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An accurate analytic approximate solution of the hydrogen-Stark-effect Schrodinger equation is
obtained. In contrast to previous non-numerical solutions, this solution (which is piecewise continuous,
and easily calculable) is accurate for applied electric fields of arbitrary strength—including weak fields
(F < 0.1F,; the Stark-shift regime), strong fields (F s F,,), and ultrastrong fields (F = 10°F ),
where F,, = 3 X 10® V/cm is the classical ionization field of hydrogen. The ultrastrong-field regime is
experimentally accessible in solid-state physics where, for hydrogenic excitons, F,, may be as small as

10? V/cm.

I. INTRODUCTION

The application of quantum-mechanical perturba-
tion theory to Schr8dinger’s equation occupies a
central role in modern theoretical physics. Of
particular interest are unbounded perturbations,
which qualitatively modify the unperturbed wave
functions and often qualitatively alter the spectrum
of the Hamiltonian.! A classic prototype of a
single-particle Schrdinger equation with an un-
bounded perturbation is the Stark effect in hydro-
gen, which is described by the unperturbed Hamil-
tonian

3= (—H2/2m)V?: - Ze?/(€,7), (1.1)
the perturbation

VE)=-eFz, (1.2)
and the Schrédinger equation

JeP(F) = (3¢, + V)§(F) = EP(T) . (1.3)

Here e and m are the electron’s charge and re-
duced mass, F is the magnitude of the constant
applied electric field, and the Cartesian coordi-
nate system has been chosen such that Fis di-
rected along the z axis. For hydrogen, Z and €,
are unity, and we use Gaussian cgs units.

The spectrum of the unperturbed hydrogenic
Hamiltonian contains the usual continuum of un-
bound positive energy states together with the
n?-fold-degenerate bound Rydberg states of energy

E,=-R/n* n=1,2,3,...),

where 27% is Planck’s constant and R is the Ryd-
berg
R=me*/(2e3R%). (1.4)
The application of a small but finite field F shifts
and splits the bound-state levels, as discussed in
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elementary quantum-mechanics textbooks. How-
ever, in addition to shifting and splitting levels,
the field also broadens them, introducing a con-
tinuous density of negative-energy perturbed states
in place of the countable infinity of discrete bound
unperturbed states. Physically, the broadening

is a consequence of field ionization of the hydrogen
atom: since an electron wavepacket, with energy
E and initially localized near the proton, can
tunnel into a distant classically allowed region
where 7 and z are such that —eFz — ¢*/€,7<E.
Thus in a uniform electric field the hydrogen atom
has no bound states, the formerly bound zero-
field levels being reduced to quasibound resonance
states as the field introduces a continuum of neg-
ative-energy states. (For weak fields, the prob-
ability of finding an electron near the proton in one
of these formerly forbidden negative-energy levels
is tiny.)

Of course, electric fields found in nature are
neither arbitrarily uniform nor arbitrarily large;
still Rausch von Traubenberg was able to demon-
strate the importance of field broadening in the
spectrum of hydrogen as early as 1929.2

A theory of the field ionization was first proposed
by Oppenheimer in 1928,° using what has come to
be known as the tunneling Hamiltonian approach.*
Subsequently, Lanczos and others developed semi-
classical WKB approximations to the Stark-effect
solutions®~"; more recent theoretical developments
have dealt with the field dependences of the ener-
gies, the widths, and the strengths of the per-
turbed spectral lines.®™'?

Virtually all these theories of the hydrogen
Stark effect are meant to be applied to the weak-
field regime f < 0.1, where we have

f=lelFa/R,

and a is the Bohr radius

(1.5)

98



|©

a=hz%,/me*. (1.8)

For hydrogen in a vacuum, f =1 corresponds to

a field of 2.57x10° V/cm and to a field of 3 a.u.,
with ¢=1, R=3. Note that f is the ratio of the
applied-field potential energy drop across the 1s
radius tothe 1s binding energy. The nth bound
state is fully ionized whenever fn*2 1. For hydro-
gen, f =0.125 is the classical ionization field of
the 1s level, whereas uniform static fields such
that f 2 1 are generally inaccessible in the labora-
tory. However, nonuniform time-varying fields
larger than f =1 are produced by highly ionized
plasmas and by high-powered lasers; thus a study
of the ultrastrong constant-field Stark effect may
be regarded as a first step toward understanding
the physics of atoms in intense plasma and laser
fields.

