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The kinetic theory of gases and liquids is discussed in terms of the phase-space density f(rpf ) and its

autocorrelation function. Associated with the latter is the memory function X"(kz& troduced in an

earlier paper. Here, we analyze those properties of X', for a classical system of str~ctureless

interacting particles, which can be obtained without approximation. Apart from symmetry- and

stability-related properties, and those that express the conservation laws, we give microscopic derivations

of (j) a new sum rule for X~'~{kz) which involves only the static-pair-correlation function and (ii) two

new relations between X~' and thermodynamic derivatives, namely the specific heat c, and the pressure

derivative (BptBT)„. These exact relations, if fulfilled by an approximate model for X~', guarantee that

the approach to equilibrium is described in a thermodynamically and dynamically consistent manner. It
is also shown how, for such a model, the transport coefficients are obtained.

l. lNTRODUCTION

The difficulty in setting up a microscopic theory
of the collective dynamics in classical liquids' is
that there is no apparent small parameter in terms
of which one could do perturbation theory. In con-
trast to low-temperature solids and quantum liq-
uids, there are no weakly coupled elementary ex-
citations. In contrast to the Boltzmann gases,
there is no "kinetic" region in which all that mat-
ters are two-particle collisions, so that, in a gas,
the dynamics essentially reduces to a two-body

problem. If one is to describe dynamical fluctua-
tions in a liquid in the region of wave vector k and

frequency + which is accessible —say, to inelastic
neutron scattering —one faces the full complexity
of a highly correlated many-body problem. In or-
der to make any progress at all under these cir-
cumstances it is important that one have a formal
framework into which can be incorporated, in a
unified manner, what knowledge one has of the dy-
namics.

There are, in particular, two regions in %, ~
about which we have some firm theoretical knowl-
edge. Fluctuations which vary slowly in space and
time (small k and u&) are described by the Navier-
Stokes equations of hydrodynamics. ' And at very
high frequencies, we can extract information from
the application of sum rules. ' It is the purpose of
this paper to present results that pertain to either
one of these limiting regions, in a form which
suggests a procedure that allows one to rationally
interpolate between them.

There is one simplifying feature of liquid dynam-
ics that makes these results pertinent and the pro-
cedure promising: the intermediate region of un-
known dynamics is relatively small. Because the
mean free path is only of the order of the potential
range, hydrodynamics is a theory valid to much

shorter distances and times than it is in a rare
gas. For example, neutron scattering and molecu-
lar dynamics experiments' at liquid density con-
tain evidence of the onset of sound propagation
already at wavelengths of several angstroms.

As in the conventional kinetic theory of gases,
we describe the dynamics in terms of equations of
motion for the one-particle phase-space density
f(rpt). If such a theory is to be applicable to
liquids, it must correct the traditional Boltzmann
equation in several important respects. Impor-
tant among these, the theory must be reversible
and memory retaining at short times. At long
times, the theory must render proper recognition
of the potential contributions to stress tensor and

energy density if it is to yield the hydrodynamic
limit correctly. In an earlier paper, ' we presen-
ted such an equation and discussed techniques for
its analysis, for the particularly simple case of
a weakly coupled fluid. Mazenko' has extended
the equation to include hard-core interactions in
gases.

Much of the technique used in Forster-Martin
(FM), however, was more generally applicable.
In this paper, we shall extend certain aspects of
our earlier treatment to classical systems of
spinless particles with short-range interaction of
arbitrary strength and any density. In particular,
I shall present a number of useful properties of
the dynamical memory function ZI'if') which can
be derived from first principles. %e will not dis-
cuss specific approximations here but hope to do
so in a future publication. I believe, and hope to
convince the reader, that our formalism presents
a vehicle particularly suited to perform, in a
systematic way, practical calculations which are
guaranteed to correctly render at least all of those
features of the dynamics of which we have some
knowledge.
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In one respect, this formulation is less ambitious
than conventional kinetic theory: we are only
interested in small fluctuations about thermal
equilibrium. Therefore, we can discuss the dy-
namics in terms of the equilibrium-averaged auto-
correlation function

S(r r'-, t- t', (g')

= (rrr v,)' ([f(rpt) —
&f(rpt)) ~]

x[f(r~p't')-&f(r'p't')& 1&~

where the one-particle density "operator" is given
by

Since S'(%(d; g)') is real, it can be obtained from
S(%z;f$'} by

S'(%(u; ](') =2lmS(%z;$ f'}~. „,„.
Systematic procedures for calculating the matrix
S(%z, gg'), with indices $ and P, ', must take proper
account of the secular effects of collisions. Since
excitations in the system appear in S(%z) in the
form of resonance denominators, such procedures
are always based upon approximations to its in-
verse. For this reason, we have in FM introduced
a matrix Z(%z) which is formally akin to the
memory functions, or self-energy operators, used
in a variety of contexts. Z(%z) is defined by an
equation of motion which is also basic to the
present paper, namely

f(rpt) = g Kr-r"(t))()(p-p (t)). (1.2) (. v%-~) S(%'g~)- Z(%zing) S(%z, &&)

r (t) and p"(t) are the position and momentum of
the 0.th particle at time t. $ is a dimensionless
momentum variable,

where

S'(%; $(') =-S(%, t=o; K'), (1.Vb)

&
= p/)sv„v 20()sp) ',

where m is the particle mass RIll p =k~7 so that
v, is the thermal velocity.

The function S(rt', f$') or its Fourier transform
is all that is needed to understand a wide variety
of scattering and computer dynamics experiments.
For example, by integrating over the momentum
variables we obtain the dynamical liquid-structure
factor

r(r-(=~I r(fr( r(r~ (()

d r-r' d t-t'

x[& s(rt)s(r't')&~ —s'],

which is measured in neutron and light scatter-
ing experiments. The momentum density correla-
tion function and other important properties of the
system are simQarly obtained.

As usual, it is convenient to define the complex
fluctuation function

" d(u S'(%(u; fg')

which is analytic for Imz cO. For Imz &0, it is
the Laplace transform of S(%, t;r]'}:

r(r* (r (=( f r( r(r r fr('"'

and where, here and throughout this paper, an
integration Id) over the barred variable is im-
plied.

