PHYSICAL REVIEW A

VOLUME 9, NUMBER 2

FEBRUARY 1974

Simple molecular theory of the smectic C, B, and H phases

R. J. Meyer
Department of Physics, University of Illinois, Urbana, Illinois 61801

W. L. McMillan
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
(Received 6 August 1973)

The molecular theory of the smectic A and C phases is extended to the smectic B and H phases
by including a soft-core repulsive interaction in addition to the dipole-dipole interaction used previously.
The possibility of translational order (a two-dimensional hexagonal lattice in each smectic plane) is
included in addition to the orientational order of the molecular dipoles. Four phases are found: (1) a
disordered phase (smectic 4), (2) an oriented phase with no translational order (smectic C), (3) a
translationally ordered phase with no orientational order (smectic B), and (4) a phase with translational
and orientational order (smectic H). In the oriented phases (smectic C and H) the director is tilted
with respect to the plane normal. The smectic-4 -smectic-C phase transition and the

smectic- B —smectic-H phase transition are second order; the other transitions are first order. The
temperature dependence of the order parameters, the entropy, and the specific heat are computed.

I. INTRODUCTION

The least ordered of the liquid-crystal phases is
the nematic, in which the centers of mass are
randomly placed, but the long-axes line up paral-
lel to a preferred axis in space. Maier and Saupe’
introduced a molecular model for the interactions
between anisotropic molecules and solved this
model in the mean or self-consistent-field approx-
imation. This model accounts qualitatively for a
number of properties of the nematic phase which
are inexplicable on the textbook picture; for
example, the temperature dependence of the aniso-
tropic dielectric constant and the dielectric re-
laxation.

The nature of the molecular order in the smec-
tic A phase has been clear for some time. In this
phase the long molecular axes lie parallel to an
axis in space, the director, and the molecular
centers lie on equidistant planes perpendicular to
this axis in space. Given the nature of this order
Kobayashi® and McMillan® have been able to formu-
late microscopic theories of the order. In addi-
tion, there is also a Landau theory.*®

In the smectic C phase, the director is tilted
with respect to the smectic plane normal, and
deGennes® has proposed a Landau theory using the
tilt angle as the order parameter. McMillan’ has
formulated a microscopic theory using the molec-
ular dipole-dipole interaction and permitting
orientational order of the dipoles. The oriented
phase is tilted and has the physical properties of
the smectic C phase. This orientational order has
not yet been confirmed experimentally.

In 1935, Herrmann® observed sharp lines in the

9

x-ray powder pattern of a liquid-crystal phase and
identified a hexagonal phase. Recent single-
crystal x-ray work have confirmed a two-dimen-
sional hexagonal lattice in each smectic plane for
the smectic B and H phases, with the director
parallel to the plane normal in the smectic B
phase and tilted in the smectic H.°"'°

In this paper, we present a microscopic theory
which will include the smectic B and H phases, in
addition to the well-understood A and C phases.

We adopt a model in which the smectic A order
is well established, the molecules are parallel
and sit on planes. The intermolecular potential
is taken to be due to (a) dipole-dipole interactions
due to permanent dipole moments attached to the
molecules and (b) due to a soft-core repulsion
between the molecules. We will find that, subject
to certain assumptions, we can estimate the order
of magnitude of this soft-core repulsion. We
examine the phase transitions within the self-con-
sistent-field approximation, neglecting the inter-
planar interactions and treating only two-dimen-
sional motions of the molecules in one smectic
plane. We ignore the question of whether the hexa-
gonal lattices of successive planes are in register.
To handle this question, it will be necessary to
take interplanar interactions into account, as well
as motion of molecular centers away from smectic
planes.

The two-dimensional model exhibits three
ordered phases in addition to one disordered phase.
The transitions vary in order and the phases have
different physical properties.

a. Smectic A phase. The phase is characterized
by the alignment of the long axis of the molecules
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along an axis in space and by the ordering of the
molecular centers onto planes perpendicular to

this axis. Hence this material is optically uniaxial.

The molecules are free to move, unordered, in a
smectic plane as a two-dimensional liquid [ see
Fig. 1(b)].

b. Smectic C phase. When the molecular struc-
ture is dominated by two outboard oppositely
directed dipoles, the first ordered phase occurs.
The outboard dipoles on one side of the smectic
plane are oriented parallel [ see Fig. 2(c)]. The
long molecular axis tilts over in the direction of
polarization with the tilt angle proportional to
(T, - T)V2. The smectic C phase is optically biaxial,
but the optical properties are continuous through
the phase transition.

