standard quantum
physics, including a “mixture” of different time causal orders.
Interestingly, they explicitly constructed an example of the
PM system whose induced correlation violates a “causal
inequality” that is satisfied by all spacelike and timelike
correlations [1].

In this Rapid Communication, we study measurement-
based quantum computing (MBQC) [6] in the PM framework.
MBQC is a new model of quantum computing proposed by
Raussendorf and Briegel. In this model, universal quantum
computation can be done with only local measurements on
each qubit of a certain quantum many-body state, which is
called a “resource state.” While the computational power of
MBQC is equivalent to the traditional circuit model of quantum
computation, MBQC provides novel view points to deepen
our understanding of quantum computing. In fact, plenty of
new results have been obtained by using MBQC, such as
relations of quantum computing to condensed matter physics
[7–20], the fault-tolerant topological MBQC [21–26], roles
of quantum properties (such as entanglement, correlation,
and purity) in MBQC [27–32], and secure cloud quantum
computing [33–49].

One of the most peculiar things in MBQC is that there
is a natural “causal cone” among qubits of the resource
state [52–56]. The measurement angle of a qubit has to be
determined by the previous measurement results, since we
have to correct the effect of the byproduct operators, which
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cannot be avoided (if we respect the no-signaling [50]). Given
the PM framework, it is natural to ask, “Can we describe
acausal MBQC in the PM framework?” Here, acausal MBQC
means that the measurement angle of each qubit does not
depend on measurement results of other qubits, but we can
perform correct quantum computing. In the PM framework, a
density matrix is generalized to a PM. Therefore, the above
question is restated as follows: “Can we find a resource PM
(which corresponds to a resource state of the causal MBQC)
for acausal MBQC?”

The purpose of this Rapid Communication is to answer the
question. We explicitly construct a resource PM for acausal
MBQC restricting local operations to projective measure-
ments. In this acausal MBQC, the measurement angle of each
qubit can be independent from measurement results of other
qubits. Interestingly, if we restrict local operations to projective
measurements, the resource PM is (up to a normalization factor
and trivial ancilla qubits) equivalent to the decorated graph
state of the corresponding causal MBQC. (Here, a decorated
graph state is a graph state whose graph is created from the
original graph by adding an extra vertex to each vertex of the
original graph.) We also consider a causal game whose causal
inequality is violated by acausal MBQC.

II. PM FRAMEWORK

Let us quickly review the PM framework. Let us consider a
bipartite system, Alice and Bob. (Generalizations to multipar-
tite systems are straightforward.) Alice is in her laboratory,
which is isolated from the outer world. In her laboratory,
physics is governed by the quantum theory. This means that
a measurement by Alice corresponding to the result a is
represented by a completely positive (CP) trace-nonincreasing
map MA

a : L(HA1 ) → L(HA2 ), where HA1 and HA2 are
Alice’s input and output Hilbert spaces, respectively, L(H) is
the space of operators over a Hilbert space H, and

∑
a MA

a is
a CP and trace-preserving (CPTP) map. In a similar way, Bob
is in his isolated laboratory, and inside of the laboratory the
quantum theory is correct. His measurement corresponding
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to the result b is represented by a CP trace-nonincreasing
map MB

b : L(HB1 ) → L(HB2 ), where again
∑

b MB
b is a

CPTP map. In this way, Alice’s and Bob’s local systems are
explained in the quantum theory. However, no restriction is
set on the physics of the outer world where their laboratories
are embedded. In particular, the no-signaling and the causality
are not assumed between the two laboratories. It was shown
[1] that the probability P (MA

a ,MB
b ) that Alice’s measurement

result is a and Bob’s measurement result is b is given by

P
(
MA

a ,MB
b

) = Tr
[
WA1,A2,B1,B2

(
MA1,A2

a ⊗ M
B1,B2
b

)]
,

where WA1,A2,B1,B2 ∈ L(HA1 ⊗ HA2 ⊗ HB1 ⊗ HB2 ), and

MA1,A2
a ≡ [(

I ⊗ MA
a

)|ME〉〈ME|]T

=
d∑

i,j=1

|i〉〈j | ⊗ MA
a (|j 〉〈i|) ∈ L(HA1 ⊗ HA2 )

is the positive-semidefinite operator obtained by the Choi-
Jamiolkowsky (CJ) isomorphism. Here, d is the dimension of
HA1 , T is the matrix transposition, and |ME〉 ≡ ∑d

j=1 |j 〉 ⊗
|j 〉 ∈ HA1 ⊗ HA1 is the (nonnormalized) maximally entangled
state. The operator M