Recently, an experimental situation has arisen
in which the ultrastrong-field hydrogenic Stark
effect (f > 0.1) is accessible; this is the optical
absorption by weak-binding excitons in an electric
field.!®!* An exciton in a high-resistivity covalent
semiconductor consists of an extra electron in the
empty conduction band interacting with a hole in
the filled valence band. Both electron and hole
interact with an external electric field and with
each other. In the effective-mass approximation,’®
the internal motion of the exciton is governed by
the same Schrddinger equation as the hydrogen
atom—except the effective mass m may be as
small as 0.01m, (where m, is the free-electron
mass) and the static dielectric constant is typi-
cally €,~ 15. Thus, in contrast to the hydrogen
atom, the exciton is extremely polarizable and
can be easily and completely ionized by applied
fields as small as 10° V/cm.

For the most part, theoretical treatments of
the strong-field electroabsorption by exci-
tons**6718 have ignored perturbative and semi-
classical approximations, and have solved the
perturbed Schr8dinger equation [Eq. (1.3)] numer-
ically. The present work attempts to bridge the
gap between the existing (but cumbersome)
strong-field numerical work and the simpler
moderate-field analytical treatments of the hydro-
gen Stark effect. The primary new result of this
paper is the construction of quantitatively accurate
and analytically simple wave functions for a hy-
drogen atom subjected to a uniform electric field
of arbitrary strength. The methods used in
achieving such wave functions are not new, and
are related to semiclassical WKB approximations
used by other authors.3+3710 12

Accurate strong-field expressions for the hy-
drogenic wave functions greatly simplify the
(numerically difficult) evaluation of indirect elec-
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troabsorption spectra'®; calculations of cross sec-
tions for all processes involving the scattering of
field-perturbed excitons are facilitated by the
existence of accurate approximate wave functions.
Furthermore, a better understanding of the
strong-field limit is essential to a complete un-
derstanding of the Stark perturbation series.

In Sec. II, a general discussion of the hydrogen
Stark-effect problem and its solution is given.
Sections IIT and IV contain the details of the Stark-
effect wave functions. The results of the theory
are discussed in Sec. V, while Sec. VI contains
the conclusions.

II. GENERAL

Taking units of energy and length to be the Ryd-
berg and Bohr radius and writing

¥UNG) = (&)™ 2x, ()X, ()e*™? (m=0,21,42,...) ,

where (£,7, @) are parabolic coordinates 2y
E=r+z, (2.2)
n=r-z, (2.3)
o=¢, (2.4)

we find the separated equations of motion for an
electron orbiting a fixed nucleus of charge -Ze
in a field F:

[;;—‘{2—2 +< m42§;1 _,2_ -‘Ez"%ﬂ"“&)w’ 2.5)

(5 5o

(2.6)

In Eq. (2.1), we have used the superscript UN
to emphasize that the wave function ¥~ is unnor-
malized and subject to the boundary conditions

X, (€)= g0 1mV2[1 _gg/(1+ |m|) +O(£D)],  (2.7)
X, () =[-E/f +£/2]7/4
xexpl-5/ 2~ E/f +£/2)*%] for £—=,
(2.8)
X:(m) =n(1+|ml)/2
x[(1-n(z-2)/(1+|m|)+0m»], (2.9)

and
( )_ G(E,Z,f)
X2\N —[E/f+n/2]‘7“

\3/2
xsin[%f‘/2<%+%> +y]forn-—°°.

