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The quantum second virial coefFlcient of two-dimensional systems interacting with a hard-core or
Lennard-Jones 6-12 potential are calculated together with the contribution this coefficient makes to the

specific heat of such systems. The results are compared with experimental data from low&ensity He'

and He monolayers adsorbed on graphite. The calculation provides a qualitative and quantitative

understandiang of the experimental measurements. In particular it illuminates the manner in which the

interaction and the difFerence in statistics cause the very difFerent speci6c-heat measurements in the two

isotopes. The magnetic susceptibility of low-density He monolayers is predicted.

I. INTRODUCTION

There has been considerable interest in the re-
cent experiments performed on systems of helium
adsorbed on graphite. ' This interest is merited
because such systems are easily prepared over a
wide range of densities and temperatures thereby
permitting a methodical study of the effects of the
interaction, as the system varies from a weakly
to a strongly interacting one, and of the quantum
mechanics, as it varies from a classical to a high-
ly degenerate state. In addition, the helium be-
haves as a two-dimensional (2D) system at low

temperatures so that a study of the effects of re-
duced dimensionality upon such phase transitions
as solidification' and superfluidity" can be made.
The manner in which these transitions vary with
film thickness is also easily investigated. '

Heat-capacity-measurement results from high-
density monolayer systems of He' and He' are sub-
stantially the same for both isotopes and are qual-
itatively understood as indicating the existence of
solid phases which, depending upon the density,
are either in or out of registry with the array of
adsorption sites provided by the graphite. '

Data from low-density samples, however, have
received conflicting interpretations, and the dif-
ference in the signals from each isotope has re-
ceived no satisfactory explanation.

It is the purpose of this paper to show that a
study of the virial expansion of the thermodynamic
properties of a two-dimensional system of bosons
or fermions interacting with a potential appropri-
ate to helium provides a qualitative and quantita-
tive understanding of the experimental data in the
low-density regime. In particular, such a study
illuminates the manner in which the interparticle
interaction and the difference in statistics combine
to produce very different signals for the isotopes.
The analysis also provides a basis for predictions

relevant to future experiments, such as on the
magnetic susceptibility of He' films.

In Sec. II we provide a brief review of the heat-
capacity datafr. om low-density samples of ad-
sorbed He' and He', and indicate those features
which we believe need to be understood. Section
III is devoted to a formulation of the virial expan-
sion of the thermodynamic properties of a two-
dimensional system. In the Sec. IV the formalism
is applied to systems interacting with a hard-core
or Lennard-Jones 6-12 potential. The results of
the latter are compared with experimental data in
Sec. V. The possibility of a liquid-gas transition
is investigated in Sec. VI. Section VII provides a
summary of our understanding of the low-density
systems. We conclude with a discussion of the
virial expansion of the magnetic susceptibility of
He' films and a prediction for its behavior at low
densities.

II. REVIEW OF EXPERIMENTAL DATA

We shall examine here the heat-capacity data
taken from low-density systems of He' and He' ad-
sorbed on graphite. In order to give meaning to
the term "low density" we note the following. The
number densities at which the first helium layer
adsorbed on graphite is completed and the second
layer begins to form are 0.115 and 0.017 A ' for
He' and He', respectively. The largest density of
any system whose behavior we shall compare with
theory is 0.0483 A ', somewhat less than one-
half a monolayer. A lower limit to the densities of
interest to us is provided by the observation' that
inhomogeneities in the graphite substrate make
substantial contributions to the heat capacity at
densities 1.ess than 0.025 A '.

Figure 1 shows the specific heat for two samples
of He' of densities 0.0279 (circles) and 0.0415 A '
(plusses) from 1 to 4 K.' That the data appear to
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FIG. 1. Specific heats of adsorbed He3 at densities of
0.0279 (circles) and 0.0415 A (pluses).

become asymptotic at high temperatures to a value
near unity is evidence for the gaslike nature of the
system. The density-dependent deviations from
unity are noteworthy as they are much larger than
those expected from an ideal Fermi gas. That
model yielgs specific heats which, at 4 K, are
within 0.002 and 0.008 of unity for the densities
cited above. The solid curves in Fig. 1 are fits
to the data made by Bretz and Dash. ' They used
the ideal-Fermi-gas model but accounted for the
deviation by assuming that the number of atoms in
the gas phase was less than the number of atoms
in the system. The Fermi temperatures needed to
fit the data, 3.4 and 4.8 K, are in poor agreement
with the values calculated from the measured den-
sity and bare mass, 1.39 and 2.11 K. As the tem-
perature is lowered, the specific heat continues
to fall until about 0.2 K at which temperature a
"shoulder" appears as shown' in Fig. 2. This fea-
ture is very similar to one appearing in bulk He'

which has been attributed to an ordering of the
nuclear spins. '

The specific-heat data from He4 samples are
quite different from the above as can be seen from
Fig. 3 which shows the signal' from He' systems

of densities 0.0273 and 0.0399 A '. At high tem-
peratures the data, become asymptotic to a value
near unity indicating a gaslike phase. However
there again occurs a significant density-dependent
deviation from unity. By comparing the 0.0273 A '
signal of Fig. 3 with that of the 0.02V9A ' He sig-
nal in Fig. 1, it is seen that for the same density,
the He' signal shows a greater deviation from uni-
ty. As the temperature is lowered, the He~ data
rise. %e note that the curves cross one another at
2.2 K. Finally, they rea, ch a maximum and begin
to fall. This signal has been variously interpreted
as indicating the presence of long-range inhomoge-
neities in the graphite" or a. liquid-gas transition. "
It is natural to enquire whether any of the features
of the heat-capacity signals can be attributed to the
band structure induced by the periodic substrate
potential. This structure has been calculated by
Hagen, Milford, and Novaco. " They find that for
energies within VO K of the bottom of the lowest
band, the band structure is little changed from that
of a free particle. The small changes which do
occur consist of the introduction of narrow band
gaps and the splitting of degeneracies. Assuming
that the He atoms interact only with the substrate,
Hagen etal. calculate the specific heat of the sys-
tem. Because the effects of the periodic potential
on the bands is small, the heat capacity resembles
that of an ideal gas with small deviations. Of in-
terest to us is the fact that the specific heat is re-
duced by about 10% of the ideal value at 4 K, so
that the deviation from unity observed in the data
might be attributable to the band structure. The
effect of the assumption of zero interparticle in-
teraction is unknown however. Further, the spe-
cific heat of ideal bosons and spin-& fermions are
very similar (they would be identical in 2D if the
two systems had the same spin") so that the band
structure, which produces only small differences
from the ideal results, cannot account for the dif-
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FIG. 2. Low-temperature specific heats of adsorbed
He3 systems.
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2 (crossesI).



LO%'-DENSITY HE LIUM MONOLAYE RS AS TWO-DIME NSIONAL. . . 909

ferences in the experimental signals.
We are therefore led to an investigation of the

effects of the two-particle interaction in order to
explicate the significant features of the experimen-
tal specific-heat signals which, for the reader' s
convenience, we summarize below.

(i) At 4 K the specific heat of both isotopes is
significantly less than unity with greater deviations
occurring for samples of greater density. For
equal densities, the signal from He' deviates more
than that of He'.

(ii} With decreasing temperature the He' signals
rise and cross one another at about 2 K. They
reach a peak at about 1.5 K and then fall.