(a) o

FIG. 1. (a) Molecular model: a cylindrical shape with
length L and width D, and two electric dipoles of magni-
tude u at a distance 1d from the center. (b) Molecular
order in the smectic A phase. Molecules are free to
rotate around the long axis. (c) Molecular order in the
smectic C phase with dipoles aligned. (d) The compound
terephthal-bis-butyl aniline (TBBA) exhibits a smectic
A, C, and H phases. The all-trans-structure is shown.
The actual conformations in the liquid-crystal phases
are unknown. (e) The hexagonal aligned structure of the
smectic H phase. In the smectic B phase the dipoles are
unaligned.

¢. Smectic B phase. This phase is characterized
by a two-dimensional hexagonal order in the smec-
tic plane. The dipole moments are randomly
oriented, so the material is optically uniaxial.

The molecules are not titled with respect to the
normal to the plane.

d. Smectic H phase. This phase is characterized
by both two-dimensional hexagonal order and align-
ment of the dipole moments [see Figs. 1(c) and
1(e)]. Hence the material is optically biaxial. The
director will be tilted with respect to the plane
normal.

The plan of this paper is as follows. In Sec. II,
we will define the model and present the self-con-
sistent equations for the order parameters of the
different phases. We will give the energy, entropy,
and free energy in terms of the order parameters.
We will also derive the temperature of the second-
order smectic-B-smectic-H phase transition in
terms of the parameters of the model. In Sec. III,
we discuss the method of numerical solution of the
coupled equations for the order parameters and
present the results of these calculations. In Sec.

(a)
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FIG. 2. Two different models for the two-particle cor-
relation function S(») and the model for the repulsive
intermolecular potential 7' (7).



9 SIMPLE MOLECULAR THEORY OF THE SMECTIC C, B, AND... 901

IV, comparisons will be made with experimental
results and subject to certain assumptions; we can
infer the magnitude of the repulsive soft-core
potential for one organic molecule, terephthal -bis-
butylaniline (TBBA). In Sec. V, we will summarize
and discuss the shortcomings of the model.

II. THEORETICAL MODEL

We consider one smectic plane in a perfectly
ordered smectic A phase of a liquid crystal (call
it the xy plane). In this plane, as is shown in Fig.
1(b), the long rodlike molecules are aligned and
have their centers on the plane.

Now consider the model of an organic liquid-
crystal-forming molecule proposed by McMillan’
in his theory of the smectic C phase. The mole-
cule is supposed to be as is shown in Fig. 1(a), a
long rod with oppositely oriented dipoles titled at
an angle 6 on opposite sides of the molecular
center. This suggests that we assume the following
for the form of the two-body interaction between
molecules in the plane:

- 3(TL-F V0.
U12=( H13F‘-2 _ (B I‘,_g)(ﬁ‘-z I‘;z)) S(rp) + T o). 1)
72 72

If the spacing between dipoles on one molecule d

is somewhat larger than the intermolecular spac-
ing a, we may neglect interactions between dipoles
on different levels.

The first term in the above potential represents
a dipole-dipole interaction, where S(r,,) is the
two-particle correlation function. We have con-
sidered two forms for S(r), as shown in Fig. 2.

In Fig. 2(a), we have model 1

0, v <D
-S(—-y)= 1, ry>D+A
n2
nD* -1
1+ —
2rAD Dsr=D+a

where 7, is the particle density in the plane. The
function S(r) is chosen to satisfy

o

f [S(r) =n,)2mrdr=-1. (2)
0
In Fig. 2(b), we have model 2, S(r)=S'(r)+Ad(r-D),
where
{ 0, <D
§'(r)= \'nz, rzD
and A = (7D?~1)/27D is chosen to satisfy Eq. (2).
The second term in Eq. (1) is a soft-core re-
pulsive potential shown in Fig. 2(c). The magni-
tude of this repulsive potential, V,, will be shown
to be of fundamental importance in the theory.

It would have been more realistic to have chosen
a hard-core repulsive potential with perhaps a van
der Waals attractive term. However, such a po-
tential cannot be treated within the framework of
the self-consistent-field method and would require
more complex mathematical techniques. We re-
gard the soft-core potential as an effective poten-
tial which is to be used in conjunction with the
self-consistent-field approximation.

Throughout these calculations we have chosen
the diameter D of the molecules and the inter-
particle distance a to be related by a=D +€, where
€ «<a and € is positive.