(2.10)



100 J. FAUCHIER

Here O(x?) means terms of order x* or higher.
Of course, the normalized wave function is sim-
ply -
R 269
YO =TT T

(En)~Y2x (E)xa (e ™

= "1/2(%f)174al/§(E,f)e(E’ Z,f) (2.11)

where we have
W(E,f)=f [x,2(€) /€] dt . (2.12)

o]

The above separation of the Stark-effect prob-
lem in parabolic coordinates was studied in the
early days of quantum mechanics by Schrddinger,
Epstein, Fock, and Bargmann.?° The eigenvalue
of the equation (2.6) for X, is the energy E, which
has a continuous spectrum of positive and negative
energies; ¢ is the eigenvalue of the equation
(2.5) for x,, and has a discrete set of values
ty(E), where N (=0,1,2,...) is the number of
nodes of x,(&; ty).

It is desirable to have a single function to
characterize the quality of an approximate solu-
tion of the equations of motion; this function
should be sensitive to the behavior of the elec-
tron’s wave function both near the hydrogen nu-
cleus and far from it. We choose the “absorption
function” €,(E),

€(E;f)=lim Y | ¥, f)|%(E - E,)
r=0 o
= —7"'Im lim G(T, ¥ E),

r,r’/=0

(2.13)

because it is such a function, and because it is
essentially the optical-absorption spectrum for
excitons in an electric field F. Here the quantum
numbers of the stationary states of Eq. (2.5) are
labeled by v, and 8(x) is the Dirac 6 function.

1t follows that €,(E) is

&(E;f)= 2 |¥,(0)|%(E -E,), (2.14)

1/2_®
-(<2) " we e, 2.0
N=o

(2.15)

and depends on three factors:
(1) M(E, f), the bound-state normalization factor
for x,;
(2) Q(E, Z, f), the continuum “normalization”
factor for x,; and
(3) ty(E,f), the eigenvalue which implicitly de-
termines the values of X and @ above.

It is noteworthy that all of the dynamical infor-
mation of the Stark-effect problem is contained
in the Green’s function G(¥,T’, E) of Eq. (2.13);
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any observable property of a (spinless) hydrogen
atom in an electric field can be evaluated once
the Green’s function has been determined. Fur-
thermore existing non-numerical Stark-effect
solutions are incapable of reproducing the quali-
tative features of either G(¥,T’, E) or €,(E;f) ex-
cept in the small-field perturbation limit f - 0.

The evaluation of the factors ® and @ in the
function €,(E; f) is greatly simplified by a change
of scale

u=f3¢ (2.16)
v=fY3y. (2.17)
The resulting equations of motion are
<_dd—;+m72u‘2—1-—:-¢-_%'+§>xl(u)=o (2.18)
and
Here we have
E'=E /f?/3, (2.20)
TWEN=f T (E, f), (2.21)
and
Ty(E', 2" =f "3z -7 (E") (2.22)
=Z'-1,(E"). (2.23)

In solving Eqgs. (2.18) and (2.19), we fix the
energy E’ and the number of nodes N and note
that only solutions with =0 contribute to €,(E).
First, the eigenvalue Ty(E’) is determined, and
used to compute X y(E’). Given Ty and a particular
value of Z’=Z/f?/3 T, is determined by Eq. (2.22),
permitting solution of Eq. (2.19) for x, and G,(E’,
Z'). The scaling relations

N(E, f)=TE/f*/3, 1)
and
Gy(E, Z,f)=f"Yo@ (B /f?B, z/f /3, 1)  (2.25)

allow computation of €,(E) [via Eq. (2.15)] for all
values of dimensionless applied strength f in
terms of the solutions of Eqs. (2.18) and (2.19).

(2.24)

1Il. BOUND-STATE EQUATION FOR ¥, (v)
A. General
The bound -state equation
-d? -
gu—z'xl‘rUl(u)xﬁu e Xy (3.1)
is to be solved for the wave function ¥, (%; E/fz/3 ,

m, Ty) and the eigenvalues Ty. The “partial poten-
tial” U,(u) is
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mz_ 1 _E/fz/s u

v =t - (3.2)
and the “classical kinetic energy” E,,;(u) is
Epu)=-U,(u) +tu"" =~ W,(u) (3.3)

where W,(u) is the effective potential energy. The
effective potential energy is depicted in Fig. 1 for
the cases of interest.
The approximate solutions are taken to have the
form
G™u; E',7) for u<uy
X, (u) = { (3.4)
AYE', T)Gw E' , T+ BY(E!, T)H" (u; E', T)
for u>u,,
where %, is a matching point between the inside
solution G™ and the outside solutions G®**and H°™
and is taken to be

1, 7>3
u”={ (3~5)

3, 7<3.