(iii) With decreasing temperature the He sig-
nals fall. Near 0.2 K a "shoulder" in the signal
appears.

tition function, Eq. (3.2), with b, (A, T) given by
Eq. (3.3) is the principal result of the cluster-ex-
pansion technique. The thermodynamic functions
of the system are found by eliminating the quantity
z from the parametric equations of state for the
spreading pressure

1 OO

Py = —lng(z, A, T) = g b, (A, T)z', (3.4)

with p= I/kT, and particle density

1 8
n =—z —in/(z, A, T) = Q $,(A, T)z' . (3.5)

In particular, eliminating z by expressing the pres-
sure in a power series in the density yields the so-
called virial expansion of the equation of state,

III. THEORY

A. Uirial expansion

Prp= Q B,(A, T)n',
2=1

(3.6)

0 (z, A, T) = Q Z, (A, T)z',
1=0

(3.1)

where Z, (A, T) is the canonical partition function
for I particles and z is the fugacity. If the loga-
rithm of the grand partition function is expanded
in a power series in z, called the cluster expan-
sion,

—)ng(z, A, T) = Q b, (A, T)z', (3.2)

then the coefficient b, (A, T), called the Ith cluster
integral, can be found by comparing the series ex-
pansion of exp[lug(z, A, T}]with Eq. (3.1). The pro-
cedure is straightforward and the result is

2

b, (A, T}=—Q (-1)' '(6 —1)! II Z, &(A, T)/m, !,
fna) j=1

(3.3)

where 5-=Q', ,m& and the summation is over all
sets of positive integers m~ including zero such
that Q),~q = I.

The expansion of the logarithm of the grand par-

The problem of the interacting classical gas with
pair interactions was first put into tractable form
by means of a cluster-expansion technique devel-
oped by Ursell and Mayer. " Their method was sub-
sequently generalized by Kahn and Uhlenbeck" who
introduced a cluster-expansion formulism, valid
for classical or quantum-mechanical systems with
a general interaction potential. Another method
was later developed by Kilpatrick. " His procedure
is described as follows.

The definition of the grand partition function is

where B,(A, T} is called the Ith virial coefficient.
The first virial coefficient is identically unity. If
the density, given by Eq. (3.5), is substituted into
the virial expansion and the resulting expression
compared with Eq. (3.4), then the virial coefficient
can be found by solving in succession the system
of equations

(3.7)

The virial coefficients are given in terms of the
partition functions by eliminating the cluster inte-
grals in the above expression, using Eq. (3.3).

In the thermodynamic limit, the area and num-
ber of particles of the system become infinite
while the density N/A remains finite. As this is
the case of interest, the virial coefficient is rede-
fined by

B,(T) =lim B,(A, T),

and is assumed to exist in the limit.
It follows from the expansion of the pressure,

Eq. (3.6), together with the fact that in the limit
of zero density all thermodynamic functions must
reduce to their noninteracting classical values
(denoted below by the subscript zero), that for the
interacting system, the Helmholtz free energy is

pE/Jv =pFO/N+ g I 'B„,(T)n'.
/=1

The other thermodynamic functions can be found
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from this result. Qf particular interest to us is
the specific heat at constant area:

C ~C 1 n'

Nh Nh dP" ~ '" l
'

1=1
(3.8)

E, =Np '[ln[ne(. '/(2s+ 1)]-1]r C, =Ah, (3.9)

where X = (2''p/M)' ' is the thermal wavelength,
and s is the spin of the particle.

The lth virial coefficient, being related to the
l-parti. cle partition function„requires the solution
of the l-body problem. For most problems there-
fore, expansions of the thermodynamic quantities
are truncated after the second virial coefficient. "
In particular, the specific heat becomes

d*B,(T)
dP() (3.10)

where Eq. (3.9) has been used. The range of tem-
perature and density for which this expression is
adequate must be investigated.

8. Second virial coefficient

The presence of the substrate greatly complicates
the calculation of the virial coefficients. In order
to make our problem tractable we shall henceforth
ignore the periodic potential due to the substrate.
The substrate potential appears only implicitly in
that we treat the adsorbed helium as a 2D system.

With the above assumptions

')d&(l) (r„), (3.12)

where the (l)„(r„)are any complete orthonormal set
of wave functions. For bosons (fermions) the sum-
mation is only over those states which are totally
symmetric (antisymmetric) under exchange of par-
ticle coordinates, including spin. As the spin de-
pendence of our problem is trivial, we consider
first spinless particles and insert the appropriate
spin factors at the end of the development. As the
single-particle partition function Z, (A, T) is simply
A/X', the second virial coefficient for spinless
particles is, from Eqs. (3.11}and (3.12),

(3.10), one obtains

Cyree - ( =ey j V( ) e- "~ ~r dr

We observe that, in the classical approximation,
the deviation of the specific heat from unity is al-
ways positive. However, it was noted that the ob-
served deviations of the specific heat of the helium
monolayers are negative. As the classical approx-
imation can not explain these deviations or the He'
specific heat, it is necessary to turn to the quan-
tum-mechanical expression for the second virial
coeff icient.

The quantum-mechanical partition function for
X identical particles is

Z (d, d)=) dr, dr Q d, (r„)

The second virial coefficient, henceforth denoted
B(P), can, from Eqs. (3.3) and (3.V), be written in
the form

B(p}= —lim A[Z2(A, p) —g Z~(A, p)]/Z~(A) p) . (3.11)

For purposes of orientation, it should be noted
that, from the expansion of the virial equation of
state [Eq. (3.6)]

py/n = 1+nB+ ~ ~ ~ .
J3 is expected to be positive for repulsive poten-
tials thereby causing an increase in the pressure
over its ideal-gas value, and negative for attrac-
tive potentials, causing a decrease in the pressure.

For potentials which only depend on the magni-
tude of the relative separation bebveen particles,
and the potentials with which we are concerned are
of this kind, the following classical expression is
easily obtained from Eq. (3.10):

rr (d) = I J () - e- e""leer dr
0

Substituting this classical approximation into Eq.

d) (d) = ) —' IJ ( ( -dr' P ()„*(r„r)„RA

ee e"d, (r„r,)}dr,d

For convenience, the wave functions g are taken
to be eigenfunctions of the two-body Hamiltonian
with eigenvalues E . As usual, g can be factored
into a center-of-mass wave function multiplied by
the relative wave function. Upon carrying out the
sum over all center-of-mass momenta, the ex-
pression for B(P) becomes

rr(d)= )' — ) —ee' P ld(r)I'e e*")dr,
A~~ 2

(3.13)

where g„and E„are the relative eigenfunctions and
eigenvalues. In the absence of any two-body po-
tential, the virial coefficient is given by its ideal
value B'(P}, where

rr'ld)= r' -' (( e"Q I d(')I"--:)dr
A~ oo

(3.14)
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Using properly symmetrized plane waves, one can
easily evaluate this expression and obtain

R,(r) -cos[kr —ww —2mw+6 (k)], (3.19)

(3.15)

where the minus sign is for bosons and reflects the
statistical attraction which decreases the pressure
from its classical ideal value. Similarly the posi-
tive sign for fermions is due to the statistical re-
pulsion.

By subtracting Eqs. (3.13) and (3.14) and using
the fact that the relative wave functions are nor-
malized, the second virial coefficient can be writ-
ten

(P) Ro(P) li 2~ P (
-s 2-e s "). (3.16)

A~~

Because of the cylindrical symmetry of the poten-
tial the relative quantum numbers can be taken to
be the usual azimuthal quantum number m and a
radial quantum number k which is related to the
relative energy according to

E, =g'k'/2l(, ,

where p, is the reduced mass. The resulting sums
over the azimuthal quantum number contain only
even values of m (0, +2, +4, . . . ) for bosons and odd
values of m (+1, s3, . . . ) for fermions. Equation
(3.16) is further simplified by writing the sum over
any bound states of the potential explicitly and re-
placing the sum over the quasicontinuum of states
by an integration weighted with a density of states.
The resulting expression is

R(P) =&'(P) —»' g e "'
00 I

—2z' Q [g (k)-g'(k)]e s 'I udk

(3.17)

where the subscript 8 stands for bound states and
prime on the sum denotes a restriction to even or
odd values of m.