We now wish to solve the model within the self-
consistent-field approximation. To do this, we
first assume that each molecule moves in an
average potential, V,. The one-particle distribu-
tion function is then f, = e "1*". We then recal-
culate the averaged potential V, which one mole-
cule feels due to all the other molecules; this
potential is averaged over the positions and orien-
tations of the other molecules. Thus, V,
=Ja’x,dg,U,,f,. The self-consistency require-
ment that V, =V, gives the equations for the order
parameters. This is the same methodology that
was used in the previous molecular theories of
liquid crystals.

In order to include the possibility of translational

o =099
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FIG. 3. The function S, for model 2 with D=0.99a.
This gives Sy/Sx=23.1.
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and orientational order and to achieve self-con-
sistency, we choose V, to be of the following form:

V, = +3T ya(cosK, X, + cosK,* X, + cosK,*X,)
- (K2Sy)B cos@,— 3(1*Sk)y cosy,

X (cosK, "X, + cosK,* X, + cosK,*X,). (3)
The physical significance of K, and K, are shown
in Fig. 1(e). Thus, K;=K,~-K,. The magnitude
of K,, K,, and K, are given by |K;| =2r/a. The
quantities S; and T, (see Figs. 3 and 4, respec-
tively) are related to the zeroth- and first-order

terms in the Fourier expansion of the potential
U

12+

Sg=2m [«» drd (Gr)S(r)/r?, (4a)

Nfdzxzd‘quxz T, 0 (X;, ¢5)
fdzxzd‘nozf(iz » P2)

Vl(x1;y1$ (pl)=

|

Te=2m fwdrrJo(Gr)T(r). (4b)
(]

Throughout this calculation, we ignore all higher
Fourier components of the potential.

With the one-particle potential given by Eq. (3),
the one-particle distribution function is then

Alx, 00, (pl)-—'exp[_vl(xl!yl) (Pl)/kT]' (5)

The average of a function A of x, y, and ¢ is
defined by

(A(x, , @)}, = [@x[3do Alx, 3, 0)f (%, 3, ¢) | ©)
Jax[2def(x, 5, ¢)

Using Eq. (6) and the two-body potential (1), we
recalculate the one-body potential

=N[(-12S,)( cos®,)s cos@, +(— L3Sg)cose (cosK, %, +cosK," X, +cosK,"X,)

X (cos @,(cosK,* X, +cosK, X, + cosK,;* X,))s + Tx(cosK, X, + cosK*X, + cosK, X))

x(cosK, X, + cosK,* X, + cosK,;*X,)].

Self-consistency of (7) and (3) requires
@ =3(cosK, X +cosK , X + cosK, X)y, (8a)
B=(cos @), (8b)
y = $(cos@(cosK, X + cosK,' X + cosK,*X));. (8c)

This set of three coupled equations [Eqgs. (8)]
must be solved self-consistently for the three
order parameters «, 3, and 7.

The orientational order parameter is 8; when 8
is finite, the dipoles are aligned parallel to an
axis lying in the smectic plane. There is no net
dipole moment, but it follows from previous
arguments that the liquid crystal is biaxial and
tilted. With 8 =0, the liquid crystal is uniaxial,
untilted, and there is no orientational order.

The translational order parameter is . When
a is finite, the molecules sit on a two-dimensional
hexagonal lattice in each smectic plane. #Nhen «
=0, the molecules move as a two-dimensional
liquid.

The order parameter y describes the coupling
between the translational and orientational order
and is finite only when both @ and B are finite.

The entropy S of a system of molecules with
partition function @ is given by

(7

14+ VO = 0.1 kTAC
L D
2-099

._2._
-4+
1 1
0] 0.5 1.0
Ka/2m

FIG. 4. The function Ty for D=0.99e, V;=0.1k2T,.
The units of Ty are [energy xcm?].
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TS=-kT InQ - kT oT

From this, we easily find

- TS==RTInQ +N (= 9T 40 + u2S,8% + u25,9v?).
(9)

The interval energy is just give by

)

T, i
from which we find
Us==3N(u?S,8% + 128,972 = T x9a?). (10)

The free energy is then F=U -TS. Equations
(8) for the order parameters can be found simply
by minimizing the free energy F with respect to
the order parameters. In order to determine
which of the phases is stable at a given tempera-
ture, we must examine the free energy of the
system.

Finally, the specific heat is given by

as |
Cy= T';ﬁ* (11)

OF THE SMECTIC C, B, AND... 903

Now we have all the equations which we need to
calculate the physical properties of the model.