B1,B2
b ∈ L(HB1 ⊗ HB2 ) is defined in a

similar way. A map MA ≡ ∑
a MA

a is CPTP if and only if its
CJ operator MA1,A2 satisfies MA1,A2 � 0 and TrA2M

A1,A2 = I .
If WA1,A2,B1,B2 satisfies

WA1,A2,B1,B2 � 0 (1)

and

Tr
[
WA1,A2,B1,B2

(
MA1,A2 ⊗ MB1,B2

)] = 1 (2)

for all MA1,A2 and MB1,B2 such that MA1,A2 � 0, MB1,B2 � 0,
TrA2M

A1,A2 = I , and TrB2M
B1,B2 = I , we call WA1,A2,B1,B2

the process matrix (PM) [1]. A PM is, in some sense, a
generalization of a density matrix in quantum theory. (If
operation on A2 and B2 are identity, then the PM becomes
a density matrix.)

III. MBQC

Before describing our result, we also review the basics of
MBQC. Let σ be an (N + n)-qubit resource state of MBQC.
We divide σ into two subsystems C and O [Fig. 1(a)]. The
subsystem C consists of N qubits, and the subsystem O

consists of n qubits. Qubits in C are measured in order to
implement the computation. The output of the computation is

FIG. 1. (Color online) (a) The resource state σ . For example, it
is the graph state |G〉 on the graph G. (b) The distributed MBQC.
Red people are Alicej (j = 1,...,N ) and blue people are Bobj (j =
1,...,n).

encoded on qubits in O, and therefore we measure qubits in
O to read out the output of the computation. Measurements
on C are adaptive: we first measure the first qubit of C in a
certain orthonormal basis {|φ0

1〉,|φ1
1〉}. Let m1 ∈ {0,1} be the

result of the measurement. We next define an orthogonal basis,
{|φ0

2(m1)〉,|φ1
2(m1)〉}, which depends on m1, and measure the

second qubit of C in this basis. If the measurement result is
m2 ∈ {0,1}, we measure the third qubit in the orthonormal
basis {|φ0

3(m1,m2)〉,|φ1
3(m1,m2)〉}, and so on. In this way, we

adaptively measure all qubits in C. After measuring all qubits
in C, we finally measure each qubit of O in the computational
basis {|0〉,|1〉} in order to readout the computation result.
Depending on the measurement results on C, some operators
(usually Pauli operators) are acted upon O. Such operators
are called by-product operators. Because of the effect of the
by-product operators, the result on O must be postprocessed.

The canonical example of the resource state is the graph
state [6]. Let us consider a graph G = (V,E) of N vertices.
The graph state |G〉 corresponding to the graph G is defined
by |G〉 ≡ (

⊗
e∈E CZe)|+〉⊗N, where |+〉 ≡ 1√

2
(|0〉 + |1〉),

and CZe ≡ |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z is the controlled-Z gate
between two vertices of the edge e.

IV. RESOURCE PM FOR ACAUSAL MBQC

Now we show the main result. Our acausal MBQC is
performed in the distributed way [Fig. 1(b)] by N girls, Alicej

(j = 1,...,N ), and n boys, Bobj (j = 1,...,n). They share a
certain (possibly superquantum) resource system consists of
N + n particles. The system is divided into two subsystems C

and O, which consist of N and n particles, respectively. Alicej

possesses the j th particle of C, and Bobj possesses the j th
particle of O [Fig. 1(b)].

In the causal MBQC, Alicej has to know the measurement
results of Alicek (k = 1,...,j − 1) in order to determine her
measurement angle. However, in the present acausal MBQC,
we assume that Alicej measures her system in the fixed
orthonormal basis {|φ0

j 〉,|φ1
j 〉} irrespective of the measurement

results of Alicek (k 	= j ) and Bobj (j = 1,...,n), where
|φm

j 〉 ≡ 1√
2
(|0〉 + (−1)meiφj |1〉). In the causal MBQC, we can

no longer perform correct quantum computing if Alicej ’s
measurement is fixed in this way. However, we will see later
that in the acausal MBQC, we can perform correct quantum
computing in spite of the fact that Alicej ’s measurement is
fixed.

