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We derive an identity which determines the infinitesimal response of the cumulant average of the

product of m arbitrary local fluctuating quantities (connected m -point functions} to changes in its

arguments engendered by a member of an arbitrary continuous group of point transformations. We
illustrate the use of the identity in a variety of cases, and in particular we show that there is an

intimate connection between the covariance of the connected rn-point functions under the special
conformal group and under the group of dilations. By combining our identity with the assumptions of
the operator algebra, we fmd that at the critical point the connected density m -point functions are
covariant under both groups. %'e also give another derivation for an expression for the exponent
x = (1/2}(5 —q}, which was previously found by Green and Gunton.

INTRODUCTION

We have derived identities which determine the
infinitesimal response of the cumulant average of
the product of m arbitrary local fluctuating
quantities (connected m-point functions) to changes
in its arguments engendered by a member of an
arbitrary continuous group of point transforma-
tions. It is the purpose of this paper to derive
and exhibit this identity in its general form and to
make certain applications, several of which belong
to the theory of critical phenomena.

Our result may be thought of as a generalization
of the relations among the molecular distribution
functions, which arise from the equivalence of
adding particles to those already contained in a
fixed volume with decreasing the volume while
keeping the number of particles it contains con-
stant, as was found by Schofield. ' Qu. r result
may also be seen as the analog for the statistical
mechanics of fluids of the Ward-Takahashi iden-
tities of quantum field theory. ' Like these iden-
tities, the left-hand side (lhs) of ours has an oper-
ator characteristic of an infinitesimal element
of the group operating on an m-point correlation
function and the right-hand side (rhs} has an
(m+1)-point correlation function in which an addi-
tional local fluctuating quantity characteristic
of both the group and the Hamiltonian appears.

In cases, like that of the translation or rotation
group, in which the Hamiltonian may be invariant
under the operations of the group the additional
fluctuating quantity is zero and the identities ex-
press the covariance of the multipoint correla-
tion function under the operations of the group.
Among the cases in which the Hamiltonian is not
invariant, the group of dilations and special con-
formal transformations is especially interesting

because in both these cases the additional fluctuat-
ing quantity has a mell-defined thermodynamic
significance. It is the local virial or the instan-
taneous local pressure. ' This fact alone empha-
sized that scale and conformal covariance are
closely connected. As Schofield already noted,
his identities are especially useful near the criti-
cal point. ' With the aid of our identities and the
concepts of the operator algebra' we are able to
shed light on several interesting questions about
critical phenomena. We are able to show that
multipoint-density-correlation functions are co-
variant under both scale and special conformal
transformations at the critical point. We are able
to understand, without reference to the Migdal-
Polyakov bootstrap, why scale and conformal
covariance are concomitant at the critical point. '
The numerical parameter which appears in the
equations expressing scale and conformal covari-
ance is nothing else than x =-,'(5 —q) which is the
scaling exponent of the chemical potential. ' The
formal expression we obtain for this exponent
is identical to that obtained by Green and Gunton
by a somewhat different application of Schofield's
relations coupled with the operator algebra. We
are also able to give a tentative answer to the
question, "Why scale covariance (or conformal
covariance} at the critical pointy" Since length
scaling can be understood to be the source of
thermodynamic scaling, this is a very important
question in the theory of critical phenomena. ' The
answer seems to lie in the fact mentioned above
that the additional fluctuating quantity for dilations
and special conformaI transformations is the
pressure and that the isothermal density deriva-
tives of pressure is zero at the critical point.

We have given only a few applications of our
identities in the present paper. Since these iden-
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tities are satisfied by arbitrary local fluctuating
quantities, we believe that we have not exhausted
their interesting applications to critical phenome-
na. In particular, we expect them to be of use in
discussions of exponents other than x and con-
cerning fluctuations other than the isothermal
density fluctuations.

The plan of the paper is as follows. In Sec. II
we recall some of our motivation and establish
our plan for derivation of our identity, which is
explicitly carried out in Sec. III. In Sec. IV we
allow the reader to gain familiarity with the iden-
tity by applying it to a variety of two-point func-
tions. In Sec. V we use it to show the intimate
relation between the effects of the group of dila-
tions and the special conformal group on the con-
nected m-point functions. We then combine our
identity with the operator algebra in order to see
how covariance under both conformal transforma-
tions and dilations comes about at the critical point
and in order to give an expression for q. Finally,
we summarize our results.