In FM, we discussed, and to a certain extent
solved, the approximation to E(l. (1.Va) which is
obtained by calculating Z(%z) to second order in
the interaction strength. We demonstrated there
that even in this simple approximation, E(l. (1.Va)
leads to physically sensible results for a weakly
coupled fluid. Of course, E(l. (1.Va) itself is com-
pletely rigorous, and indeed little more than a,

definition of the mass operator Z(kz). Derivations
have also been given by Akcasu and Duderstadt'
whose approach is similar to the one presented
here, by Lebowitz, Percus, and Sykess who star-
ted froIn the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for distribution functions,
and by others.

The subjects of our present discussion, then,
are the general properties of, or requirements
upon, the matrix Z(%z; f$') and thus the kinetic
e(luation (1.Va), for arbitrary interaction strength
A, and density n. Some of these properties have
been previously obtained; they are included here
for completeness. Other results, in particular
those that concern the hydrodynamic limit, are
new, to our knowledge. Also new is an additional
sum rule which is useful because it is surprising-
ly simple. Since it is possible that some readers
wi11 be more interested in the general properties
of Z(%z) than in the details of their derivation, we
shall present our results first; an attempt has
been made to make Sec. II independently compre-
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Z(j gg }=Zt ~(j q)+Z( &(j f&')

where Z&'(Kz) vanishes as z -~. The "static"
part Z~' is rigorously given by the equation al-
ready displayed in FM,

Z"(k, ()=-nc(u)t, (jt f)y(~), (1.9)

where n is the particle density, and p(g) is the
Maxwellian velocity distribution

hensible. Details of derivation and proof are de-
ferred to later sections.

Ne begin Sec. II by listing the symmetries of
Z(kz) (II A) including one which guarantees de-
tailed balance. In IIB we discuss a positivity prop-
erty which is necessary, though not sufficient, to
guarantee the dynamical stability of the system.
The proper behavior at short times is guaranteed
if Z(jtz) fulfills a series of sum rules, the first two
of which are listed in IIC. In IID we discuss the
conservation laws in the context of this formula-
tion. At long times for small z, the behavior of
Z$z) must be such as to lead to local equilibrium
and proper hydrodynamic behavior. This require-
ment results in a few new and interesting relations
which connect matrix elements of Z(jtz) and ther-
modynarnic derivatives. These relations, which
guarantee in particular that the speed of sound is
the Laplace one, (dpidmn), '~', are exhibited in
II E.

In Sec. ID we shall show that these requirements
upon Z(jtz) do indeed, in conjunction with Eq.
(1.7a), lead to the modes of linearized hydrody-
namics, "' and we give expressions for the trans-
port coefficients. The technique used is the one
introduced in FM, Bnd we can thus be brief. It is
similar to a method developed independently by
Rhsibois. In Sec. IV we shall give a microscopic
expression for Z(jtz) in terms of projectors in
I iouville space, previously obtained by Akcasu
and Duderstadt. ' This expression is essentially
equivalent to a characterization of Z(kz) by a class
of irreducible diagrams. %'e shall then use this
expression to prove the results claimed in Sec. II.
An Appendix gives some details concerning the
derivation of the sum rules.

Before embarking upon the discussion, we would
like to separate Z(jtz} into two physically distinct
parts, namely

linearized Vlasov operator, but with -Pv(r) re-
placed by the direct-correlation function c(r). If
we were to omit Z&')(Rz) from (1.7a) and (1.8), we
would have a collisionless equation for S(kz) which
can be solved exactly, ' and is correct for very
short times.

The influence of collisions and their memory
effects are contained in Z&'~(kz). It is the proper-
ties of this part with which we will be mostly con-
cerned. It is easy to see that Zt')(kz) is analytic
in z for Imz w 0." Since it vanishes as z -, we
can write it in spectral form as

(1.11a)

I'()tran; (g') can be called a "damping matrix"; it
can be shown to be real so that

I'(k~gg') = —21m zi')(Rz;( ~')i, „„,. (l.lib)

I et us also define the collision kernel

K$, t —I'; $ $') = —e ' ~' ' f'(k&u; (5') .

(1.12)

For I ~ 0, Eq. (1.7a) can then be written in the per-
haps more intuitive form

[s, +fv, (}t $)]S(kf, f, ~ )+fZ&'&(R, g) S(%f, ff, ')

Because of the connection between fluctuations and
linear response, Eq. (1.13}can be understood as
a non-Markovian, nonlocal kinetic equation for the
singlet distribution function 5(f(r( f)) „,„~
-S(rf; f ('), for an initial state which is slightly
displaced from equilibrium, and characterized
by the momentum variable ('. Note that as it
stands, Eq. (1.13) is valid for all times, not just
long times. Indeed, the fluctuation-dissipation
theorem determines even the correct initial condi-
tion to (1.13). The theorem states that'

s, S(r, t; f (') (, ,= P-'(mz, )' ([f(rp0), +Op'0)] g

=-«.(( &)4(()5((—f')5(r),

y(g)=(2z}-'"e ' ~'. (1.10)
where [, ]ps indicates the classical Poisson bracket.
Together with (1.9} and (1.13), taken at f = 0, where
rhs vanishes, this determines S'(k) of (1.7b) to be

Zi'(jt, g) accounts for the mean field on one par-
ticle owing to all the others; it is the equivalent
of the Hartree-Fock self-energy in the quantum-
mechanical theory. " Z&'(%, $) has the form of the

(I/s)S'(I, ] ( ) = y(~}5($ (')-
+ y(()na(k) y(t'), (1.15)
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[z-v (% ~ ()]S(%z ((') —Z(%z $ $)S{%z ( $')

where

ne(0-5(f ('),-(1»)

Z(%z f f') =Z»(% ~z(')+Z"(%z ~ (')

with Z~'~ unchanged, but

Z~'(%z, f$') =nc(k) &(&($)[z- vP(f + g')]. (1.19)

This form is somewhat more useful, particularly
for the discussion of symmetry and stability. To
establish the equivalence of (1.7a) and (I.IV) one
makes use of particle conservation, see Eq.
(2.13a) below.

IL GENERAL PROPERTIES OF Z«&(kzgf')

In this section we will list all the general proper-
ties we are aware of for the nonlocal collision op-
erator Z "i(%z) or its spectral weight I'(%((&). Some
of these, such as the symmetries and positivity
listed in IIA and IIB, are generally known; they
are included for the convenience of the reader.
Proofs, where necessary, are given later. %'e

shall sometimes refer to these properties as "re-
quirements": they should be fulfilled by any ap-
proximate kinetic model if it is to correctly render
all known features of the dynamics. At present,
no such models seem to exist except for gases,
but we hope to present a calculation of this type in

a future publication. Of course, the Z~'~ for a
weakly coupled fluid discussed in FM, has all the
properties stated here, to order (Pv)' where ap-
plicable, as does Mazenko's' low-density memory
function.