After Alicej ’s measurement, Alicej sets the system to |mj 〉,
where mj ∈ {0,1} is Alicej ’s measurement result. The CJ
operator of such a measurement process is given by

d∑
k=1

d∑
l=1

|k〉〈l| ⊗ |mj 〉
〈
φ

mj

j |l〉〈k|φmj

j

〉〈mj | =
�

�

�

�
φ

mj

j ⊗ �

�

�

	
mj .

Here, we have used the convenient notation
�

�

�

	x ≡ |x〉〈x| [51].
Bobj measures his system in the computational basis {|0〉,|1〉},
and sets the system to |zj 〉 after Bobj ’s measurement, where
zj ∈ {0,1} is Bobj ’s measurement result. The CJ operator
corresponding to Bobj ’s measurement is thus

�

�

�

	
zj ⊗ �

�

�

	
zj .

Let us consider the decorated graph G′ [Fig. 2(a)] of
the graph G, which is created by adding an extra vertex to
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FIG. 2. (Color online) (a) The decorated graph G′ created from
the graph G of Fig. 1(a). (b) Each blue circle is the completely mixed
state I

2 . The entire state is now |G′〉〈G′| ⊗ ( I

2 )⊗n.

each vertex of C in Fig. 1(a). We denote the graph state on
the decorated graph G′ by |G′〉. We also add n completely
mixed states ( I

2 )⊗n to |G′〉 as is shown in Fig. 2(b). Now we

have the (2N + 2n)-qubit state
�

�

�

	G′ ⊗ ( I
2 )⊗n. We claim that

if we restrict local operations to projective measurements the

(unnormalized) (2N + 2n)-qubit state

W ≡ 2N+n
�

�

�

	G′ ⊗
(

I

2

)⊗n

= 2N+n

(
N⊗

i=1

Vi

)(�

�

�

	G ⊗ �

�

�

	+
⊗N

)⎛
⎝ N⊗

j=1

Vj

⎞
⎠ ⊗

(
I

2

)⊗n

is a resource PM for acausal MBQC corresponding to the
causal MBQC on |G〉. Here Vj is the controlled-Z gate, V ≡
�

�

�

	0 ⊗ I +
�

�

�

	1 ⊗ Z, between the j th black qubit in C and j th
red qubit |+〉 (indicated by red lines) of Fig. 2(a). Note that
W satisfies Eq. (1) since W is nothing but an unnormalized
quantum state. We will see later that Eq. (2) is also satisfied
for measurements used in MBQC.

The probability of obtaining the measurement results
(m1,...,mN,z1,...,zn) ∈ {0,1}N+n by Alicej (j = 1,...,N ) and
Bobj (j = 1,...,n) in the acausal MBQC is then given by

P
(
φ

m1
1 ,...,φ

mN

N ,z1,...,zn

) = Tr

[
W ×

(
N⊗

s=1

�

�

�

�
φms

s ⊗ �

�

�

	
ms

)
⊗

(
n⊗

t=1

�

�

�

	
zt ⊗ �

�

�

	
zt

)]

= 2N+nTr

⎡
⎣(

N⊗
i=1

Vi

) ( �

�

�

	G ⊗ �

�

�

	+
⊗N)⎛

⎝ N⊗
j=1

Vj

⎞
⎠ ⊗ I⊗n

2n
×

(
N⊗

s=1

�

�

�

�
φms

s ⊗ �

�

�

	
ms

)
⊗

(
n⊗

t=1

�

�

�

	
zt ⊗ �

�

�

	
zt

)⎤
⎦

=
∑

(m′
1,...,m

′
N )∈{0,1}N

∑
(m′′

1 ,...,m
′′
N )∈{0,1}N

Tr

⎡
⎣(

N⊗
i=1

Z
m′

i

i

)
�

�

�

	G

⎛
⎝ N⊗

j=1

Z
m′′

j

j

⎞
⎠ ⊗ |m′

1,...,m
′
N 〉〈m′′

1,...,m
′′
N |

×
(

N⊗
s=1

�

�

�

�
φms

s ⊗ �

�

�

	
ms

)
⊗

(
n⊗

t=1

�

�

�

	
zt

)]

= Tr

⎡
⎣(

N⊗
i=1

Z
mi

i

)
�

�

�

	G

⎛
⎝ N⊗

j=1

Z
mj

j

⎞
⎠ ×

(
N⊗

s=1

�

�

�

�
φms

s

)
⊗

(
n⊗

t=1

�

�

�

	
zt

)⎤
⎦

= Tr

[
�

�

�

	G ×
(

N⊗
s=1

�

�

�

�
φ0

s

)
⊗

(
n⊗

t=1

�

�

�

	
zt

)]
.