The difference in density of states is usually re-
lated to the scattering phase shifts by the follow-
ing argument. " The relative wave function ()) „(r}
can be factored into a product of a trivial azimuth-
al part and nontrivial radial wave functions R &(r)
which satisfies the equation

=[2p. V(r}/k']R „(r) . (3.18)

For large value of y where the potential is assumed
negligible,

The change in j'p, 4k, with a change in n, ~n=1, is
easily obtained from the above as is g'(k) which is
the limit of 4n/hk as R becomes infinite and bk
vanishes. Qne obtains

g'. (k) =R/w.

The same argument applied to the interacting sys-
tem yields

and

kR ——,'w- wmw+6„(k) = (n+ -'. )w

(„) ((R ()„a
)

so that

g (k) -g'(k) =-,
1 s5 (k)

which is the quantity which appears in Eq. (3.1V).
The above expression is substituted into Eq. (3.17)
and a partial jntegration is carried out. Using the
fact" that the number of bound states with azimuth-
al quantum number m is equal to 6„(0)/w, we ob-
tain the final expression for the second virial co-
efficient of a spinless 9ose or Fermi system:

I

a(P)=+-, X'-2X' g (e-~e —1)

(3.20)

The origin of the first, ideal, term has already
been discussed, Since E~ is negative, the contri-
bution of the second term, which reflects the pos-
sibility of forming bound pairs, is negative. Thus,
this possibility causes a decrease in the pressure
as expected. That the last term, which contains
all other effects of the interaction, has the correct
sign is seen when it is recalled that the phase
shifts of repulsive potentials are negative and those
of attractive potentials are positive. Thus this
term is positive for repulsive potentials and nega-
tive for attractive potentials as expected.

The virial coefficient for a system of spin s can

which defines the phase shift 6„(k) of the mth par-
tial wave. If the system is placed within a cylinder
of radius g, the vanishing of the wave function at
the boundary requires, for the noninteracting sys-
tem, that

1 1cos(kR —~ w —&mw) =0,

so that the allowed values of 4 are given by

1 1 1
kR —a w —umw=(n+ s)w, n =0, 1, 2, . . .
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now be related to those for spinless Bose and Fer-
mi systems. There are (2s+ 1}'spin states of
which a fraction (s+ 1)/(2s+ 1) are symmetric and

s/(2s+1) are antisymmetric. For a fermion sys-
tem, the symmetric spin states must be multiplied
by antisymmetric spatial states which enter into
the spinless-fermion virial coefficient Bp(P}. Sim-
ilarly the antisymmetric spin states multiply sym-
metric spatial states which enter into the spinless-
boson virial coefficient Bs(P} T.hus

vanishes otherwise] because any realistic helium
interaction will contain a strong short-range re-
pulsion. The effects of this repulsion can more
easily be separated from the effects of an addition-
al weak attraction by examining a simple case
which consists solely of repulsion.

The solution of the radial equation, Eg. (3.18},
for r greater than a is

A, (r) =C (k)[Z„(kp)cos5 (k)

—Y' (kr) sino (k)],

In particular, for spin-~ fermions

&p"~"(P)= '&p(P-)+ '&s(P)-.

A similar argument for bosons yields

(3.21)

where 5 (k) is the phase shift defined previously
by Eq. (3.19), and 8 (kp), Y (kp) are the cylindric-
al Bessel functions of order m of the first and sec-
ond kind, respectively. The condition that the rela-
tive wave function vanishes at P equal to a, de-
termines the phase-shift modulo v according to

tan5 (q} d (q)/Y„(q), (4.1)

Lastly we state without proof that the second virial
coefficient of a binary mixture of components C
and D having second virial coefficients Bc ', BI, ' '

and densities n~, nD, respectively, is"

) (~n)
' „) (n,n, (~)'

where

8 Pl@ + fED

and B~~ can be put in the form

In this expression Es and 5 (k) are the bound states
and phase shifts of the two-particle (one C, one D)
problem, the sum is over all values of m and

a'„=2mb'P/2p. ,

il=McMa/(kfc+Mn}

It is easily shown that B~~ is simply the second
virial coefficient of a system of distinguishable
particles of mass 2p. .

In Sec. IV we calculate the phase shifts, second
virial coefficient, and the contribution to the spe-
cific heat from two interactions of interest to us:
the hard-core and Lennard-Jones 6-12 potentials.

IV. APPLICATION OF THEORY

A. Hard-core interaction

We choose to study first the infinitely repulsive
hard core p-otential [V(r) is infinite for p & a and

where q =- jza.
Since 5 (0) is equal to the number of bound states

with azimuthal quantum number m and the hard-
core potential has no bound states, we know that
5 (0) vanishes. The absolute value of the phase
shift at any other value of q can then be obtained
by requiring that 5 (q) be a continuous function of

These phase shifts are used to calculate the sec-
ond virial coefficient according to Eg. (3.20). The
third term in that equation was evaluated numer-
ically. For a given value of 0, the phase-shift
sum included all even or odd values of m whose ab-
solute value was less than some integer v which
was determined by the condition

5, (q) & 10 ' rad .

The integral over k was evaluated numerically with
the upper limit replaced by a large value of A de-
termined as follows. The error made in truncating
the integral depends on the asymptotic form of the
phase-shift sum for Large jp. This form is found
by noting that

d d6 (q) 1—tan5 (q)=,
)

«-(q) [Y.'(q) +d'.(q)]
Y.'(q)

using Eq. (4.1). However, differentiating this equa-
tion directly yields

d 2—tan6 (q) =—,
( ).

Therefore

d5(q} 2 g 1

dq vq „„Z'(q)+Y'(q) '
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TABLE I. Second virial coefficients for two-dimen-
sional hard-core fermions.

TABLE II. Second virial coefficients for two-dimen-
sional hard-core bosons.

0.500 00
1.000 00
1.500 00
2.000 00
2.500 00
3.000 00
3.500 00
4.000 00
4.500 00
5.000 00
5.500 00
6.000 00
6.500 00
7.000 00
V.500 00
8.000 00
S.500 00
9.000 00
9.500 00

10.000 00
10,500 00
11.000 00
11.500 QO

12.000 00
12,500 00
13.000 00
13.500 00
14.000 00
14.500 00
15.000 00
15.500 00
16.000 00
16.500 00
17.000 00
17.500 00
18.000 00
18.500 00
19.000 00
19.50Q OQ

20.000 00
20.500 00
21.000 00
21.500 00
22, 000 00
22.500 00
23.000 00
23.500 00
24.000 00
24.500 00
25.000 00
25.500 00
26.000 00
26.500 00
27.000 00
27.500 00
28.000 00
28.500 00
29.000 00
29.500 00
30.000 00

4.75613
3.400 62
2.869 19
2 ~ 571 54
2.376 60
2.236 99
2.13100
2.047 19
1.978 87
1.921 84
1.873 36
1.831 51
1.794 92
1.762 59
1.733 77
1.707 87
1.684 43
1.663 10
1.643 58
1.625 63
1.609 05
1.593 68
1.579 3S
1.566 04
1.553 54
1.541 82
1.530 79
1.520 38
1.510 55
1.501 23
1.492 40
1.4S4 00
1.476 01
1.468 39
1.461 11
1.454 15
1.447 49
1.441 11
1.434 99
1,429 10
1.423 45
1.418 00
1.412 76
1.407 70
1.402 82
1.398 11
1.393 55
1.389 15
1.384 88
1.380 75
1.376 74
1.372 86
1.36909
1.365 43
1.361 87
1.358 42
1.355 05
1.351 78
1.348 59
1.345 49