Throughout Secs. II and III, we shall again use
a convenient bracket notation for integrals in mo-
mentum space. The scalar product of two func-
tions y(g), f&(g) is denoted by

where

k(k) = c(k)[1—nc(k) ]

is the Fourier transform of k(r) =g(r) —1, where

g(r) is the pair-correlation function. Obviously,
it is easier to derive S'(k) first and then Z"&(k)

from it. However, as in FM we wish to stress the
viewpoint that systematic approximations ought to
start by calculating Z(%z} in some fashion, and
then S(%z) from it by using (1.7a) and (1.14). This
procedure should result in an approximation to
S(%z} which is statically and dynamically consis-
tent.

Finally, note that because of (1.15), Eq. (1.Va)

can also be written in the equivalent but more
symmetric form

&((lt& -=f &((' ((')('(f)&( &) '(&(a&
This product has the usual properties. %e also
define the "matrix elements" of M(PP) by

&(IMI&& -=f d( f &('y'(f)&&&(((')

x 4(h')(()(5') ~ (2.1b)

Z@&(%z ) =-Z~'(-% -z ) =[Z@ (%. z*)]* (2 2a)

' «'= "(%' '6 «). )

(2.2b) is the property which establishes detailed
balance. Because of conditions (a)-(d), I'(%(d) is
Hermitian, and its left and right eigenfunctions
are identical. "

8. Positivity

The damping matrix I'(%(d; f$') is positive
(semi-) definite in the sense that

d$ d$'4* $ F cv; $ $' |t) $'4' $'

= (4'[ I"(%cv) i4') & 0 „(2.3)

for arbitrary functions &1($), and a11%, (c. In FM,
(2.3) was explicitly shown to hold for weak poten-
tials. That it is generally true can be easily
shown, e.g. , from Eq. (4.15) below. From (2.3),
we immediately conclude that everywhere in the
upper half of the complex z plane, the imaginary
part of —Z~'&(%z) is positive,

(4'~ —Im Z"'(%z)(4) & 0 if Imz &0. (2.4)

In the lower-half z plane, it is negative. For arbi-
trary%, &(&, (2.3) and (2.4) vanish only if 4(()=1.

Equation (2.4) is connected with the dynamical
stability of the system. If (2.3) and (2.4) are sat-
isfied, the correlation matrix S(%z) will have no
singularities on the physical z plane, or its in-
verse S '(%z) will have no zeros, provided that in
addition

1-nc(k) & 0 for all k. (2 5)

A. Symmetries

%'e consider a Quid system which is invariant
under translations, rotations, parity, and time
reversal. The corresponding symmetry proper-
ties of S'(%(d; ( f') are easy to derive; they are
given in FM. These properties are guaranteed if
I'(%&L); $ ( ') &t&(E ') is (a) real, (b) even under %, ((&

—-%, —&(&, (c) symmetric with respect to &- &',

(d} invariant under rotations-reflections. Rotation-
al invariance and parity imply that I'(%v; $ P) de-
pends only on the six scalar combinations of $, $',
and%. Equivalently, we require that
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All the poles of S(%z) appear then on a second sheet
in the z plane, reached by analytic continuation
through the branch cut along the real axis. These
poles represent decaying modes. If, however,
either (2.4} or (2.5) were to break down, in some
approximation, a pair of poles would appear on the
physical sheet and raise havoc.

We note that (2.3} and (2.5) guarantee stability
only with respect to infinitesimal disturbances.
For example, if a van der Waals gas below its
critical point is undercooled, it will remain stable
in this sense, i.e., locally stable, until the inflex-
ion point is reached where 1 —Nc(k) = 0 at k = 0. For
T below this point, (2.5} is violated, the system
becomes locally unstable with respect to density
fluctuations, and the gas liquefies. Of course, the
phase transition will normally happen at a some-
what higher temperature at which the system is
globally unstable even though (2.3) and (2.5) con-
tinue to hold. Equations (2.3) and (2.5) are there-
fore a necessary, but not a sufficient, condition
of stability.

C. Sum rules

We noted that Zi')(%z) vanishes as z-~. The co-
efficients of an asymptotic expansion in powers of
1/z are given by sum rules. Since these coeffi-
cients also establish an expansion of K(%, f) of Eq.
(1.13) in powers of f, they determine the dynamics
for short-time differences. The first of these mo-
ments, which has already been. given in FM, is

A, is an operator w'ell known in the theory of
Brownian motion and the Foyer-Planck equation, "

(2.9)

=(sU, /m)
i

dr g(r)a„(r)a, &,'(% ~ f)

where

x 4)(t') 6($ —t') +(nt), /m)

[A„,(%)s,+&g (),(%)s)l]s(sJ 4($) (t)(!')

(2.10a)

The eigenvectors of this operator are the Her-
mite polynomial tensors. If we were to replace
Z '

(%z; $ (') in Eq. (I.Va) by Z„"(%,( f'), we would
obtain a kinetic equation of the Fokker-Planck
type which can be solved exactly. " There is, how-
ever, a serious deficiency to that equation: it
conserves particle number and momentum, but it
violates energy conservation.

The derivation of additional sum rules is straight-
forward in principle although the amount of algebra
involved keeps one from doing it. Vfe have, none-
theless, obtained a notably simple expression for
the next sum rule which, remarkably, is also com-
pletely determined by the static pair correlation
function. It is given by (see Appendix)

-limzZ('(%z (g') Q(f')
A„.(%)= jdisi (% )g, (|) „(|). (2.10b)

n
dr cos(% r)

where e(r) is the pair potential, v, &(r) = &(&&v(r},
etc. , and 8, =s/s(, .

Notice an interesting property of the matrix
Z~'(%} defined by (2.6). As k-0, it is of the form

'=( /Bml f dig( )v' ( ). (2.8)

Z" (0 f$') = u'[A, ($, (') —4)($)($ t'}], (2."I)

where v is the friction constant first obtained by
Kirkwood etal. ":

This expression is still sufficiently simple so that
it can be useful to restrict a realistic kinetic mod-
el. Additional sum rules, however, become in-
creasingly complicated as to their momentum de-
pendence, and since they involve triple and higher
static correlation functions about which little is
accurately known, their practical usefulness is
doubtful. The two sum rules given here each sum-
marizes, of course, many sum rules that one ob-
tains in a description by a finite number of vari-
ables. It may be worth pointing out, therefore,
that traditional applications of sum rules, in theo-
ries which have used "generalized hydrodynamics"
procedures, 4 have not exhausted the content of
even Eq. (2.6).