The functions G™, G°* and H°"'are functions that
approximate the solutions of differential equation
(3.1) and are regular at the origin, regular at
infinity, and irregular at infinity, respectively.
The coefficients AY and BY are chosen such that
the wave function x, and its derivative are contin-
uous at the matching point u,.

The eigenvalue Ty is determined by the condition
that x, be regular at infinity:

BM(E',T,)=0, (3.6)

an equation with a denumerable infinity of solu-
tions T,(E’), the number of x,’s nodes being speci-
fied by N (=0,1,2,...).

The normalization of x, is specified analytically,
using a method dating back to the early days of
quantum theory?:

T (E") = —<l>[A(E’,T)(%> BE",7))

w

TETY)
(3.7

where A(E’,T) and B(E’, T) are specified in Eq.
(3.4).

B. Inside wave function Gi"(u)

A power series determines G™":

ERECRLITS S (3.8)
where e

a,=1, (3.9)

4= - (3.10)

a, = +1(1*- 1E), (3.11)
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and
a, = ‘(%au -3 +E'au-2 +47av-1)/(4v2) sy V >3.
(3.12)

The power series is terminated for v =p, where

» »
Z a,u’| <e Za,u" , (3.13)
v=p =2 v=0
and € =0.001.

C. Outside solutions G°"'(x) and H°"(u)

In treating the outside solution, we distinguish
two cases, depending on whether there are one or
three “turning points” u, [i.e., points at which
E,,(u;)=0] (see Fig. 1).

For the case of one turning point, we take WKB-
like wave functions?®

G™(u) =[S, () /E,, ()] VA~V (u)) (3.14)
H*") =[S, ()/Ey, ()] V*Bi( -V, @) (3.15)
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| !
1ok 4

o 0 . 00
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FIG. 1. The effective potential energy W;) (the nega-
tive of the classical kinetic energy), defined in Eq. (3.3),
for several sets of parameters E’ and 7. Case (a) is
characteristic of large positive energies, while case (c)
corresponds to large negative energies. Case (b) occurs
at intermediate energies. Observe that the qualitative
features of the kinetic energy, such as the number of
classical turning points and the number of maxima and
minima, depend upon the energy E’.
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where Ai, Bi are Airy functions and E,,(«) is de-
fined in Eq. (3.3). Here we have

sxu)=(%j IENCXHI”dA§2“sng.Au» (3.16)

where sgn is the sign function and u, is the turning
point. V,(u) is expressible as

V. (u)=a +bS,(u), (3.17)

with the coefficients a and b given in terms of the
derivatives of E,, &) at the classical turning point
u, (see Appendix A).

For three turning points, G°*'and H°*are piece-
wise continuous, having the general WKB form of
Eqs. (3.14) and (3.15), but depending in detail on
the proximity of # to the various turning points.
This case is treated in Appendix A.

IV. CONTINUUM STATE EQUATION FOR x,(v)

The continuum state equation
-d? .
Fo2ke * U)X =3E"X, 4.1)

is to be solved for the wave function x,(v; E’, Ty),
where Ty, is given in terms of the nuclear charge
Z, ty, and the reduced field f:

Ty(E, f,m)=[Z - ty(E,f,m)/f/°. (4.2)
The partial potential U, is

0 £-40
0.0F— . T=2.35 —
_!.O - -
20
-3.0
.4.0 S
-50t
-6.0f

Wy (v)

1O
00 f———
-1.0F

-2.0F
-3.0F
-40+
-50+
-6.01

Wo(v)

ol o 100
v

FIG. 2. The effective potential energy W,(v), (the nega-
tive of the classical kinetic energy) defined in Eq. (4.4)
plotted for two sets of parameters E/ and 7. Case (a)
is characteristic of large positive E’, while case (b) cor-
responds to large negative E’. Observe that the poten-
tial W,(v) always has one maximum and may have either
zero or two zeros [ Wy(v) =0] for m =0.