P dP

2.510 97
1.503 55
1.13739
0,938 99
0.811 67
0.721 83
0.654 45
0.601 70
0.559 06
0.523 75
0.493 93
0.468 33
0.446 08
0.426 52
0.409 15
0.393 61
0.379 61
0.366 91
0,355 32
0.344 70
0.334 92
0.325 88
0.31749
0„30968
0.302 38
0.295 55
0.289 14
0.283 10
0.277 41
0.272 03
0.266 93
0.262 09
0.257 50
0.253 12
0,248 95
0.244 97
0.241 16
0.237 52
0.234 03
0.230 68
0.227 46
0.224 37
0.221 40
0.218 54
0.215 78
0.213 12
0.210 55
0.208 07
0.205 67
0.203 35
0.201 11
0.198 94
0.19684
0.194 80
0.192 83
0.190 93
0.18908
0.187 29
0.185 56
0.183 SS

2d8+
p2

-0.549 23
-0.445 24
-0.370 22
-0.320 60
-0.286 01
-0.260 45
—0.240 65
-0.224 75
-0.211 63
-0.200 55
-0.19105
-0.182 VS

-0.17549
-0.16901
-0.163 19
-0.157 94
-0.153 16
-0,148 79
-0,144 78
-0.141 07
-0.137 63
-0.13443
-0.13145
-0.128 65
-0.126 03
-0.123 56
-0.12123
-0.11902
-0.11694
-0.11495
-0„11307
-0.11127
-0.10956
-0.107 93
-0.10636
-0.104 87
-0.10343
-0.102 06
-0.100 73
-0.09946
-0.098 25
-Q.097 07
-0.095 95
-0.094 87
-0.093 84
-0.092 85
-0.091 90
-0.091 01
-0.090 16
-0.089 36
-0.088 62
-0.087 93
-0.087 30
-0,086 74
-0.086 24
-0.085 82
-0.085 48
-0.085 23
-0.085 06
-O.QS5 00

0.500 00
1.000 00
1.500 00
2.000 00
2.500 00
3.000 00
3.500 00
4.000 00
4.500 00
5.000 00
5.500 00
6.000 00
6.500 00
7.000 00
7.500 00
8.000 00
8.500 00
9.000 00
9.500 OQ

10.00Q 00
10.500 00
11.000 00
11.500 00
12.000 00
12.500 00
13.000 OD

13.500 00
14.000 00
14.500 00
15.00Q 00
15.500 00
16.000 00
16.500 00
17.000 00
17,500 00
18.000 00
18.500 00
19.000 00
19.500 00
20.000 00
20.500 00
21.000 00
21.500 00
22.000 00
22.500 00
23.000 00
23.500 00
24.000 00
24.500 00
25.000 00
25,500 00
26.000 00
26.500 00
27.000 QO

27.500 00
28.000 00
28.500 00
29.000 00
29.500 00
30.000 00

4.723 74
3.399 16
2.869 15
2.571 59
2.376 64
2.237 01
2.131Q2

2.047 21
1.978 88
1.921 85
1.873 37
1.831 52
1.794 93
1.762 60
1.733 77
1.707 87
1.684 44
1.663 10
1.643 58
1.625 63
1.609 05
1.593 68
1.57938
1.566 04
1.553 55
1.541 82
1.530 79
1.520 38
1.510 55
1,501 24
1.492 40
1.484 00
1.476 01
1.468 39
1.461 11
1.454 15
1.447 49
1.441 11
1.434 99
1.429 10
1.423 45
1.418 00
1 442 76
1.407 70
1.402 82
1.398 11
1.393 55
1.389 15
1.384 88
1.380 75
1.376 74
1.372 86
1.369 09
1.365 43
1.361 S7
1.358 42
1.355 05
1.351 78
1.348 59
1.345 49

dB+
dP

2.39531
1.495 12
1.136 59
0.938 98
0.811 73
0.721 89
0.654 49
0,601 73
0.559 09
0.523 77
0.493 94
0.468 35
0.446 10
0.426 53
0.409 16
0.393 62
0.379 62
0.366 91
0.355 32
0.344 70
0.334 92
0.325 88
0.31749
0.309 68
0.302 39
0.295 56
0.289 14
0.283 10
0.277 41
0.272 03
0.266 93
0.262 09
0.257 50
0.253 12
0.248 95
0.244 97
0.241 16
0.237 52
0.234 03
0,230 68
0.227 47
0.224 38
0„22140
0.218 54
0.215 78
0.213 12
0.210 55
0.208 07
0.205 67
0.2D3 35
Q.2Ql 11
0.198 94
0.196 84
0.194 80
0.192 83
0.190 93
0.189 08
0.187 29
0.185 56
0.1S389

, d'a*
P'

F2
-0.784 22
-0.476 84
-0.375 34
-0.321 44
-Q.286 11
-0.260 43
-0,240 61
-0.224 72
-0.211 60
-0.200 53
-0.19103
-0,182 76
-0.17548
-0.16900
-0.163 18
-0.157 93
-0.153 15
-0.148 79
-0.144 77
-0.141 06
-0.137 63
-0.13443
-0.13144
-0.128 65
-0.126 02
-0.123 55
-0.12122
-0.11902
-0.11693
-0.11495
-0.11307
-0.11127
-0.10956
-0.107 93
-0.10636
-0.104 87
-0.103 43
-0.102 05
-0.100 73
-0.09946
-0.098 24
-0.097 07
-0.095 95
-0.094 87
-0.093 84
—0.092 85
-0.091 90
-0.091 01
-0.090 16
-0.089 36
-0.088 62
-0.087 93
-0.087 31
-0.086 74
-0.086 25
-Q.DS5 83
-0.085 49
-0.085 24
-0.085 08
-0.085 01
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The asymptotic form of this sum for large q is"
(9nq)'. If this result is substituted into the above
and the resulting equation is integrated, one finds

lim g 5 (q)= —4''.
m=- ~

The limit of the sum over even or odd values is
just 2 of this. %'hen this asymptotic dependence is
used in Eq. (3.20), it is seen that the error made
in the dimensionless quantity B(P)/a', upon trun-
cating the integral at a value k, —=q,/a is of order

l

eaf
xe 'dx=e ~~~ (q', /P'+1),

e, /&+

where T = kTMo'/—I' andM is the particle mass.
A cut off of q, =20 was used for T up to 30. From
the above, the error in B(P)/a' is of the order of
2x10 '. It is convenient to measure B(P) in units
of its classical value, which, from Eq. (3.11) is
simply 2''. We therefore define

B~=- 2B/wa' .

A tabulation of B versus T appears in Tables I
and II. These values are in good agreement with
those calculated by Steele and Derderian. " The
results are shown graphically in Fig. 4. There
are at least two interesting features. First, the
virial coefficient is substantially larger than its
classical value even out to 7 of 80. Second, the
effects of statistics is negligible for T"greater
than about one. The reason for this is well under-
stood and has been investigated in detail by Boyd,
Larsen, and Kilpatrick. " The essence of the argu-
ment is that exchange effects are only important

5

when the particles are within a thermal wavelength
of one another. This is impossible when the ther-
mal wavelengths are smaller than the hard-core
diameter and this condition occurs for T"greater
than or on the order of unity. It will be seen later
that this suppression of exchange effects by the
potential will be important in the interpretation of
our results for the susceptibility of He'.

The contribution of the second virial coefficient
to the specific heat,

d'B C/Nk —1

dt's' nwa'

was obtained by performing the differentiations
with respect to P on Eq. (3.20) and evaluating the
resulting expression numerically. The results for
this quantity, as well as those for P dB~//dP which
enters the virial expansion of the entropy, are
presented in Tables I and II. Figure 5 shows the
quantity -ff'd'B /dP' vs T . From this figure it
can be seen that the specific heats for both bosons
and fermions are essentially identical above T~of
unity and that C/Nk is greater than unity. With de-
creasing temperature, the specific heats increase.
Ultimately the specific heat of the quantum-me-
chanical system must fall to zero but this decrease
is not contained in the second virial coefficient.
It can be stated from the above results, however,
that at low densities, the specific heat of hard-
core boson or fermion systems will have a rounded
peak. This behavior is similar to the experimen-
tal signals from He' films and gives a clue as to
its origin. However the analysis of the hard-core
systems sheds no light on the negative deviation
of the heat capacity at high temperatures or the
great difference between the He' and He' signals.

l.o 1

4-

0.9 i-

0.8—

0.7 'g

0.6
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I 04

FERMION

0.3

0.2

0. (

iO 20 0 I

)0 20 30
T 4k

FEG. 4. Second virial coefficients for 2D hard-core
systems.