In a system of hard spheres, the sum rules fail.
Their failure is associated with the fact that in a
discontinuous potential, a particle can change its
momentum instantaneously. Correspondingly,
there is an essentially infinite frequency in the sys-
tem. In this case, it is no longer true that Z ')(%z)
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vanishes as z- ~. Indeed, for a low density sys-
tem of hard spheres Mazenko etg/. "have shown
that Z~'~(%z) is, in fact, frequency independent.

D. Conservation laws

The existence of hydrodynamics is intimately
tied to the conservation laws for particle number,
momentum, and energy, and thus to the behavior
of Zt'~(%z) in the region of smaQ k and z. In FM,
Sec. III, we showed how the conservation laws are
represented within a kinetic equation of the form
(1.Va}. Since much of that discussion was quite
general, not restricted to a weak potential„we
shall be brief here.

The crucial property is the following: Let us
define the matrix

E($, $') = lim limiZS~(%z ( ]'),
e~fO k~O

From (2.2) one concludes that A(p, p) p(g') is real,
and symmetric. Moreover, in Sec. IV we will
show that, at any density and interaction strength,

(2.11)

dg l, g, g'Z ~, g' =0. (2.12)

K(f, $') has therefore the properties of the local
(in both space and time) collision operator of a
linearized Boltzmann-like equation: If we were to
replace Z(%z) in Eq. (1.Va) by K we would have a
Markovian kinetic equation which conserves the
particle number, momentum, and kinetic energy.

According to (2.12), E(g, $') has five eigenstates
with eigenvalue zero. Since there is no additional
local conservation law in a simple liquid, we re-
quire moreover that all other eigenvalues of
IC($, ('} are nonzero and in fact positive as a con-
sequence of (2.4). (property A).

In a rare gas, the third Eq. (2.12) is an immedi-
ate expression of kinetic energy conservation.
That the equation also hoMs at arbitrary density
is not trivial, and requires proof (see Sec. IV 8).

In dense fluids, it is the total energy which is
conserved, of course, not the kinetic energy, and
there are potential contributions to stress tensor
and energy current, As in FM, the requisite prop-
erties of Z ' (%z) can be written in the following
form:

where the functions T„,E, and4& have definite
limits as k-0 and ~-i0. In other words, we re-
quire that the following functions be finite, well-
behaved functions in $ space:

T,~(g') = vo' lim lim d( f,,Z' (%z; fg'),
s~ $0 A~O

E(~') =-Iim lim — df ,'fmZ-t )(%z; fp'}
a $0 0~0~~

(2.14a)

(2.14b)

s, ((m;(')=m, I sf (,s()m;(('), (2.15)

Eqs. (1.V) and (2.13b) lead to a continuity equation
of the form

zg (%z; (') —u)~(i(%z; P) = -g((%; g'), (2.16)

where the initial value is, correctly, given by

g, (%; f )=- tn'nv, (,'p(g'), (2.1V)

and the stress tensor (correlation function) by

J;(]')= v, ' lim lim lt d] —,']'Z "(%z; ( 7') .
fo a 0~~1 ~

(2.14c)

From (2.2) it is easy to see that all three (or four,
actually) functions are real.

Clearly, (2.13) and (2.14) impose a somewhat
stronger restriction on Z'i(%z) than does (2.12),
in that a degree of analyticity near vanishing % and
a is required. "While this "analyticity", i.e.,
(2.15) is exceedingly difficult to prove —we have
not rigorously done so—it is certainly a very
plausible consequence of the local character of the
conserved densities. Hydrodynamics will only re-
sult, or the transport coefficients will only be
finite, if the limits in (2.14) exist.

The connection of Eqs. (2.13) with the continuity
equations is obvious. Consider momentum con-
servation. Since the momentum density [rather,
its correlation function with f(r'('t')] is given by

dt Z&&(%z gg)=O

+v$ Z'(%z; ('),

(2.13a)

(2.13b)

(2.13c)

+T„(%z;$)]S(%z; t t'). (2.1&)

T„(%z; f, ') therefore incorporates collisional con-
tributions to the stress tensor. The functions
E(%z; f) and S'(%z; f) similarly represent potential
contributions to the energy and energy current
densities. Note, incidentally, that in a simple liq-
uid the microscopic stress tensor is symmetric
so that
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T„(%z; $) = T„(%z; () . (2.19)

As usual, this property guarantees angular mo-
mentum conservation.

E. Local equilibrium requirements

At long times, a many-particle system will es-
tablish local equilibrium, as a result of many con-
serving collisions. In this region, the dynamics
will be dominated by the five hydrodynamic modes:
two propagating sound waves and three diffusive
modes describing the transport of heat and of
transverse momentum. These modes are dynam-
ical in origin; their properties are chiefly de-
termined by properties of the collision operator
Z('(%z}. On the other hand, if hydrodynamics is
correct these modes are characterized by certain
thermodynamic derivatives: the speed of sound is
c = (dP/dmn}, ' ', and the coupling of sound and heat
is determined by the specific-heat ratio c~/c„.
Information about these parameters must be buried
in properties of Zt'i(%z).

It is true, of course, that full information about
the thermodynamics is also contained in the mean-
field part Zt'~(%) of the mass operator, notably in
the direct correlation function c(k). As was dis-
cussed in FM, this imposes a problem of consis-
tency of Z~'~ and Z~'~ for all those approximations
which aim at a proper description of the hydrody-
namic limit. The equations which we are about to
write down should be helpful in achieving this con-
sistency of statics and dynamics.

The crucial properties are two statements about
matrix elements of Z('(%z} which we will prove in
Sec. IVC. These statements are

= U', 11m[i -nc(k)].~

~

T 0~0
(2.22)

tkPls s c&ss p f88 c„dT
In terms of the functions defined in Eqs. (2.14),
we can write (2.20) and (2.21) in the form

(2.23)

mc„=kz(-,'+(E~ pt')) . (2.24)

The second line of Eq. (2.23) can be understood as
an expression of Qalileian invariance.

This concludes our presentation of the general
properties of, or requirement upon, the collision
operator Z "(k, z}. In Sec. III, we shall show that
in the collision-dominated regime of small k and

z, these properties lead to the correct hydrody-
namic behavior, and we will deduce rigorous ex-
pressions for the transport coefficients in terms
of Z('(%, z).