AND J. D. DOW
_m’=1 Ty v
U,(v) = W "o 8 (4.3)

The effective potential,
W,(w)=-3E’ +U,(v)=E, , ), (4.4)
is shown in Fig. 2.

Approximate wave functions have the form

K™ for v<uy
X.w)=
C¥(E’, TY)K*™ +DV(E’, Ty)L°" for v>uv,,

(4.5)

where vy is a matching point between the inner
solution K™ and the outer solutions, K°*'and L°".
Note that the matching point vy must be chosen
very carefully to ensure accurate wave functions
for all energies. A simple prescription for vy is

Vg=Uo+Av, (4.6)

where v, is the (only) extremum of U,(»),

1 ift<-5
SIS Doias @
where we have
V,=V + min(Av,, Av,), (4.70)

Av,=|(C, - TC,C,/12 +C3/24)/24| ™17 (4.7c)

Ay, =|C,| 702, (4.7d)
and
1 d?
¢y ='ﬁE;,; 22 (V) vev,* (4.7e)

The functions K, K°* and L°*'are functions that
approximate the solution of the differential Equa-
tion (4.1). The inner wave function K™ (which is
regular at the origin) is determined as the power
series (similar to that for G™)

. P
K" =2 30 p 0, (4.8)
V=0
where
0=1, (4.9)
b,==Ty, (4.10)
b,=5(T% - 1E"), (4.11)
and
b, =—[3b, -3 +E'b, ., +4Tyb,_\1/(4v*). (4.12)

The summation is terminated in exactly the same
manner as the power-series expression for G*
[Eq. (3.13)].

The outer solutions K°*'and L°* are WKB-like,
oscillate for large v, and have the asymptotic de-
pendence (with phase shift y)
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E'(Ry)

FIG. 3. The eigenvalues 7[Egs. (2.5) and (2.21)] as
functions of the reduced energy E’ = E/f /3 for zero,
one, and two nodes (N) of the bound-state wave function.
Solid line: values obtained by numerical calculation;
points: the present theory.

K*W)=(E’ +3v) Y4sin[3 (B’ + 30)*2 +v], (4.13)
L) = (E' +1v)"YVcos[2 (E' + 10)*2 +y] . (4.14)

The exact form of K°*and L°"'depend in detail
upon the number of classical turning points and
are described in Appendix B.

The coefficients C and D of Eq. (4.5) are chosen
to make x,(v) and (d/dv)x,(v) continuous at the
matching point v,. It thus follows from Eqs. (2.10),
(4.13), and (4.14) that the amplitude function @ is

given by the expression
@ ={[C*E’, Ty) +D*E’, T,)]/m}/ (4.15)

which involves only K™, K° and L°"'and their
derivatives evaluated at vy.

SO SAY S S

8§ 6 a4 2 o 2 a4 & s
E'(Ry)

FIG. 4. The reciprocal of the normalization coefficient
N of the bound-state wave function [Eq. (2.12)], as a
function of the reduced energy E’ = E/f2/3, for values
of the node index N of 0, 1, and 2. Points: Present
theory; solid lines: numercial results.

-4 -2 o] 2 4 6 8
£ (Ry)

FIG. 5. The square of the reciprocal of @, the asymp-
totic amplitude of the continuum wave function [Eq.
(2.10)], as a function of the energy, for unit field f and
unit charge Z. The number of nodes in the associated
bound-state wave function N is 0, 1, or 2. Points: pre-
sent theory; solid lines: numerical results.

V. RESULTS

The eigenvalues Ty(E’) and the normalization
factors Ny(E’) computed from the bound-state
equation (2.18) are depicted in Figs. 3 and 4 for
N=0,1, and 2 nodes. The agreement with direct
numerical computations® is excellent.**

The amplitude factor @ y(E’, Z’) is plotted in
Figs. 5 and 6 for Z'=Z/f?/3=1 and 0 [e.g., hydro-
gen in unit field and the Franz-Keldysh-effect!®**

T T T T

f=1.0

Z2=00

2 0 2 4 & 8
E(Ry)

FIG. 6. The reciprocal of the square of the asymptotic
amplitude of the continuum wave function in the Franz-
Keldysh limit (Z =0), shown as a function of energy,
node. The field is taken to be unity, and the node index
N takes the values 0, 1, and 2. Points: current theory;
solid lines: numerical results.
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E(Ry)

FIG. 7. The absorption function ¢, as a function of
energy, for unit field (f =1) and unit charge (Z =1).
Points: present theory; solid line: numerical results.

limit of an exciton with negligible electron-hole
interaction (Z=0)].