McMillan” has solved the model for the tempera-
ture of the second-order smectic-A- smectic-C
phase transition. In terms of our variables, we
find

T ho= i3S,/ 2kp. (12)

In the rest of this paper, we will often use the
reduced temperature t=T/T ,.

Now we will solve for the reduced temperature
of the second-order smectic-B-smectic-H phase
transition. First, define the variables

uo=—3Ty0a/Tky,
u,=p>S,8/Tky,
Uy = 3}LZSK7//TI?B.

Expanding the exponentials in Eqs. (8a)-(8c) and
keeping first-order terms in %, and u, gives

tu =u, +u,f(u,), (13a)
Btu,=u, f(u,) +u,g(u,), (13b)

where

d?x(cosK ;* X + cosK,* X + cosK,* X)exp[u,(cosK, X + cosK,* X + cosK,* X)
fluy) = 1 3 0 1 2 3 s
0

Jd?xexpluy(cosK, % +cosK, % +cosK, %) ]

_ [@*x(cosK, & +cosK , X + cosK,* X)’exp(uy(cosK, X + cosK, % + cosK, %) | ,

gluy) =

Jd?x expluy(cosK, % + cosK , % + cosK ,-X) ]

and B=S,/Sx. Solving those equations for the
limit u,, u, vanishing gives

t,,,=1+——-lf;§“ ) +_JL€:§2 ). (14)

At this point a brief discussion of the different

ES
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FIG. 5. Phase diagram of the theoretical model show-
ing transition temperature in reduced units (7/7T,) vs
—Tx=8.137 V, for B=23.1.

r

models of S(r) is necessary. As we shall see in
Sec. III, it is possible to get two different forms
for the phase diagram, depending on the sign of
B (see Figs. 5 and 6.) For example, in model 1,
if we choose D =0.75a and A =3a, where a is the
interparticle distance, we find B=-20.8. For
D=0.88a and A==, we find B=-35.0. In model
2 (see Fig. 2), with D=0.99a, we find B=+23.1.
The important factor is that in these models

| B| > 1.

III. NUMERICAL RESULTS

In this section, we will solve the self-consistent
equations [Eqs. 8(a)-8(c)] for the order parameters.
Aswesaw inSec. I, itis an easy step from there to
find the entropy, free energy, energy, and specific
heat.

In order to solve Egs. (8) we must be able to
perform the integration over x,y, and ¢. To do
this, we first expand f(x, y, ¢) in a power series
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FIG. 6. Phase diagram for B=-35, model 1 for S(»).

in @ and y. For the mth term, we have
(@ +7cos@)™(cosK ,*X + cosK, X +cosK ,; X)" =¢,, .
We expand this term in a Fourier series,
Cn=a, 1+a,(cosK, X +cosK, X + cosK,*X)
+a,(cos2K *X + cos2K, X + cosK, ¥2). (15)

In Eq. (15), we only want the a, coefficient, since
all other terms average to zero when integrated
over a smectic¢ plane.

The ¢ integrals can be done exactly in terms of

0 T =-05
— 12.07¢0
s S e 1 &
T 8 i 1 >
o .Y
= 6 i =
g 41.0 W
» 4t A |

2k =" L

of==7" 0

T ) :
N4 1.0 8] o |
2 5 S
e s g :
o % b
o
& 05
3
T
o
1
%8 0.9 1o

Reduced Temperature t

FIG. 7. Order parameters «, B, y, entropy S, and
specific heat C,, vs reduced temperature for the theo-
retical model with Ty =—0.5 showing the second-order
smectic-A —smectic-C transition and the first-order
smectic-C—smectic-H transition.
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©
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Smectic A

Order Parameter
o
o

1 4 —— —
0.85 0.90 0.95 1.00 1.05
Reduced Temperature t

FIG. 8. Order parameters, entropy, and specific heat
vs reduced temperature ¢ for T, = —0.57 showing the
first-order smectic-A~-smectic-# transition.

linear combinations of the Bessel functions /,(B)
or can be done numerically.

We keep as many terms as necessary to obtain
the desired accuracy. For 0.8 <¢<1.2, it is
necessary to keep terms up to m=20 or so, be-
cause the terms increase in size up to approxi-

Specific Heat [Ro]

A
i
|
|
i
{
]
|
i

mectic H,
Smectic B
Smectic A

Order Parameter
© o o ©O

nos O ® O
</w |=

S )

O SIS T—— e
0.9 1.0 1.1
Reduced Temperature t

FIG. 9. Order parameters, entropy, and specific heat
vs reduced temperature for T, = — 0.7 showing the first-
order smectic-4—-smectic-B transition and the second-
order smectic-B~smectic-H transition.
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mately m=10 and then decrease.