II. MOTIVATION

I,et us recall some of our motivation. At the
critical point, the connected part of the two-point
order-parameter correlation function is a homo-
geneous function of the distance separating the
points when this distance is large. The infinites-
imal form of this statement is

(x, 'q, +x. ~,)(p(x, )p(x, )&.=-(I+1))&p(x,)p(x.)&.

(I)
for large ~x, -x,~. While this is true at the criti-
cal point it is false away from it. Therefore, it
is appropriate to seek the general form of the rhs
of Eq. (l) in order to understand its simple form
at the critical point and the forms that deviations
from homogeneity may take near it. Now' it is
generally believed that at the critical point, not
only does Eq. (I) hold but that all the connected
m-point functions of local densities are homo-
geneous functions. ' It has also been suggested
that they are conformally covariant. '

In order to place these assertions in their most
general context we consider the result of applying
the operation Q, (d/dX) g(x, , X)~), , v, to
(ff,=, E, (x,)&„where E,(x) is a local fluctuating
quantity whose character will be w'eakly circum-
scribed in Sec. III. g(x(, A) is a member of an
arbitrary I ie group of point transformations which
are parametrized so that

g(g(x, A, ), q) =g(x, X, +A, )

g(x, A = 0) =x.

Henceforth we will denote (d/d&) g(x, A. )~ 1,by
g'(x) and, more generally, throughout this paper
a primed quantity will stand for the derivative
with respect to A, of the corresponding unprimed
quantity evaluated at ~ =0.

Our approach to the evaluation of

is, in essence, simple. %'e construct a suitably
transformed ensemble in which the cumulant aver-
ages of the transformed quantities equal
(g, , E,, (g(x, , ~))&, . We differentiate both ex-
pressions with respect to A. and then equate the
results. However, since the value of m is im-
material we will execute this program by con-
structing a generating functional from which our
identities can be obtained by functional differen-
tiation. It is to this task that we now turn.

III. WARD IDENTITIES

E,"(z)-=g ~'(*-q,)f.",(q, P), (3b)

(E" g1)(z) -=g ~'(g(z, ~) —q }f",(q, p) =- &"(z),

(3c)
A

(aa")= I, J a'za. (,a) a."(1),
a=1

N

dl'(X, W(q)) =- (a'"X})-' ll d'P„d'q„e(-W(q„)).

(3d)

E,(z) is a fluctuating quantity which we require to
be local in the sense that its value depends only
on those particles which are close to it. More
precisely, the functions ff,(q„p„.. . , q„,p„) have
the following property when a,ny particle, say
particle N, is far on a microscopic scale from
particle k:

L
Ns iN-1 t ~
a()1ql~ Pll ' ' i qNv PN1 ~ aa 1ql r P1& ' s qN-1) PA)-1)

E,(z) is the external field conjugate to the fluc-
tuating quantity E,(z) and the surface W(q) =0
is the w'all which confines our system. Clearly
when A. =0 and F. vanishes everywhere, b is the
grand partition function =. We also see that

Let us consider the functional 8(E, X) and the
definitions given below:

s(a, ~)-=g fa) (a)a(a))-a( (,)a"(aa).»-,
.(h, E" g.)),

(3a)
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d "g 6 rr(E ~)

r 6E~ (xg)0)
84 j-l

=gg'(x, ) V, g E, (x,)E, (x ) g E, (x,)

We may now re-express $(E, &) by using the
canonical transformation" induced by g(x, X),

Q. -=g.(q, -~),

P -=p.g. ,.(g(q, ~), -~) -=G.(q, 0, -~).
(5a)

(5b)

After this change of variables, Eq. (Sa) becomes
Eq. (6),

s(z, ~&=Q Jar)&), w))r)r), ~)))

xexp[-pH" (Q, P, A.)+ crN+(E, J &F~z)],

(6)
where

H" (q, P, ~) -=H" (g(q, r ), G(q, P, r )), (Va)

P.".(s) -=P 6'(s -Q,)f.",(g(O, ~), G(O, P, r )),

and J is the Jacobian determinant of g(z, X). It
follows from Eq. (4) that S'(E)/S(E) is the gener-
ating functional we seek. By inspecting Eq. (6)
we see that a'(E) is given below.