Figures 7 and 8 exhibit €,(E) for a hydrogenic
atom (Z =1) in unit field (f=1). Observe the slight
curvature in Fig. 8, which shows that for suffi-
ciently large fields the absorption edge is not a
perfectly exponential function of E [in the ultra-
strong-field limit, f > 1, we have considerable
curvature: €,(E;f)=(C,f/E) xp(C,E*?/f)] .25

The negligible-binding (Z = 0) Franz-Keldysh
values of €, are presented for unit field (f =1) in

-0

16—t
f=10
2-10
0°F -
|
€, °F
\(j‘sL. 4
20
| . L ,
°.8o 50 0.0

E(Ry)

FIG. 8. The logarithm of the abosorption function ¢,
as a function of energy E in the negative energy (absorp-
tion edge) region. Points: present theory; line; numer-
ical results.
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.06 = e = e oo e g e
0.05;
004 |-

€, 0.03+
0.02+

0O1 |+

E(Ry)

FIG. 9. The absorption function €, as a function of
energy, for the case of zero nuclear charge (Franz-
Keldysh limit) and unit field. Points: current theory;
line: numerical result.

Fig. 9; and the hydrogenic 1s Stark shift (Z=1,
f<1) is reproduced in Fig. 10. Finally, the
strong-field (f =61) absorption by excitons (Z=1)
is depicted in Fig. 11.

In all cases, the agreement of our approximate
results with exact numerical calculations is ex-
cellent. This particular method yields excellent
values of €,(E) both for weak, strong, and ultra-
strong fields, and for Z=0and Z=1. To our
knowledge, no other non-numerical approximation
scheme even reproduces the peaks of €,(E;f) at
the correct energies, for both weak and ultrastrong
fields f.

4 T T T T
II 1
/
L /
/
b /
/
-LIOF / .
)/
/1
EIS F /
b /
/I
-1.O5 / 4
/
/
| /
i/
L /4
-1.00 L L ! L

0.1 02 03 04
f

FIG. 10. The energy at which the 1s hydrogenic res-
onance occurs, as a function of the applied electric
field f. The dashed line represents the perturbation-
theory formula E{;=—1 —g-fz, whereas the points and
the solid line are the result of the present theory and
numerical calculations, respectively. For low fields
(f=0.1) the present theory agrees with perturbation
theory, but for higher fields the perturbation result be-
comes inaccurate whereas the present theory does not.
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VI. CONCLUSION

The approximate electric field perturbed wave
functions [Eqgs. (3.4) and (4.5)] accurately repro-
duce the exact hydrogenic optical-absorption func-
tion €,(E; f) throughout the interesting ranges of
energy E and field strength f, and therefore pro-
vide an accurate but analytically simple descrip-
tion of hydrogenic atoms in a field of arbitrary
strength. Future theoretical work on the ultra-
strong-field Stark effect should concentrate on
increasing the simplicity of the present piecewise-
continuous wave functions without sacrificing their
accuracy.

APPENDIX A: BOUND-STATE OUTER SOLUTION

The bound-state outer solutions are constructed
piecewise from WKB-like solutions first proposed
by Imai.?* The Imai solutions 6(u) are defined
via a Schrddinger equation

[(@?/du?) - W,(u)]©(u) =0, (A1)

with the potential W («), which has a zero at u,
and the expansion near u,:

W, ) =a,(u-u,)+a,(u~-u) +a,(u-u,)
ta,(u—u) +eee. (A2)