III. HYDRODYNAMIC MODES

The experiments which one normally performs
on liquids, measure properties which are obtained
by contracting the matrix S(kz; ( t'} in momentum
space. Most importantly, the complex density-
density ftuctuation function

The collision operator Z('(%, z) couples energy and
density fluctuations and converts this to the cor-
rect isentropic speed since

(3 1)

mc„= -', }tz 1 —lim lim —( z ] Zt'(%, z) f z)
e io A~0 ~

(2.20) whose imaginary part, for z=u+i0, is 2 times
the dynamical liquid-structure factor S'(k, (()) de-
fined in (1.3); the momentum-density fluctuation
function

(2.21)

where z($) = ($' —3)//6 is the kinetic-energy "state",
and mc„ the specific heat per particle at constant
volume,

vl pic~ =

It is clear why the two statements (2.20) and (2.21)
are necessary. If we were to omit Z('(%, z) from
Eq. (1.7a), we would derive the familiar-collision-
less sound mode with the isothermal speed since

dte'" re ' ' g, rt')g. 00
0

(3.2)

where g, (r()) is the microscopic momentum density,
and the second line of Eq. (3.2) holds only for
Imz &0.

For small wave numbers 4 and frequencies z,
these functions can be calculated from the linear-
ized Navier-Stokes equations of hydrodynamics.
I.et us first write down the resulting rigorous lim-



DIETER FORSTER

iting expressions, discussed in detail by Kadanoff
and Martin. ' The transverse part of the momen-
tum-density fluctuation function, g, (kz) ~g„,(kz)
(for R in z direction) is dominated by the shear
diffusion pole,

4 „(t)] =(n(t );g (t ); z(();g (r);gl(f)]
=[I;;„(t'—3)/D6; f,„t,j. (3.10)

tion (1.7a), projected onto the five "hydrodynamic"
var iables,

g, (kz)=, , Imz & 0-mnP '
z+ik2q mn' (3.3)

where q is the shear viscosity. The longitudinal
modes of attenuated sound propagation and heat
diffusion both contribute to g„„(kz), in the form

Clearly,

g (kz) =
(

)G„(kz),

g, (kz) = -rim P 'G«(kz) .

(3.1la)

(3.lib)
dn 1 —c„/c, ~cg„„(kz)=-nP ' „—," '+~

z+ fk'[r+Dr(c, —c„)/c„]
-c 4 +uk' I'

(3.4)

where mc~ and mc„are the specific heats per atom
at constant pressure and volume,

(3.5)

(3.12)

From these iwo functions, all thermodynamic and
transport coefficients can be obtained. To do so,
we have to isolate the hydrodynamic singularities
in G„,(jtz), which is accomplished by use of the
projection operator in E, space,

5

I' = P I y„& & q. l=-l -@,
V=1

which projects onto the subspace where If [see
Egs. (2.11) and (2.12)] vanishes: PK =KP =0. It
is then easy to see that (3.8) becomes

c is the isentropic sound velocity,

(3.6)
[z5„.—Q„.(kz}]G.„(}tz)=5„, ,

where

(3.13)

and the damping constants are given by

Dg = 3I'= +D~
K +s'g+ g c

mnc~ mn c„
(3.7)

in terms of the heat conductivity ~, and the shear
and bulk viscosities q and g.

For a ncrmal ikluid, Eqs. (3.3) and (3.4} are
rigorous for small 4 and z. They must therefore
be compatible with our fundamental kinetic equa-
tion (1.7a). In this section, we shall show that this
is indeed the case. In deriving (3.3) and (3.4) from
(1.7a) we will obtain rigorous expressions for the
transport coefficients ~, q, and g in terms of the
collision operator Z "(kz).

It will be apparent that our derivation relies
only on the properties of Z~'~(kz) stated in Sec. II.
This being so, our results will not only apply to
the rigorous kinetic equation —hardly the most in-
teresting case —but to any approximate model
whose collision operator Zl'~ (Kz) is in line with
Sec. II.

Following the procedure already used in FM, we
define the matrix

Q(kz) = Q"(%z}+Q'$z),

'„Q'„(4) =&y„[Z(Kz)( y„&,

Q'„, (kz) =&y„(Z(jtz)Q[z —QR(jtz}Q] '

x QZ(kz)l p, &,

(3.14a)

(3.14b)

(3.14c)

and Z(kz) -=uP(k)+Z(kz). For any theory which has
property A the operator Q(z —QZQ) 'Q is nonsin-
gular for small k, z, and Q(jtz) can therefore be
expanded in terms of K and z.

A. Transverse modes

Q, (kz) = -gp(q" +q')/mn,

where

(3.15)

On the basis of the properties stated in Sec. I,
such an expansion is easily accomplished. %'e

first note that because of rotational symmetry,
(2.2), longitudinal (p, =1, 2, 3) and transverse
(p =4, 5) modes are not coupled. The tranverse
contributions to Q(%z) are at least of order k', and
to this order are given by (Q« = Q» = Q„Q~, =0)

G„,Ãz) =&&„l[z—~'(&) —Z(&z)] 'IW.&,

where

&u'(lt 6(')-=o (jt $)5(f f')-
(3.8)

(3.9)

II
= —.

' Iim lim —z&4( F(k~)l (g,tSn IzI~O $~0 k'

and

(3.16a)

G„„(kz) is the formal solution of the kinetic equa- q'/mn =a'&g, g, +T„~QK "Ql $, t, +'1',Q . (3.16b)
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As a consequence of Eq. (2.4), both q' and q" are
positive. The transverse momentum density fluc-
tuation function, g, (kz), is therefore given, to hy-
drodynamic order, "by the expression (3.3) where
the shear viscosity is

Tj =Tf +Tj (3.16c)

The separation of transport coefficients into two
contributions, which might be called "direct"(q")
and "indirect"(q') is characteristic for the kinetic-
theory approach. In FM, we found this separation
for the more explicitly tractable weakly coupled

fluid. It is noteworthy that both contributions are
positive.

B. Longitudinal modes

The expansion of the longitudinal part (p, v
= 1, 2, 3) of Q„„(kz) proceeds in an analogous fash-
ion. First-order contributions, i.e, those linear
in R and z, stem from (3.14b) only. It is here
where the properties (2.20) and (2.21) of T('(kz)
enter —due to these relations, Q „„(Rz) is entirely
thermodynamic to first order. It is given by
vokQf„'l (x) with x=z/v, k, where

1 -nc(0)

2)
~'

dP)

2 '~2 dp
3 dT ~

ks x(1 ——,' mc„!kz)

(3.17)

If this contribution to Q„,(kz) is inserted into
(3.13}, one obtains a pair of propagating sound
modes with z =+ ck where c is the hydrodynami-
cally correct adiabatic sound speed of Eq. (3.6).