S'(E) = p dI'(N, W(Q))(E, 1"'—Z'Z ) exp[ PH~+ -aN+ (E, Z")]+g dI'(N, W (Q})( pH"'-)
N=1 8=1

x exp[-pH" + c)N+(E, P")]—g (O'N)-'p dI'(N 1, W(g-))d'P, d'Q, 6(W(g, )) VW(Q, ) ~ g(Q, )
&&=1 & =1

& exp[ pH" + a-N+ (E, P")] (8)

The term in curly brackets on the rhs of Eq.e is
a sum of terms in each of which the 7th particle is con-
fined to the surface %'=0. An argument which
makes essential use of the local character of both
the energy density and E(z) shows us that in the
infinite-volume limit the last term becomes a con-
stant times $(E). Another argument which appeals
to the invariance of = under canonical transforma-
tions allows us to identify the constant with

P(H'). Hence-we may display s'(E) as follows:

s'() &=& Jdr(&), )r)))))'
Irr =0

x[ ~H"'(q, p)+(E, Z"' —Z'Z")]

x exp[-PH" + aN+ (E, Z")], (8a)

n.H"' =H"' —(H'). (8b)

After obtaining this expression for S'(E), it is
a simple matter to show that Eq. (10b}follows
from Eq. (10a):

(10a)

7$ 'm

=-P H' I; x& + E, x, I,' x, —J'xj I", x, I; x~ (10b}

Equation (10b) is the analog of the Ward-Takahashi
identity in field theory. It equates the infinitesimal
response of the cumulant average to changes in its
arguments engendered by a group transformation
to the sum of two terms. The first of these de-
pends explicitly on the Hamiltonian while the
second reflects how the fluctuating quantities
themselves transform under the group.

IV. ILLUSTRATIONS

In order to make our identity more familiar, we
will discuss the forms it takes in several applica-
tions involving connected two-point functions. The
groups of interest are rotations, translations,
dilations, and the special conformal transforma-
tions.



960 A. M. WOLSEY AND M. S. GREEN

First, consider rotations about a fixed but
arbitrary axis e, x, -R„(Xe)x,, where A is the
angle of rotation. " In this case g'(x) V= (xx e) V

and J'(i) =0. If H is a scalar then, of course,
H' =0. %hen the two fluctuating quantities are
taken to be different eemponents of the matter
current, $(x}, Eq. (10b) implies that

(i, && V, +x, && V, )(J,(x, )J,(x, )&,

=
& J,'(i, )J,(x,)+ J,(i, )Jt(x3)&, . (11)

By consulting Eqs. (5b) and (Vb), we learn that
7' =ex T. If we now assume translation invariance,

& J.(x, )J,(x,)&.= & J.(», -x, )J,(o)&„

and recall that e is arbitrary, we see that Eq. (11)
implies that

& J,(x,)J,(x3)&, =g(~i, -X3() (x, -x,),(i, -x3), ,

where g((x, -x )) is of course undetermined.
Let us also consider translations in an arbitrary

direction which we again denote by e. Since the
transformation is x- T(x, Ae) =x+Xe we find
g'(x) V =e V and J'(i) =0. Rather than assume

0" is invariant, we suppose it has the symmetry-
breaking te rm Qf, 333g e, where

~ g( = 980 cm sec '
which implies that 8"'=Nmg e. If we choose each
fluctuating quantity to be a density, p(x), then
Eq. (71) implies p'(x) =0. Recalling that e is ar-
bitrary, one finds that our identity takes the form

V„&p( R+-,'r) p( R- -3'r)&,

=-mgp d3z &p(z}p(R+-,'r) p(R--,'r)&„(12)
which shows us that the dependence of the pair
correlation on R is only through its component
parallel to g and is the generalization of the barom-
eter law. The replacement of H"' =Nmg e by
mg efd e p"(z}foreshadows a technique we will
use extensively in Sec. V.

Ne turn to groups which enjoy greater topical
interest by considering dilations and special con-
formal transformations. The group of di1ations
is defined by the transformation x-D(i, &) =e "x.
Consequently we find g'(x) ~ V =x V and J'(x) = 3.
The identities for the energy-density-energy-
density and the density-density correlation func-
tions are Eqs. (13) and (14):

(x, V, +i, V)&e(i, ) e(x, )&, =-p&He e(x, ) e(x, )&, —6&e(i, ) e(i, )&, + & ee(x, ) e(i, )+ e(x,}ee(i3)&„
(x, V, +x, ~ V,)&p(x, )p(x, )&, =-p&He p(x, )p(x, )&„

where

(13)

(14)

H,"'-=g (-2) " "+-' g(q. V. +qi Vi}I'(q. , qi)
tl ns' E

(15)