One defines two quantities A and «:

x =%3“22;i5‘1 ¢ (a3)

il % 14a} - 35(2}a2a3+25aﬁa4 . (A4)
The Imai solutions'® of Eq. (A1) are

O (u,:u0) =[S, () /Ey ()] 4 AN~V () (A5)
and

O (uy:u) =[S,(u)/E,, )] /A B~V ,(u)) , (A6)

where we have

03

2506 -8 0 8 1624 32 40 48 56 64 72 80

E(Ry)
FIG. 11. The absorption function ¢, as a function of
energy E, for unit charge (Z =1) and a large reduced

field (f =61). Points: present theory; line: numerical
results.
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u 2/3
5.3 [ 1,0 eay| " sentE@), @)

uy
V,(u)=a +bS,(u), (A8)
b=r?/3, (A9)
a =7\/(K4/322/3), (A10)

and Ai and Bi are Airy functions. For the case
that « differs significantly from unity, the above
solutions become inaccurate and one utilizes the
Langer solutions

OF (u,:u) =[S, (u)/Epy ()] 4 Ai( =S, (u)) (A11)
and
OF (u,:u) =[S, () /E,, (w)] /A Bi( =S, (u)) . (A12)

Define the functions ©, and ©,, which reduce to
the Imai and Langer solutions in the appropriate
limits:

0, (u,:u) =[S, () /E,, )] V4 A=V (u)) (A13)
and

0, (u,:u) =[S, () /E,, )] V4 BI(-V(w) (A14)
where we have

Vi) = W (5,60) W) . (A15)
Here we have

K=k, \'=x if k>0and u,>1.1 (A16)

k'=1,A" =0 if k<0 or u,<0.9 (A17)

k'=1+5(k - 1)(u, - 0.9)
}if k>0 and 0.9<u,<1.1
A’ =5A(u, - 0.9)

(A18)

and ©, and O, are accurate solutions of Eq. (A1)
for any A and «.

An examination of the bound -state effective po-
tential W, () reveals that W,(x) may have either one
or three (not necessarily distinct) roots (see Fig.
1). For the case that there is one root u,, the
outer solutions are given by

Fu, E', 7) =0, (u,:u), (A19)
Gy u, E', 1) =0,(u,:u) . (A20)

For the case that there are three roots u,, #,, and
u;, where u,>u,>u,, and two extrema u and uJ,
where u?>uJ, the solutions have the form

0, (u,:u), u>ul
F*u, E', 7)=< A,0% (t:u) + B,6F (uy:u), ud>u>ud
C,0% (ug:u) +D,OL (ugu), ud>u

(A21)



106 J. FAUCHIER AND J. D. DOW

and
O, :u), u>ul

G (u, B!, T) =S A,07 (uyiu) + B,OF (i), uf>u>ug
C,6% (ug:u) + D,0F (ug:u), ud>u.

(A22)

The coefficients A, B,,C,, D,,A,, B,,C,, and D,
are chosen to make F and G and their derivatives
continuous at «{ and u; .

APPENDIX B: CONTINUUM OUTER SOLUTIONS

The outer solutions of the continuum equation,
K°*'and L°", are constructed piecewise from WKB-
like solutions in a manner analogous to that for
the bound-state solutions F°"and G*, However,
the construction of accurate outer solutions is
rendered somewhat simpler by the fact that W,(v)
always has exactly one maximum (for m=0).
W,(v) has either zero or two (not necessarily dis-
tinct) classical turning points [W,(v)=0] (see
Fig. 2).

In the case of zero classical turning points, the
ordinary WKB wave functions are adequate for
our purposes. Therefore we have

ou 1 1 . m
K t=7=1-r='[—_'i,;6ﬂ—17,;sm<P2(v)+Z) (B1)

and
Lou1=71-17 -[_—ﬁ,—(];}-)-]—;ﬁ sin (Pz(u) + % >, (B2)
2
where
2= [ 1,00 Ved (83)
Yo

is the WKB phase integral and v, is the value of
v at which the maxima of W,(v) occurs.