In this way, irrespective of the measurement results (m1,...,mN ) on C, we can always obtain the result of the causal MBQC in
the positive branch; i.e., all measurement results are correct mj = 0 (j = 0,...,N ).

Equation (2) is satisfied for measurements used in MBQC, since

∑
m∈{0,1}N

∑
z∈{0,1}n

P
(
φ

m1
1 ,...,φ

mN

N ,z1,...,zn

) =
∑

m∈{0,1}N

∑
z∈{0,1}n

Tr

[
�

�

�

	G ×
(

N⊗
s=1

�

�

�

�
φ0

s

)
⊗

(
n⊗

t=1

�

�

�

	
zt

)]

= 2NTr

[
�

�

�

	G ×
(

N⊗
s=1

�

�

�

�
φ0

s

)
⊗ I⊗n

]
= 1,

where m ≡ (m1,...,mN ), z ≡ (z1,...,zn), and we have used the
fact that every branch of measurement histories occurs with
the same probability in MBQC [6].

In Ref. [50] it was shown that the by-product operators
cannot be avoided if we respect the no-signaling principle.
This is because, if we can avoid by-products, a person who
possesses C can create any state in O, and if another far

separated person possesses O, then the first person can transmit
information to the second person by encoding his message in
the created state. Therefore, the acausal MBQC considered in
this Rapid Communication should be in a class of signaling
theory in the PM framework. In fact, in the acausal MBQC
considered here we can always create the correct output
quantum state in O without any by-product operators, since
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we can choose the correct branch. If girls encode a message in
the output quantum state, boys can always learn the message
by measuring their system. This means that the no-signaling
from girls to boys is violated.

V. MBQC CAUSAL GAME

We can consider the following causal game whose causal
inequality is violated by the acausal MBQC. Let us again
consider the distributed MBQC in Fig. 1(b). Let P0 be the
probability of obtaining the all zero result 0...0 for Bobj

(j = 1,...,n). In the causal MBQC, P0 � 1
2 (1 + 1

2n ), because
if all girls are causally past all boys, and all girls are correctly
ordered, then girls can steer boys’ systems into the state |0〉⊗n

up to the by-product operators. If girls send the measurement
result to boys, boys can correct the by-product operators, and
can obtain |0〉⊗n. On the other hand, if all boys are causally
past to all girls, and all girls are ordered correctly, then boys’
systems are the n-qubit completely mixed state, and therefore
the probability of obtaining the all zero result |0〉⊗n is 1

2n . As
we have seen in the previous section, however, if we consider
acausal MBQC, P0 = 1, since all girls and boys can always
perform correct MBQC.

VI. CONCLUSION AND DISCUSSION

In this Rapid Communication, we have considered acausal
MBQC in the PM framework. Assuming local operations are
projective measurements, we have constructed a resource PM
for acausal MBQC, and show that it is (up to a normalization
factor and trivial ancilla qubits) equivalent to the decorated
graph state created from the graph state of the corresponding
causal MBQC.

Our result also suggests that acausal MBQC can be
simulated on a causal MBQC with postselection [postselecting
red qubits in Fig. 2(b)]. Since the simulation of the postselected
MBQC is possible for a small-size MBQC, we might be able
to experimentally simulate acausal MBQC on a small resource
state. (Since the success probability exponentially decreases,
larger systems would be hard to simulate.) Such an approach
will be connected to recently developed important topics,
namely, quantum simulations of phenomena beyond quantum
physics [57]. It would be interesting to further explore relations
to the result.

In this Rapid Communication we have considered only
the qubit graph state MBQC with projective measurements.
It would be a future research subject to generalize the
present result to more general MBQC including local POVM
measurements.

We finally mention that quantum computing without
definite causal order was also studied in the circuit model
with “quantum switch” [58]. Those authors provided an
example of quantum computing which cannot be implemented
by inserting a single use of a black box in a quantum
circuit with fixed time order. Such quantum computing offers
some advantages, such as black box discrimination problems
[59] and reducing an unknown black box query complexity
[60]. Since circuit models with projective measurements are
equivalent to MBQC, it would be an interesting future study
to consider relations between the present result and quantum
switch.
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