Note that fd'e e"'(z) =H"'.
VFe may also consider the identities, analogous

to those just given, associated with the special
conforrnal transformations,

x-C(x, Xe) =
1+2Xe x+A'x'

which for infinitesimal ~ may be regarded, locally,
as position-dependent dilations. " For this group
we find

g'(i) ~ V =(x'e —2i ex) V, J'(i) =-6e i.
Hence, the analogs of Eqs. (13)-(15)are

[(x,e —2x, ~ ex, ) V, +(x3e —2x3. ex,}~ V3]&e(i ) e(x, )&, = p&H'ce(i, ) e(x )&-, + (6e i, +6e i3)(e(i,)e(x )&,

+&ec(x,) e(x,)+e(x,) ec(x,)&, . (16)

[(x,e —2x, ex, ) V, + (x,e —2x ex ) V ]&p(x, ) p(x3)&, =-p&Hcp(x, )p(i )&,+ (6e x, +6e x )&p(x, ) p(x3)&,

Hc'=-g 4e q„" " + —g [(q'3e-2q„~ eq„) ~ V„+(q3e —2q, eq, ) ~ V, ]V(q, , q„}.
tf 2m ff w' l

(18)

Once again, note that

l d3e eNI(i) HNI

%'e now make the point, which is almost trivial,

I

that if & p(i, )p(x, )&, is homogeneous function of
~x, -i3~ of degree -(1+3}},it is also conformally
covariant, which to say that if the rhs of Eq. (14)
is -(1+@)&p(i,)p(x, )&„ then the rhs of Eq. (17)
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is (1 +I})(e x, + e x,)(p(x, ) p(x, )),. The proof
consists of simply assuming homogeneity and then
calculating the left-hand side (lhs) of E(l. (17).
Similar reasoning will not establish such a rela-
tion if more than two points are considered. None-
theless a more subtle argument to be given in
See. V will establish the intimate connection be-
tween the identities for dilations and those for the
eonforn1al group. Similar remarks hold for Eqs.
(18) and (18).

H~c' = — d, 'z -6

(20b}

where

p", (z, r) -=p"(z+-', r) p"(z --,'r) —5'(r) p"(z).

U. OPERATOR ALGEBRA, CONFORMAL AND

DILATION COVARIANCE AND EXPONENTS

In this section we will establish the connection
we alluded to between our identities for dilations
and special conformal transformations for con-
nected ~n-point functions and then discuss the
specific forms of these identities for the case of
the cumulant averaged product of m densities at
the critical point.

Let us consider H~~' and H~'. Ne suppose that
the potential term in H arises from the sum of
two-body central forces. If this is so, Eels. (15}
and (18) become

H~' =Q -2 " " + —,
' Q r„,V'(r„(), (19a)

n 1 m n~~

H",'=+4e q„" "+-,'g (-2e It) „r, V( r),

The quantities in parentheses on the rhs of Eqs.
(19b) and (20b) are the derivatives of the Jacobians
of the respective transformations while the quan-
tities in the curly brackets are the same for both
transformations. In fact, this quantity is the local-
ly fluctuating pressure P(z), or -', of the trace of
the locally fluctuating stress tensor. Thus for
dilations the first term on the rhs of E(l. (10b)
becomes

+P d z 3 I z F~ xj
j=l c

and for special conformal transformations it be-
comes

+P d3z -6e z P z E, xj
j=l c

Ne will see below that circumstances may arise
in which EII. (21}holds:

(20a)

H~'= — d'z 3 -', 2T" z --,'

x rV'(r) p", (z, r) (19b)

where

It, )
= k((I, +'ZI)

Now we express H~' and H~' as integrals of local
quantities; thus

(21)

%hen this happens our identities demand both
scale and conformal covariance.

The methods of the operator algebra. can be used
to find situations in which E(I. (21) holds and to
give expressions for the constants x,. For sim-
plicity, we now take F,, (x,) = p(xI) and note that
our two identities are then

m m m m

« II p(*)p(, ) II 3(*,) =3Jp'*(3) 3'( )IIp(*,. ) —3 II p( )
)=1 j=l j=f+1 . c j=l j=l

and

(22)

Q (x,e —2x, ex() VI g p(x, )p(x, ) g p(x, )
i=1 j=l j=$+1 c

m m m

=p d'g -6e z I' z p xj — -6e xj p(xj . 23
j=l c j=l e

%'e recall that according to the operator algebra
the product of locally fluctuating quantities ean be

represented as a linear combination of certain
particular locally fluctuating quantities. Because
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we are concerned only with density fluctuations
at the critical point, it is sufficient to take into
account only the largest of them, the local density
fluctuation at constant temperature. %hen z is far
on a microscopic scale from each of the xj's, we
represent P(K} itself by

P( ) (*,*)=&P( ) (,*)&+ &P(*) (;)&I,

x(p(y) —
&p(y)&)

where y is in the neighborhood of both z and xj*.
Henceforth we identify y w'ith xj*. Let us define
the quantity z by Eq. (24),

&P(s)& + (p(s) —
& p(a)&).