9

For the case of two turning points we take over
the functions ©, and ©, defined in Appendix A,
first substituting E,,(v) for E,,(«) in Eqs. (A1) and
(A2). The functions ©,(v,:v) and ©6,(v,:v) then take
the form

0,(v,,0) =[S,(0)/Ep, @) AA(-V, ),  (B4)
0,(v,,) =[S,0)/E,,@)] /4 B~V (v)),  (B5)

where we have

s,0=[ | ") Y2 dy| 2 sgnlE ) (B6)
o1

?
and V;(v)=(x’)2/3<82(v) +W’)‘222 3> . (B7)
Here we have
k'=k and A=) if k>0.25, (B8)
k'=1 and M'=0 if k<0.25. (B9)

Now if v, and v, are the two turning points, if
we have v,>v,, and if v, is the maximum of W,,
then the functions K°"' and L°" are given by

( el(vp v)’
K", E*, Z')=
“A30,(v;, v) +B30,(v,, v), V<,
(B10)

V>,

and
- 0,(v,, v), V>,
L™, E’, z')={

C40,(v,, v) +D,8,(v,, v), v<v,.

(B11)

Here A,, B;, C;, and D, are chosen to make K°*,
L°", and their derivatives continuous at v,,.

*Research supported by the National Science Foundation
under Grant No. NSF-GH-33634.

TNational Science Foundation Trainee.

iy, Kato, Perturbation Theory for Linear Operators,
Die Grundlagen der Mathematischen Wissenschaften in
Einzeldarstellungen (Springer-Verlag, New York,
1966), Vol. 132.

’H. Rausch von Traubenberg and R. Gebauer, Z. Phys.
54, 307 (1929); Z. Phys. 56, 254 (1929).

3J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).

3. Bardeen, Phys. Rev. Lett. 6, 57 (1961); M. H. Cohen,
L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8,
316 (1962).

5C. Lanczos, Z. Phys. 62, 518 (1930); Z. Phys. 65, 431
(1930); Z. Phys. 68, 204 (1931).

M. H. Rice and R. H. Good, J. Opt. Soc. Am. 52, 239
(1962).

'J. Bekenstein and J. Krieger, Phys. Rev. 188, 136
(1969).

8L. B. Mendelsohn, Phys. Rev. 176, 90 (1968).

M. Alexander, Phys. Rev. 178, 34 (1969).

103, 0. Hirschfelder and L. A. Curtiss, J. Chem. Phys.
55, 1395 (1971).

1R, Riddell, thesis (University of California, Berkeley,
1965) (unpublished).

12C. B. Duke and M. E. Alferieff, Phys. Rev. 145, 583
(1966).

3W. Franz, Z. Naturforsch, 13a, 484 (1958); L. V.
Keldysh, Zh. Eksp. Teor. Fiz. 34, 1138 (1958) [Sov.
Phys.—JETP 7, 788 (1958)]; B. O. Seraphin, in Semi-
conductors and Semimetals, edited by R. K. Willard-
son and A. Beer (Academic, New York, 1970), Vol. VI.

!43. D. Dow and D. Redfield, Phys. Rev. B 1, 3358
(1970).

'*L. J. Sham and T. M. Rice, Phys. Rev. 144, 708
(1966) .

184. 1. Ralph, J. Phys. C 1, 378 (1968).

p. F. Blossey, Ph.D. thesis (University of Illinois,



9 ANALYTIC APPROACH TO THE

1969) (unpublished); Phys. Rev. B 2, 3976 (1970).

8John D. Dow, Surf. Sci. 37, 786 (1973).

8B. Lao, J. Dow, and F. Weinstein, Phys. Rev. B 4,
4424 (1971).

2E. Schrodinger, Ann. Phys. (Leipz.) 80, 457 (1926);
P. S. Epstein, Phys. Rev. 28, 695 (1926); V. Fock,
Z. Phys. 98, 145 (1935); V. Bargmann, Z. Phys. 99,
576 (1936).

2H, A. Kramers, Quantenthearie des Elektrons und der

HYDROGEN STARK EFFECT... 107

Strahlung [Quantum Mechanics (Dover, New York,
1964), pp. 306-307].

21, Imai, Phys. Rev. 74, 113 (1948).

2See Refs. 14 and 16 for a discussion of the numerical
technique.

%The error is somewhat larger for large negative 7(E’),
a region of little importance.

K. Tharmalingam, Phys. Rev. 130, 2204 (1963).