FIG, 5. Deviation of the specific heat from unity per
unit density for a hard-core system.
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We can only hope that a more realistic potential
will elucidate these features and therefore turn to
the Lennard- Jones potential.

B. Lennard- Jones 6-12 potential

The Lennard-Jones 6-12 potential defined by

V(r) =4s[(ojr)"—(ojr)']
is very often used to represent the interaction be-
tween two inert atoms. Approximation methods
have been employed to calculate the second virial
coefficient of a 2D system interacting with such a
potential, "but we believed that these methods
yield inaccurate results in the temperature range
of primary interest to us. ' We have therefore
applied the procedure outlined in the Sec. IV A to
the above potential.

The solution of the radia, l SchrMinger equation
containing the Lennard-Jones potential are not
common tabulated functions and must therefore be
calculated numerically. The Schrodinger equation
was integrated using the Numerov process ' for
given values of q = Ao and m. By starting the inte-
gration well within the repulsive part of the poten-
tial, the solution becomes independent of the pre-
cise starting values. The integration is carried
out to a cut off x, and the phase shift is determined
modulo m from the usual matching condition which

gives

qR .(x,)J (qx, ) —J (qx,)R, ,(x,)
qR, (x,)y' (qx, ) —y (qx,)R',(x,) '

i4.3)

where x—=r/o and the prime denotes a derivative
with respect to the argument. Once the number of
bound states is known, the absolute value of the
phase shift can be found as outlined in the discus-
sion of the hard-core problem. It was desired that
the cut off be chosen so that the contribution to the
phase shift of that part of the potentia, l beyond the
cut off was less than 10 ' rad. It can be shown"
that this requires that, for a given q,

x.& 10(p'/5q}'~',

p =—gal E0/I''
For sufficiently large values of Iml, the phase
shifts approach those given by the Born approxima-
tion

xP'q" I'(1 l)r(lm l
—5)

2" 1'(6}r(lml+6)

wp'q' r(5)r(lml -2)
r'(2) r(lm I+ 2} '

The pha, se-shift sums were obtained by summing
the results from the numerical routine until the
Born approximation was accurate to within 10 '
rad. The Born phase shifts were then summed un-
til the contribution from the largest lml was less
than 10 ' rad. The error in the phase-shift sum,
for a particular value of q, due to all effects, is
estimated to be less than 4x 10 ' rad. The phase-
shift sums were calculated for values of q from
0.1 to 20.0 in steps of 0.1. The integral appearing
in Eq. (3.20} for the second virial coefficient was
computed using a cut off in the range of integration
of q, =20. To determine the error caused by this
truncation the asymptotic form of the phase shift
sum for large q must be obtained. This was done
by comparing the quantum-mechanical expression
for the second virial coefficient of a gas of distin-
guishable particles, given by E(l. (3.22}, with the
classical expression which, for the Lennard-Jones
6-12 potential, is

The comparison shows that

lim g 5 (q) = —a vP')'q' '.
It follows that the error in the second virial co-
efficient owing to a cut off q, is approximately

4 v*(444)' ' ) *' ' '4*

where

y = 4pcq', /p' .

With the de Boer-Michels parameters for heli-
um of o = 2.556 A, e/k = 10.22 K the values of p'
for He', He' and the He4-He' problem are 22.05,
16.61, and 18.95, respectively. With these values
of p' the average value of the error in the second
virial eoeffieient due to a cut off q, of 20 is negli-
gible (-10 ' A') for helium at 60 K, the maximum
temperature which we considered.

The bound states of the Lennard-Jones potential
are found by equating the logarithmic derivatives
of the inside and outside radial solution at some
cut off x, . This yields the following equation which
determines the characteristic values of q and the
bound-state energies Es = —4eq /p',

which for the Lennard-Jones potential are given by

R. .(x.} qx.'(qx. }R,(x,} A (qx, } '
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where g is the modified Bessel function of the
second kind of order m. The radial cut off was
chosen such that the first-order perturbation cor-
rection to any energy level due to the potential be-
yond the cut off was less than 10 'e. The radial

wave functions and the first derivatives were cal-
culated from the Numerov process.

For the two-particle He~, He', and He'-He' prob-
lems, we find one bound state with m=0. The en-
ergies of this state are

TABLE III. Second virial coefficients for two-dimen-
sional He3.

TABI.E IV. Second virial coefficients for two-dimen-
sional He4.

2dB
dP

dB
p2

dP

0.100 00
0.200 00
0.400 00
0.600 00
O. 800 00
1.000 00
1.200 00
1.400 00
1.600 00
1.800 00
2.000 00
2.200 00
2.400 QO

2.600 00
2.800 00
3.000 00
3.200 00
3.400 00
3.600 00
3.800 00
4.000 00
4.200 00
4.400 00
4.600 00
4.800 00
5.000 00
6.000 00
7.000 00
8.000 00
9.000 00

10.000 00
11.000 00
12.000 00
14.000 00
16.000 00
18.000 00
20.000 00
22.000 00
24.000 00
26.000 00
28.000 00
30.000 00
32.000 00
34.000 00
36.000 00
38.00Q 00
40.000 00
45.000 00
50.000 00
55.000 00
60,000 00

24.981 87
-9.735 68

-18.954 12
-17.714 66
-15,290 34
-12.959 03
-10.930 06
-9.202 25
-7.732 54
-6.475 45
-5.391 92
-4.450 36
-3.625 66
-2.897 91
-2.251 29
-1.673 09
-1.153 07
-0.682 90
-0.255 74

0.134 08
0.491 26
0.819 77
1.122 95
1.403 63
1.664 27
1.906 93
2.906 57
3.650 71
4.226 30
4.684 55
5.057 70
5.367 09
5.627 43
6.040 09
6.350 93
6.591 98
6.783 14
6.937 42
7.063 70
7.168 27
7.255 64
7.329 23
7.391 59
7.444 70
7.490 12
7.529 09
7.562 58
7.627 35
7.671 82
7.701 89
7.721 44

76 633 95
28.11249
1.424 83

-6.724 39
-9.797 18

-10.938 62
-11.234 76
-11.135 90
-10.850 05
-10.480 00
-10.078 64
-S.673 63
-9.279 32
-8.90$ 85
-8.547 33
-8.213 62
-7.901 43
-7.609 78
-7.337 40
-7.082 89
-6.844 85
-6.621 94
-6.412 88
-6.216 52
-6.031 77
-5.857 65
-5.11861
-4.543 90
-4.OS2 60
-3.702 82
-3.383 70
-3.11106
-2.874 91
-2.484 96
-2.174 87
-1.921 36
-1.709 59
-1.529 63
-1.374 49
-1.239 17
-1.11995
-1.014 00
-0.91914
-0.833 65
-0.756 15
-0.685 54
-0.620 91
-0.480 80
-0.364 82
-0.267 05
-0.18337

14.288 03
23.752 79
24.883 58
20.998 54
17.137 17
13.995 43
11.538 33
9.626 62
8,13182
6.953 07
6.014 44
5.259 30
4.645 39
4.141 05
3.722 40
3.371 28
3.073 82
2.81936
2.599 60
2.40S 08
2.239 73
2.090 55
1.957 33
1.837 52
1.729 05
1.630 26
1.241 19
0.963 78
0.751 98
0.5S3 08
0.444 41
0.328 11
0.229 00
0.068 74