Bp
C

Ne then have
x=3PC d g I' z p xj*

and note that it is entirely reasonable to write

(24}

P z p xj = p z p xj

However, (sP/sp)~r vanishes at the critical point.
Thus we need only concern ourselves with the case
where z is near at least one xj. Since homogeneity
is only expected when each x, is far from all the
rest, we further restrict ourselves to this case.
It follows that z may be near at most one xj, call
it x~. We then regard P(X)p(x,*) as a single fluc-
tuating quantity and write

Po P z p xj =Sx 6~ z-xj
j=l c j=l

"& II& (x,|. (28)

d z(-Ge' s) &P(z) p(x,*)&~ =-2e x,*P,'x.
Bp C

(28)
%'e conclude that at the critical point and as long
as each xj is far from all the rest we may write

The identities, Eqs. (21) and (22), become
lit

Qx, ~ V, g p(x, }p(x,) g p(x, ) =(z —3}m g p(x, )
j=l j=l j=j+1 c j=l c

and

Nt fft ftt

Q(xfe —2x, ~ ex, ) ~ V, g p(x, ) p(x, ) g p(x, ) =(z —3) -Q 2e x, g p(x, )
f=l j=l j=f+1 c j=l j=l c

(27)

(28)

Equation (27) simply states that the cumulant
average product, &g, ,p(x, )&„ is a homogeneous
function of degree (z —3)m of its m arguments.
Equation (28) is a much more stringent restriction
whose consequences have been investigated by
Polykov. ' %e note that the expression given for
x in Eq. (24) is precisely that given by Green and
Gunton for the exponent —,'(5 —q)."

VI. DISCUSSION AND SUMMARY

%'e have developed for classical statistical
mechanics an analog of the Ward- Takahashi iden-
tities of quantum fieM theory which give the in-
finitesimal response of vacuum expectation values
to both internal and space-time transformation.
Bather than these transformations we have dis-
cussed arbitrary continuous transformation groups
of three-dimensional space. Instead of local-
operator-valued distributions, w'e have local
fluctuating quantities, that is to say generalized
functions which only depend on those particles
which are near the arguments of these functions,
and rather than averages in the vacuum state,
we considered thermal averages in the grand

canonical ensemble. A generating functional, from
which our identity may be obtained by functional
differentiation, was constructed. The lhs of our
identity is a first-order differential operator,
which characterizes the group, acting on the
cumulant average of the product of the fluctuating
quantities of interest, and the rhs is the sum of
two terms, one of which reflects the action of the
group on the local fluctuating quantities them-
selves while the other contains a new fluctuating
quantity H', which results from the action of the
group on the Hamiltonian.

In order to domesticate our identity, we ex-
hibited the forms it takes for a variety of con-
nected two-point functions and for translations
and rotations as well as dilations and special
conformal transformations. %'e then considered
in detail the possible covariance of connected m-
point functions under dilations and conformal
transformations which have a special relevance
for critical phenomena. The most significant
result to emerge from these considerations was
that for both groups, H' is equal to an integral of
the negative of the product of 4' and the trace of
the local fluctuating stress tensor which is one-
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third of the local fluctuating pressure. It fol-
lows from this that there is an intimate connection
between covariance under dilations and covariance
under the special conformal transformations.

%'e then used the methods of the operator algebra
to show that at the critical point our identity im-
plies both conformal and dilation covariance for
(g, , p(x,.)), . The essential reason for this co-
variance was shown to be the fact that the addi-

tional fluctuating variable which appears on the
rhs of the identities for these groups is the local
pressure. In the course of this analysis we gave
another derivation of the expression for the ex-
ponent x =-,'(5 —q) given by Green and Gnnton" and
confirmed Kadanoff lergth scaling. " We also
derived without any appeal to the Migdal-Polyakov
bootstrap the additional restrictions required by
conformal covariance due to Polyakov. '
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