To second order in k and z, making liberal use
of symmetry, we get

bulk viscosity:

g =f'+f"

+~ I1 + g
I I

= —lim lim —
2trl n

(3.2la, )

Q„„(%,z) = v,kQ8l(x) +(v,k)'Q@l(x),

where Q@l(x) is of the form

(3.18) x g, + o. —
[ r(k~)) 4+ o,

vP g vok

(3.2 lb)

0 0

gXy2s

&'/mn=vo( T —aE~QK 'Q~ T —aE),
where

(3.21c)

~Yu -~'Yss —iX' 'y (3.19) T(() =3 Q [Fr+ T~~(00; F)]
j=i

(3.22)

heat conductivity:

K=K +K (3.20a)

(3.20b)

Because of Eq. (2.4), the three coefficients y»,
Jss and ass are positive and yQ3 is real. Each of
these coefficients consists of two additive terms,
one each from (3.14b} and (3.14c); they determine
the transport coefficients. If one inserts (3.1V)-
(3.19) into (3.13) and solves the resulting equation
for g„„(kz), one obtains precisely the hydrodynam-
ic expression" (3.4), with the following identifica-
tion of transport coefficients:

is the scalar part of the "stress tensor, " and

6T — —5E - 5pi
dp
QE

(3.24)

(3.23)

is the thermodynamic derivative of the pressure
with respect to the energy density, at constant vol-
ume. This gives Eq. (3.2lc} a transparent inter-
pretation: If we identify T and E, respectively,
with the potential contributions to stress tensor
(pressure) and energy density, then the primed
part of the bulk viscosity is due to fluctuations of
the quantity

(3.20c)

describing stress-tensor fluctuations which take
place at constant energy density, allowing, how-
ever, for the collisional transfer of kinetic into
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potential energy.
An equally transparent interpretation cannot be

easily given, at the kinetic-theory level, to the
"direct" contribution to the longitudinal diffusivity,
D,"=(+&)"+f")/m». For example, while it is clear
from (3.21b) and (2.3) that D," is positive —a stabil-
ity requirement —it is not apparent that (" itself
is positive. That is, nevertheless, true. We de-
fer discussion to Sec. IV D where g" will be given
a form as physically transparent as that of 4' in

Eq. (3.2lc).
This concludes our discussion of the hydrody-

namic limit of the kinetic equation (1.Va). It is
clear that our derivation relies only on the general
properties of Z(Kz) stated in Sec. II (excluding IIC).
Any kinetic model of the form (1.Va) but with some
approximate kernel Ze&(jtz), will therefore lead to
results in agreement with the predictions of the
Navier-Stokes equations so long as the approxi-
mate kernel satisfies the properties of Sec. II.

IV. MICROSCOPIC FORMUI. ATION AND

PROOFS

In this section, we mill give a microscopic ex-
pression, simple only in appearance, for the col-
lision operator Zt'&(jtz). This expression, Eq.
(4.16}below, has been earlier derived by Akcasu
and Duderstadt' along similar bnes. The reader
who is aware of the insolubility of even the classi-
cal three-body problem will not expect us to cal-
culate, for an infinite system, Ze&(jtz) explicitly
although manageable approximations, appropriate
mainly for gases, can be given. ' ' Our expression
for Zt' (kz} is therefore quite formal; however,
the reader will be pleased to see that it is just
manageable enough to provide some further insight
into the separation of the dynamical many-body
problem accomplished by Eq. (I."la). And, impor-
tantly, manageable enough to supply miproscopic
proofs of all the properties of Z&'&(kz) states in
Sec. II.

The reader is cautioned not to confuse the brack-
et notation (and projectors) for thermal averages
used in Sec. Pf, with the one for momentum inte-
grals used in Secs. D and III, nor the projector Q
used here, with Q used in Secs. II and III.

A. Formal microscopic expression for

~"(~yp')

An expression for Z~'~ can be obtained by applica-
tion of Mori's" projector scheme to the correla-
tion function S(rt, pp ). This scheme begins with
the recognition that a matrix S„„(t)of correlation
functions of dynamical variables A&, (t) can be writ-
ten in the form (taking (AQ = 0),

S .(t) =(A (t)A. (O))„=(A le "'IA„), (4.1)

or for the Laplace transform, defined as in (1.5),

S„„(z)=(A~I IA,) . (4.2)

Here L is the I.iouville operator, defined by
8, A&(t) = tLA~(t}, and the brackets indicate thermal
averages according to

(AIB) =-(A~B)~ .
Defining the projection operator

P = Q IAJ (So) '„(A„l=-1—Q,

(4.3)

(4.4)

where So~„=(A„IA„)=S„„(t=O), and using the op-
erator identity

1 1 1
z -Lg-LP z-~ '

z -Lg
1

z-L'
one easily casts (4.2) into the "equation of motion"
form,

[z5„.—II,.—Z(;&.(z)]S.„(z)= -S',„,
with the identification

(4.5a)

II~ = t(A. „A,)(S'),'„, (4.5b)

Z~g&. (z) =(A&, l@ q~ CIA. & (S').'. (4.5c)

This scheme is easily applied' to our correlation
"matrix"

S(r P, r'P'; z) =(f(r P)l, ~ If(r'P')&, (4.6)

where Z„ is replaced by Jdpfdr where appropriate.
In this section, we find it more convenient to use
physical momenta p instead of ( =p/me, used be-
fore. To unclutter the equations, we shall also
omit vector arrows over r and p where these ap-
pear as arguments. Since

&f(rp)& =su(P) =s(~~ )-'(2.)-'t'.-'~"' &

(4 7)

is independent of r, one conveniently accounts for
the requirement "(A/=0" by interpreting, for spa-
tial Fourier transforms, all 4 =0 values as
lim& -0.