-0.055 40
-0.154 49
-0.235 43
-0.302 78
-0.359 69
-0.408 38
-0.450 49
-0.487 24
-0.51959
-0.548 25
-0.573 81
-0.596 73
-0.617 38
-0.660 98
-0.695 84
-0.724 53
-0.74926

0.100 00
0.20000
0.400 00
Q. 60Q 00
0.800 00
1.000 00
1.200 00
1.400 00
1.600 00
1.800 00
2.000 00
2.200 00
2.400 00
2.600 00
2.800 00
3.000 OQ

3.200 00
3.400 00
3.600 00
3.800 00
4.000 00
4.200 00
4.400 00
4.60000
4.800 00
5.000 00
6.000 00
7.000 00
8.000 00
9.000 00

10.000 00
11.000 00
12.000 00
14.000 00
16.000 00
18.000 00
20.000 00
22.000 00
24.000 00
26.000 QO

28.000 00
30.000 00
32.000 00
34,000 00
36.000 00
38.000 00
40.000 00
45.000 00
50.000 00
55.000 00
60.000 00

-1134.809 84
-401.728 09
-150.066 39
-86.435 71
-5S.17163
-44.349 07
-35.081 15
-28.728 71
-24.0S5 82
-20.529 89
-17.708 96
-15.409 48
-13.494 40
-11.871 61
-10.476 81
-9.263 65
-8.197 82
-7.253 30
-6.410 00
-5.652 13
-4.967 06
-4.344 61
-3.776 41
-3.255 58
-2.776 34
-2.333 86
-0.547 58

0.745 46
1.724 94
2„49226
3.10917
3.6154S
4.038 04
4.701 85
5.197 69
5.58042
5.883 36
6.127 98
6.328 71
6.495 63
6.635 97
6.755 06
6.856 93
6.944 64
7.020 60
7.086 70
7.144 48
7.260 01
7.344 54
7.406 94
7.453 00

-1761.561 88
-584.425 58
-207.857 80
-115.388 14
-76.984 87
-57.030 24
-45.200 74
-37.524 06
-32.19523
-28.297 11
-25.323 87
-22.978 15
-21.075 78
-19.4SV 64
-18.163 73
-17,018 54
-16.022 42
-15,14631
-14.368 46
-13.672 22
-13.044 60
-12.475 37
-11.956 27
-11.4SO 60
-11.042 85
-10.63S 43
-8.999 96
-7.802 67
-6.884 92
-6.15647
-5.562 65
-5,068 24
-4.649 50
-3.977 03
-3.458 97
-3.046 32
-2.709 06
-2.427 71
-2.18908
-1.983 87
-1.805 32
-1.648 43
-1.509 37
-1.385 18
-1,273 55
-1.172 61
-1

~ 080 84
-0.883 99
-0.722 93
-0.587 91
-0.471 84

-1195.242 76
-307.123 40
-97.017 88
-49.767 72
-28.983 53
-17.61925
-10.822 29
-6.569 85
-3.840 03
-2.060 59
-0.891 07
-0.120 77

0.384 37
0.71146
0.918 01
1.042 50
1.11096
1.141 16
1.145 29
1.13182
1.106 60
1.073 71
1.036 01
0.995 49
0.953 52
0.91107
0.708 22
0.534 87
0.390 VS

0.270 46
0.168 79
0.081 83
0.006 62

-0.11696
-0.214 28
-0.292 91
-0.357 75
-0,412 12
-0.458 35
-0.498 11
-0.532 65
-0.562 92
-0.589 64
-0.61340
-0.634 66
-0.653 83
-0.671 25
-0.709 32
-0.743 97
-0.781 75
-0.830 48



LOW-DENSITY HE LIUM MONOLAYERS AS TWO-DIME NSIONAL. . .

Es/k = —4.63x10 ' K (He'),

=-2.36x10 2 K (He4),

= -1.46x10 ' K (He'-He') .

The bound states for He' and He' have been calcula-
ted by Bagchi" who finds -1.ax 19-' K for He~ and
-2.5Vx10 ' K for He~. In the calculation of the
second virial coefficient, we employed the binding
energies calculated by us.

Our results for the second virial coefficients are
presented in Tables III-V. Those for the He' and
He4 are shown in Fig. 6 together with the classical
result. The general features of all three results
are as expected. At high temperatures, the virial
coefficient is positive due to the effect of the hard
core. As the temperature is lowered, the attrac-
tive part of the potential has a greater effect and
causes B to become negative. By calculating B
for a hypothetical spinless boson of the mass of
He', we have determined that above 3 K the dif-
ference in the He' and He' virial coefficients shown
in Fig. 6 is due to the difference in mass. The ef-
fects of spin and statistics, given in the quantity

Bs(M~} -Bp~ ~ i(M~) = ~[Be(M~) -B~(M~)],

are significant only below this temperature. The
relevance of this statement to the magnetic suscep-
tibility of He' will be explored later.

Our results for the quantity of interest in the
specific heat

d'B C/Xn-i
d n

are given in Tables III and IV and shown in Fig. V.
We immediately see several points of qualitative
agreement with the experimental data. First, at
4 K the predicted specific heat is less than unity.
Second, for equal densities the specific heat of
He' is predicted to deviate more from unity than
that of He~. Third, and most important, the He
specific heat increases with decreasing tempera-
ture crossing unity at 2.2 K, while the He' specific
heat decreases with temperature. It is of interest
to investigate the origins of this behavior.

We begin by noting that Eg. (3.20} indicates that
the low-temperature behavior of I3 is dominated
by those phase shifts which are significant at small
k. In general, these are the phase shifts with
small values of )m~. Thus the boson virial coeffi-
cient which depends only on even values of m is
dominated by 5, at low temperatures. This phase
shift is dominated by the hard-core interaction
since there is no angular momentum. It is not
surprising then that the He' signal increases with
decreasing temperature as this was precisely the
behavior found in the hard-core interaction. The

TABLE V. The quantity 834 needed for the second
viria1 coefficients for two-dimensiona1 He3-He mixture.

0.100 00
0.200 00
0.40Q 00
0.600 00
0.800 00
1.000 00
1.200 00
1.400 00
1.600 00
1.800 00
2.000 00
2.200 00
2.400 00
2.600 00
2.800 00
3.000 00
3.200 00
3.400 00
3.6QO 00
3.800 00
4.000 00
4.200 00
4.400 00
4.600 00
4.SQQ 00
5.000 00
6.000 00
7.000 00
8.000 00
9.000 00

10.000 00
11.000 00
12.000 00
14.000 00
16.000 00
18,000 00
20.000 00
22.000 00
24.000 00
26.000 00
28.000 00
30.000 00
32.000 00
34.000 00
36.000 00
38.000 QO

40.000 00
45.000 OQ

50.000 00
55.000 00
60.000 00

-245.747 79
-123.618 01
-64.986 74
-44.293 82
-33.265 11
-26.285 78
-21.422 94
-17.817 64
-15.025 62
-12.792 42
—10.961 10
-9.429 26
—8.127 08
-7.005 17
-6.027 57
-5.16746
-4.404 34

3~ 722 32
-3.108 84
-2.553 85
-2.049 20
—1.588 21
-1.165 35
-0.776 01
-0.416 28
-Q, 082 87

1.275 71
2.272 19
3.034 61
3.636 60
4.123 62
4.525 36
4.862 02
5,393 34
5.792 01
6.100 57
6.345 17
6.542 75
6.704 81
6.83939
6.952 31
7.047 88
7.12935
7.19922
7.25945
7.31160
7.356 89
7.446 37
7.51040
7.556 29
7.588 91