We first note that the Liouville operator L, mi-
croscopically given by

a,gcx
—P V,(r r z} ~ (5' ))'8),

e Bl 2 ~&s

(4.8)

where V =S/Sr and 5 =S/Bp, can also be writ-
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ten, in our case, in the more convenient fieM
form

pViL = dr dp ——+ drVv(r -r) n(r) ~ f
PB

rf(rp)
6f( ),

since the field f(rpt) is canonical, obeying the
closed equation of motion

(4.9)

S,f(rPi) = — f(rPf)+[Vv(r -r) &n(rf)]p ~ V

xf(rpi) . (4.10}

S'(rP, r'P') =ny(p)6(P P') (6r --r')

+n'k (r r') y-(p) y(p')

has the simple inverse

(4.11)

(S') '(rp, r'p') =[nt(p)] '6(p -P')

X5(r r') —c(r-r'). - (4.12)

Therefore, the projector (4.3) is of the form

= If(r p)&(s') '(r p, r'p')(f(r'p')I

= If(r P)&[nk(P)] '(f(r p)i

—ln(r)& c(rr')(n(r')I . (4.13)

Mori's general equation (4.5) thus becomes ("1"
-=r, p)

~ ~p ~ V p ~ Vz+i S(ll'; z) —in/(P) c(r -r)S(ll'; z)

Here and henceforth, an integral over barred vari-
ables is implied. Further, the equilibrium corre-
lation function

therefore obtain

nza'(rP, r'P'; z)4 (P')

=&I'(rp)I @, ~~~ Olf(r'P ')&, (4 16)

which is the desired expression. [There is a scale
factor (mvo)~ relating Z(t('} and Z(pp'}. ]
Z~'(kz; pp')$(p') is the spatial Fourier transform
of (4.16}. Equation (4.16), while formal, clearly
indicates the physical separation that is accom-
plished by Eq. (4.14) or (1.7a). Q is a projector
which discriminates against all one-particle prop-
erties. These are contained in (4.14) explicitly,
in the kinematic streaming term and the mean-
field term [Za~ of Eq. (1.8)]. By (4.16), Zt' is a
force correlation function which admits, in its
dynamics, only two- (and more-) particle-corre-
lated processes. In the 1.anguage of diagrammatic
field theory, one would call Z~' "one-particle irre-
ducible. " In a rare gas, two-particle collisions
are the only ones that have to be accounted for,
and these are local and essentially instantaneous.
Consequently, for all but the highest frequencies,
Z~'(kz) is independent of k and z. In a liquid, col-
lisions involving more than two particles are im-
portant, and since they are not separable into in-
dividual completed collision events the dependence
of ZI'(kz) on k as well as on z will become impor-
tant. However, it still seems a promising route
to treat these processes in an approximate and
summary fashion, e.g. , by using an interpolation
model for Z&'l(kz).

The symmetry properties of Sec. IIA follow eas-
ily from (4.16). The positivity of I', See. II 8, can
be also easily deduced. We defer discussion of the
sum rules to the Appendix, and proceed here to
demonstrate the hydrodynamic properties of Secs.
IID and E.

B. Conservation laws

—Z~'i(ll; z)S(11';z) = -S (11'), (4.14)

Because of parti ele conservation,

"d-
( )

.
( )

V g(r) Vfdppf(rp)

where we have calculated and inserted the matrix
0 of (4.5b), obtaining the result (1.9) trivially.
Equation (4.14) is, of course, the spatial Fourier
transform of Eq. (1.7a). To obtain Z"', we notice
that in applying (4.12) and (4.13) to (4.5c), the last
term of (4.12) gives no contribution. Namely,

it is clear that

dp f rP (q=o,

(4.17}

Clf(r p)& c(rr') =@in(r}&c(rr')

=eig(r)& V c(rr')/~, (4 15)

which uses particle conservation. However, g(r)
= f dp pf(rp) is entirely within the P subspaee, and
thus the Q operator demolishes this term. We

so that (2.13a) is satisfied. If we use the equation
of motion (4.10), we find this verified since

nZ "(rp, r'p'; z)4 (p')

= S,S,'[V, v(r -r)] [V,v(r'-r')]( ), (4.18)

( &=(f(rp) (r)IQ(z —e LC)-'ql (fr' p' ) (r') &



DIETER FORST ER

This general structure of Z"'(hz) was also found
in both sum rules of HC, of course.

Microscopic momentum consemaNon

(4.19)

then entails the second result, Eq. (2.13b), with

T„(r-r', z; t')4)(t')

=-(i~"./n) & r„(r)IQ(z —@0)-'Qlf(r p )&.

(4.20)

Since the microscopic stress tensor 7&&(r) is sym-
metric, so is T&&. And unless something peculiar
happens, such as spontaneous symmetry breaking
(and not likely then), T,~(r -r", ) will be a local
quantity, with a Fourier transform which is finite
as h-0 as asserted after Eqs. (2.14).

To prove energy conservation in the form (2.12)
or (2.13c) is a little more involved since the mi-
croscopic conservation law

s,e(rt) =s,e"~(rt)+e,e~'(rt)=-v t'(rt) (4.21)

C. Local-equilibrium properties

2. Specific heat

To prove (2.21), we apply once more the argu-
ment which lead to (4.25}, and obtain

p' l2
n dp dp' ~ Z~'& rP, ~'P'; z P'

=&e '(r)IQLQ(z-QLQ) 'QLQIe '(r')& (4.27)

except for a gradient term which vanishes as
k-O. Thus, since

lim QLQ(z —QLQ} QLQ = Q,
a~ fo

(4.28)

we obtain [spatial Fourier transformation is in-
dicated by & ) (h)]

vanishes as h-0, proving the last Eq. (2.12) and,
assuming a moderate amount of analyticity, (2.13c).
Expressions for the functions E and S' of (2.13c)
can be given but they are not very illuminating.

involves the microscopic potential, energy

'(r)=B Q 5(r-r )v(r -rs),
8

(4.22)

8 2 Ja
Iim - n — Z(')(hz; pp') y(p')~z 2' 2'

=&e"'(r)I QI e~'(r )& (h "o)
(at t =0) which cannot be expressed as a simple
integral over the one-particle observable, f(rP).
We begin by noticing that

= [X,~,~ (h) —X,~'.(h)X..'(h)X.,~ Q)]B, (4 29)

where we have used (4.13) and (4.28), and the no-
tation

&e '(r)lf(r'p')) =&e"'(r)ln(r')& 0(p') (4.23)

since classically, momentum averages can be tak-
en independently, and e) '(r} depends only on posi-
tion variables r . With the projector as given in
(4.18), we find therefore that

x„,()()= Ja(F r )«-'
x[&&(r)&(r')& -&» &» ].

Now the specific heat is given by

(4.30)

&e~'(r)IPLQ-&n(r)l LQ =0.