-257.244 32
-116.821 97
-60.31021
-42.941 40
-34.1Q8 10
-28.616 86
-24.819 76
-22.013 54
-19.842 23
-18.104 55
-16.677 44
—15.481 11
—14.461 41
-13.580 18
-12.S09 75
-12.12948
-11.523 67
-10.980 13
-10.489 26
-10.043 37
-9.636 25
-9.262 79
-8.918 76
—8.600 65
-8.305 46
-8.030 69
-6.S97 03
-6.047 19
-5.382 72
-4.846 6S
—4.403 70
-4.030 53
-3 ~ 71121
-3.19180
-2.785 74
-2.458 38
-2.1SS10
-l.960 67
-1.76630
-1.598 05
-1.450 80
-1.320 72
-1.204 SB
-1.100 99
-1.007 24
-0.922 15
-0.844 56
-0.677 33
-0.539 85
-0.424 55
-0,326 09

-56.056 06
-5.721 29

7,838 80
8.073 80
7.11723
6.214 23
5.481 39
4.891 76
4.409 71
4.008 10
3,667 71
3.374 95
3.120 01
2.895 65
2.696 43
2.51S 13
2.357 47
2.211 83
2 ~ 07910
1.957 57
1.845 80
1.742 61
1.647 02
1.558 17
1,475 35
1.397 94
1.075 55
0.831 13
0.638 81
0,483 19
0.354 47
0,246 13
0.153 60
0.003 75

-0.112 47
-0.205 29
-0.281 14
-0.344 2 7
-0.397 62
-0.443 27
-0.482 75
-Q. 517 22
-0.547 55
-0.574 42
-0.598 38
-0.61987
-0.63924
-0.680 28
-0.713 66
-0.742 79
-0.771 40

interesting question then is why the He' specific
heat falls. Clearly it must be due to the attractive
part of the interaction as we have seen that the
hard core also causes the fermions specific heat
to rise.
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FIG. 6. Second virial coefficients for 2D systems of
Hee and He4.

At low temperatures, the most important contri-
butions to the He' virial coefficient w'ill come from
0, which is weighted by a factor of —,

' and reflects
the hard core, and 5, and 5, which give identical
contributions and which are each weighted by a fac-
tor of —,'. The phase shift 5, is dominated by colli-
sion which occur with an average impact parameter
b which is approximately

h K/QS,

where v is an average velocity. With gv'-AT we
find b - X. The thermal wavelength of He' is 10/WT
in angstroms so that at 4 K, A, is 5 A. Since the
minimum of the I ennard-Jones potential occurs at

2.87 A, these collisions are dominated by the at-
tractive part of this interaction which strengthens
our suspicion that it is the attraction which causes
the specific heat to fall. To verify this, we have
calculated the contribution to the He virial coeffi-
cient from 5„5» up to 5„. These contributions
are shown in Fig. 8. It is to be noted that the curve
labeled 5~ is the contribution from both 5y and 5

and similarly for higher m values. It is seen that
the 5, contribution by itself would cause the specif-
ic heat to rise but that the major contribution
comes from 5, which reflects the attraction. We
conclude therefore that the He' specific heat rises
with decreasing temperature while the He' specific
heat falls due to the fact that the difference in sta-
tistics causes the different isotopes to see different
parts of the interaction; the He signal is domina-
ted by the hard core while the He' signal is dom-
inated by the attraction.

The dominance of the attractive part of the inter-
action cannot be maintained indefinitely with de-
creasing temperature. As noted earlier, collisions
characterized by [m ~ equal to unity have an average
impact parameter of order A, . As the temperature
decreases, A. increases and the impact parameter
greatly exceeds the range of the attraction. Thus
the contribution of 5, must fall and that of 5, must
dominate at sufficiently low temperature. From
Fig. & it can be seen that this occurs at a tempera-
ture of about 0.3 K. This leads us to suspect that
this occurrence may be responsible for the shoul-
der observed in the low-temperature He' specific
heats.

5 1 l I I
(
T~

CLASS l CAL4—

4+ l— - l2
g) Ol

a m
ce

I

-20

-50 '

lo
T fK)

l5

FIG. 7. Deviation of the specific heat from unity per
unit density for 2D He3 and He systems.

2 3 4 5
T (K)

FIG. 8. C ontribution from different angular-momen-
tum states to the He specific-heat deviation per unit
density.
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FIG. 12. Observed specific heat deviation per unit
density plotted versus density.

If the data in the form of the left-hand side are
plotted versus density at a given temperature, a

region below.
A similar plot of data from He' samples at three

different densities is shown in Fig. 11. This figure
shows that the truncated virial expansion of the
specific heat is completely adequate at these densi-
ties down to 2 K. The agreement with the calcula-
ted results is good.

We next examine the low-temperature He' heat
capacity. We note that if the contributions to C
from the third virial coefficient are included that,
from Eq. (3.8),

d'a 1 d'a,
(c/Nk —1)/n = —p' ——np

d 2 d

straight line will result provided that this descrip-
tion is adequate. Such a plot is shown for the He'
data in Fig. 12. It can be seen that a virial de-
scription which includes contributions from the
third virial coefficient is completely satisfactory
at these densities down to 0.3 K. We note in pass-
ing that the value of P' d'B, /dP' obtained from the
slope of the straight line in Fig. 12 is -400 A at
0.4 K, which is far from the value of this quantity
for an ideal Fermi gas. That value obtained from
a,'=+~ ~4, is+996 A'.

Figure 13 shows the low-temperature He' data
plotted as in Fig. 11 together with the calculated
contribution from the second virial coefficient.
From the fact that the data do not lie on a universal
curve, it is clear that higher virial coefficients
are contributing. We know from Fig. 12 that at
0.2 K at least the contribution from the third and
fourth virial coefficients can not be ignored. It
might be argued, therefore, that the shoulder in-
dicates a collective effect, such as liquefaction,
taking place in the He'. That this shoulder also
occurs in the bulk liquid mitigates this point of
view. W'e believe that the fact that the shoulder
appears at just the temperature at which the con-
tribution from the second virial coefficient is ris-
ing indicates that the signal is due to the effect of
the hard core in precisely the same way in which
the rise of the He' signal can be attributed to it.
Thus, the shoulder in the He' signal and the rise
in the He4 signal have precisely the same origin.
They occur at different temperatures due to the
difference in statistics.

VI. LIQUEFACTION
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PIC. 13. Comparison of calculated and observed spe-
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FIG. 14. Second virial coefficient of 20 systems of
He and He plotted versus inverse temperature.
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due to the interactions mithout a phase transition
occurring. We have also argued that the rise in the
He4 specific heat with decreasing temperature is
also due to the two-body interaction. We nom ad-
dress ourselves to the question of whether the low-
temperature fall of the He' specific heat is due to
higher virial coefficients as in the hard-disc sys-
tems or to liquefaction in the He4 as has been sug-
gested by Novaco. " There are several ways to
examine this question.

The method we choose is to fit the calculated sec-
ond virial coefficient to the form af a van der
Waals second virial. coefficient

The values of a and b so obtained may be substitu-
ted into the expression for the eritieal temperature
and density of a van der Waal gas

T, = 8a/275, n, = 1/3b .

Such a procedure for the bulk system" yields
f', = T.2 K, n, = 0.0215 cm'/mole for He' compared
to the experimental, values of 5.2 K and 0.0169 em'
/mole. The predictions for He' are 5.'l K, 0.0215
cm'/mole compared to the experimental values of
3.3 K and 0.0139 cm'/mole.

Our calculated values of B for He4 and He' plot-
ted vs p are shown in Fig. 14. It is clear that the
2D He' virial coefficient does not have the van der
Waal form. On the other hand, the He4 virial co-
efficient can be remarkably well fit by a straight
line from 1 to 10 K in spite of the fact that there
are two points of inflection shown by arrows in the
figure. The resulting prediction for T, and n, are
1.93 K and 0.0437 A '. If these results are adjus-
ted downwards by the ratio of the observed bulk

properties to the predicted bulk properties of He',
me obtain a T, of 1.4 K and n, of 0.034 A '. A

glance at Fig. 9 shows that the He' peaks in sam-
ples of density near n, do occur very near 1.4 K.
We therefore believe that a liquid-gas transition
occurs in the He4 system.