This result and (4.21) lead to

n dp ~ Z~')rP, r'P';z y P'

(4.24)
Bfinc =-k Py 8 gp

= i&e '(r)IQ&(z -Q~)-' Qlf'(r'p')&+ v

(4.25)

except for a gradient term resulting from the en-
ergy current in (4.21), whose contribution vanishes
as k-O.

Now further

or

(4.3ls,}

hBP '[x„(h) x,.(h) X..—'(h) x., (h)].

(4.31b)

lim t&tLQ(z —QLQ) '= —Q.
s~ $0

(4.26)
where e is the total energy density. With the help
of (4.23) and the relations which follow from (4.11),

It is then easy to show, using a property similar
to (4.23), that the Fourier transform of

&e"'(r)1Qlf (r'p')& (h) "o
X..(h) = iPX,W(h}=zeP'X, ~, Hh) --', n, (4 32}

we obtain the desired result
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2

mc„—z kz = -kent' —
2

Z~'~(k, z;PP'}
viscosity contribution, and obtain this expression
for the "direct" part of the bulk viscosity:

/2

e(p')I. ..,. „„
which is Eq. (2.21).

2. Pressure derivative

(4.33} &" = p lim& v(r }—o zp"(r ) IR (e) Ir(r') —nz"'(r '))

(k -0), (4.40}

Equation (2.20) is proved in a similar manner.
Proceeding as before, one finds first that (omitting

gradient terms which vanish as k-0)
n J2

lim —
I P,Z "~(kz;PP')Q(P')

2a~0, z fo A

&~„IQ-le" & (k-0}

X„~gk) —X,.(k)X.'(k)X"~'(k}~.-' (4 84)

The potential part of the stress tensor, T~ ', is
again independent of particle momenta so that

& TP.'(~}I~ (~'}& = zP '& vP. '(~)ls(~')), (4.35)

and with the thermodynamic relation

c =kzP'fX„(k} —X,.(k}X..'(k) X., (k)]~ .,

(4.36)

one obtains Eq. (2.20).
This completes our microscopic proofs of prop-

erties exhibited in Sec. II.

6"=6 lim( v„(r)IA(e)I r„(r')) (k-0}, (4.3 I)

where

R(z) =Q(e+QiLQ) 'Q (4.36)

is a scalar positive operator so that q" &0 as seen
already in (8.16a}. Equation (4.8'I) is, of course,
reminiscent of a Kubo relation.

Now if we decompose the stress tensor T„(r)
into its irreducible parts,

„(r)= r, ~(r. ) + 6r(r), (4.39)

where try=0, then as A, -O, there is no coupling
between v and v, nor between 7 and the potential
energy z~'. Writing Eq. (3.21b), too, in microscop-
ic form we can therefore separate out the shear

D. Bulk viscosity —direct part

In (3.21b), the "direct" bulk viscosity was left
in a somewhat inelegant form, which, in particular,
left unverified the claim that &" &0. This can be
remedied by an examination of the microscopic
counterpart of (8.21b).

For the shear viscosity, calculating (3.16a) from
the microscopic memory function (4.16) and using
momentum conservation, we find that

where n =(sp/se)„as in (3.2lc). This expression
shows that ("+0, and is strongly reminiscent of
the one obtained for g' in (3.2lc). Because of the
projectors g in (4.38), e~'in (4.40) can be replaced
by the total energy density e.

V. SUMMARY AND DISCUSSION

%e have discussed, and proved where necessary,
a list of general properties of the collision opera-
tor which determines a kinetic theory of fluctua-
tions in gases and liquids. By themselves, these
properties are far from constituting a full theory
of liquid dynamics. They do, however, provide a
useful set of checks to which any such theory will
have to submit. Moreover, the sum rules given,
in particular, are sufficiently explicit to provide
welcome guidelines in the search for realistic
models.

%e have, at present, little to say about how to
further narrow down such models. In line with
remarks made in the Introduction, it is sugges-
tive to attempt an extension of the interpolation
procedure of Chung and Yip' to kinetic theory as
phrased here. In so doing, we have found it con-
venient to extend the present formalism slightly,
and include among the explicitly treated variables,
one two-particle property, namely the potential
energy, in addition to variables summarized in

f(r pt). We hope to present results of this calcu-
lation in the near future.

The ultimate goal, of course, is an explicit if
approximate microscopic calculation of ZeI(kz).
It is possible that the renormalized-expansion
formalism, recently proposed by Martin et al."
for classical theories of this type and applied by
them to the turbulence problem, will be a useful
tool here. It is also very l.ikely that the idea due
to Rice and Allnatt" of separating the pair poten-
tial. into a hard core and a soft tail, and treating
the latter by perturbation theory, will be of great
help.

Note added in ma@user&p&. After this work was
completed, I learned of recent work" by G. F.
Mazenko who has independently obtained some of
the results presented here. In particular, Mazen-
ko also obtained my Eqs. (2.20) and (2.21), and
his expressions for the transport coefficients can
be shown to be equivalent to mine. I thank G.
Mazenko for the ensuing helpful correspondence.
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d'~(z) =-I:"+—8 +—+z z~ & zs

then from (4.16)

«,(11')@(I')=&/(1) I@.0lf (I')) .

(A1)

(A2)

Because of the operator g, if one inserts'(I) from
Eq. (4.10), only the potential term in (4.10) con-
tributes so that

nZ, (11')P(I') = S,SJ u, (rF) v, (r'r)

x(f(I)n(r) I @'0lf(I' )n(r)) .
(AS)

To evaluate this expression, we use (i) a static

APPENDIX: SUM RUI.KS

Vfe comment here on the derivation of the sum
rule (2.10a). It is most conveniently obtained from
Eq. (4.16). If one expands

property:

—Pu, (rF)(f(1)n(F)f (1'))

= ~;Rf(I)f (I'))- &f(I))6(11'))

=n'e(p) 4 0 ')g, (rr'), (A4)

which is easily derived, in a canonical ensemble.
Because of this equation, which represents a rig-
orous (and well-known) relation between the pair
and triplet correlation functions, one can in fact
omit the Q operators in (A3). To evaluate the re-
mainder, we use (ii) the fluctuation-dissipation
theorem:

(A(L, [a) =i(i)a) =fP '([A, a]„) (A5)

and (iii) the Poisson bracket

lf(I),f(I')~„=(~ s'-&'s)f(I)6(II'). (A6)

Equation (A3) is then easily evaluated, and leads
to the result given in Eq. (2.10a).
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