VII. SUMMARY

The study of the second virial coefficient has pro-
vided many clues to the interpretation of the spe-
cific-heat measurements from adsorbed helium
films and it is perhaps wise at this point to sum-
marize our interpretation of these signals.

In the He' system at 4 K the fact that the specific
heat is appreciably less than unity is due simply
to the interactions within the system. Effects of
spin and statistics are unimportant but the remain-
ing quantum effects are still appreciable as the
classical signal is always greater than unity. As
the temperature is lowered, the effect of spin and

statistics is to cause the signal to be dominated by
those collisions which are most strongly affected
by the attractive part of the interaction. As a re-
sult the signal falls. As the temperature continues
to fall, the effect of these attractive interactions
becomes progressively weaker until, at 0.3 K, the
collision in the m equal to zero state, affected by
the hard core, begin to dominate the signal. This
causes the signal to rise, producing a shoulder.
Although it can be argued that the subsequent fall of
the signal to zero is due to a cooperative transition,
we feel there is little compelling evidence for this at
this time and attribute the fall to higher-order terms
in the virial series as in the hard-disc gas. The
striking agreement of the experimental data with
our results which pasit a featureless passive sub-
strate indicates that the substrate potential has
little effect an the specific heat. It also indicates
that the substrate is either very uniform or that
inhomogeneities have little effect on the signal in
the density range studied.

In the He4 system the signal at 4 K is again less
than unity for the same reasons as in the He' case.
As the temperature is lowered, the effect of sta-
tistics is to cause the signal to be dominated by
collisions mith m equal to zero which are affected
by the hard core. As a result, the signal rises.
As the temperature is lowered still further to about
1 K, a gas-liquid phase boundary is encountered
and the system undergoes a phase separation.
This is precisely the behavior expected in experi-
ments on low-density bulk helium vapor. On en-
countering the phase boundary„one expects to see
in general a discontinuity in the specific-heat sig-
nal instead of the rounded peak observed. The
rounding of the peak has been attributed by Novaeo"
to inhomogeneities. It could also be due to a lack
of equilibrium in the sample. This is easily under-
stood when it is recalled that there is na external
force mhich tends to separate the 2D liquid from
the vapor. Consequently, equilibrium may take a
very long time to achieve. " Below the transition,
the signal is simply that from a tmo-phase 2D liq-
uid-gas system. The agreement between the data
and our calculated results, while not as striking as
in the He' case, is still quite good. Whether the
differences are due to the use of the Lennard-
Jones potential instead of a more accurate model
potential or reflect contributions from the sub-
strate is a question we shall examine in a subse-
quent note.

VIII. MAGNETIC SUSCEPTIBILITY

We conclude this paper with an additional piece of
information that can be gleaned from the second
virial coefficients, the zero-field magnetic suscep-
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tibility per particle of 2D He' films. It is shown
in the Appendix that this quantity has the virial ex-
pansion

where g, is the Curie susceptibility, and B~, B~
are the second virial coefficients of spinless bo-
sons or fermions of He' mass. The above expres-
sion indicates that in a density and temperature
region in which higher virial coefficient can be
ignored

A fruitful approach for the liquid would then appear
to be to expand the susceptibility about the Curie
value in a power series in which the effect of sta-
tistics is the small parameter. Such an approach
has recently been taken by Sykes" with encourag-
ing results.
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so that the data plotted as on the left should fall on
a common function of temperature. Qur results
for this function are shown in Fig. 15 together with
its ideal-quantum-gas limit of -~A~. It is imme-

diatelyy

seen that the deviations from the Curie sus-
ceptibility are predicted to be much less than those
occurring in the ideal gas. This behavior is pre-
cisely what is observed in the bulk vapor" and in
He' trapped in surface states. " The reason for
this behavior can be seen from the following argu-
ment.

If the He' atoms were distinguishable (Boltzman)
particles then the scattering in any angular-mo-
mentum state could occur with any relative spin
orientation. Thus the spins would be completely
unaffected by the spin-independent interaction and
the susceptibility would be that of independent
spins yo. It is denly through the requirement of sta-
tistics that scattering in an even m state be singlet
and that in an odd m state be triplet that the inter-
action affects the susceptibility. This is the rea-
son that Eq. (8.1) depends on the difference between
the spinless-boson and -fermion coefficients. For
the effects of statistics to be important, the par-
ticles must be within a certain length, which is on
the order of a thermal wavelength, of one another.
Above a temperature for which this length is smal-
ler than the hard-core diameter, the statistics can
play no role and the susceptibility must take the
Curie value. At this same temperature the differ-
ence in the He' and He' virial coefficients is due
solely to their mass difference. As noted earlier
and seen from Fig. 15, this temperature is approx-
imately 3 K.

In summary, the hard-core repulsions tend to
decrease the effects of statistics. The ideal-gas
model overemphasizes the role of statistics and
thus gives a larger deviation from the Curie value.
The above argument is probably also applicable to
bulk liquid He' in the temperature region for which
it is not a Landau Fermi liquid, It is well known
that in this range the susceptibility is much nearer
the Curie value than an ideal-gas model predicts.

APPENDIX

%'e outline below the derivation of the virial ex-
pansion for the zero-field magnetic susceptibility
of a spin- ~ fermion system. An alternative deriv-
ation can be found in Ref. 29.

Letlr, be the spin-independent part of the two-
particle Hamiltonian and define the thermodynamic
potential Q(A, P,B) according to

5AA T - g(8 - PN-Nx)

where X is a magnetic field and M is the magneti-
zation of the N-particle system

M=y +of,

with y an uninteresting constant. The |'th cluster
integral for this system will be denoted c~ and is

-s)

T {K)

FIG. 15. Predicted deviation of the 20 He3 zero-field
magnetic susceptibility from the Curie value per unit
den8ig.
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defined by the expansion

@a(P, z, A, X)= gz'cf (W, P, X).

n=P I, 'z',
)=1

(Al}

It follows that the density, magnetization per unit
area, and susceptibility per unit area have the fol-
lowing cluster expansions:

c, (X) = c,(X}= 2Z, /A,

which is independent of statistics, and

c, (X) A '[Z (z' & + I+z ' " '}

+ Ze —2Z', cosh'PyXJ.

The appropriate derivatives can now be taken and

substituted into Eq. (AS). In the limit of vanishing
magnetic field, one finds the following simple re-
lationships between c,(0), czar(0), and the first or
second cluster integrals of spinless-boson or -fer-
mion systems b„b, , b2~:

82CE
x~=8 ' g z' s~ (A2)

c,(0) =2O, ,

c, (0) =SO, +O~,

Upon solving Eq. (Al) for z in terms of n and
substituting in Eq. (A2) one obtains

g2~E ~E g g2~E 2 83~I"
2 Q 2 1 3

I XA ~F SXz +s (cr)2 ~F SXz z SX2 +0(@ }

(A2)

In a manner completely analogous to that dis-
cussed in Sec. III, the cluster integrals c, and c,
may be expressed in terms of the one- and two-
particle partition functions of spin-~ fermions.
Because of the form of the HamiltonianH, -MX,
these partition functions are products of spatial
and spin factors. The spatial factors are simply

Z„Z, , or Z, , the one or two particle partition
functions of spinless bosons or fermions. Qne
finds

s'ci(0)

s'c.'(o)
ggpOzex'

Lastly we use the fact that the second virial coeffi-
cient of spinless-boson system can be expressed in
terms of the cluster integrals as discussed in Sec.
III and has the form B = —O /Oz2', . Similarly, for
a spinless-fermion system, B~ = —O~/O', . From
Eq. (A3) one then obtains, for the zero-field mag-
netic susceptibility per particle y=y„/n, the re-
sult

X=X.[I -' (II. -II,) o(")J,
where y, is the Curie susceptibility I3y~.
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