We will describe how to solve the coupled equations
[Egs. (8)] only for the case of the first-order smectic-
C -smectic-H phase transition, since this is the
most difficult. All other cases can be solved by
simplifications of this method. First, choose a
value of 3/t, then, choose trial values of a/{ and
y/t, and substitute in Eq. (8b) and determine ¢.
Equation (8a) will not be satisfied, and we must
plot a- 3<cosK x+cosK 33 +cosK3 X)s vs a/t to
find the best value of a//. We then do the same
for v/t and Eq. (8¢c). Iterate until ¢, a/t,B/!, and
v/t have reached the desired consistency. Now
we must calculate U, F, and S. This calculation
is performed at different temperatures and we
find Cy from Eq. (11). Near the transition tem-
perature, we must compare the free energy to
establish which phase is stable.

The transition temperatures as a function of
-Tx=8.137TV, are shown in the phase diagrams in
Figs. 5 and 6 for B>0 and B<0, respectively.

The smectic-A-smectic-C and smectic-B-smec-
tic- H phase transitions are second order. All
other phase transitions are first order. To illus-
trate these behaviors, we plot in Figs. 7-9 the
order parameters, entropy, and specific heat vs

t for B=+23.1. In each case, the values of T are
chosen to represent typical phase transitions
shown in Fig. 5. In Fig. 10, we plot AS as a
function of Ty for B=23.1 for the first-order phase
transitions. All these phase transitions correspond
to the two-dimensional smectic liquid freezing
into a two-dimensional hexagonal lattice. We
should point out that AS,z =0.56R is independent
of both B=S,/Sx and Ty. Ty can be related to the
height of the repulsive potential by

T ¢ = (21 V,/K)DJ,(KD). (16)

1x has the units of energy Xem?®, for the results
show in all figures in this paper 7,=-8.137V,.
See Table I

In Sec. IV, we will see we can make predictions
of the value of AS, for TBBA [see Fig. 1(d)].
the course of this, we predict the value of V, for
TBBA, and these estimates vary only over a few

TABLE I. Summarization of the description of the
phases.

Smectic A a=8=y=0 no order in plane

Smectic B B=y=0,a # translational order in plane

Smectic C a=y=0,83 #0 angular order of dipoles in
plane

Smectic H @ #0,3#0,y =0 angular and translational
order in plane

L2t
.ok
—_— —_—
& 0.8r
w
J 08F
O4r ASch ASpy AN
0.2+
|
%L_N L | S S
4 05 06 07 08
[ a2k TAC;
'K ny

FIG. 10. First-order transition entropy change vs
—Ty for B=23.1, model 2 of S().

percent as we vary B over a range of factor of 4.
We find Ty ~—0.5 or V, ~2.35kT (584 =0.1 eV.

IV. COMPARISON WITH EXPERIMENT

Although there have been extensive studies of
liquid-crystal transition entropies, we do not
have much data suitable for comparison with our
theory. This is due to the fact that the differentia-
tion between smectic B and smectic H is a com-
paratively recent one in the literature.'® We do
have some data though.

Arnold and Roediger'! have data for ethyl-ethoxy-
benzylidene amino cinnamate (EEBAC) which
shows that ASSEPAC =0.65 R,. Also, the value for
p-n-octyloxybenzylidene-p’-toluidine (OBT) has
been measured ASJET =1.0R,. This is to be com-
pared with our value, which is independent of all
parameters in the model of AS,,=0.56R,,.

For TBBA, we have AST5PA =1.4R . If we as-
sume B=23.1, then we calculate AS.,=0.88R,.

If we assume B= 100, then we calculate AS.,
=0.74R,. Unfortunately, we have been unable to
devise a way to measure S,/Sy = B experimentally.

In the cases mentioned above, we note that AS®*
is invariably less than AS”"'. This is probably
true in general. If internal motions, such as
rotations around single bonds, are frozen out of
the molecules when they go into the two-dimension-
al solid phase, then the change in entropy would be
larger than calculated. Further, if the smectic A
order were not perfect, then additional entropy
would be added to AS, 4 and AS,g. Our theory is
at constant volume with a soft-core potential. If
we used a hard-core potential, we would find a
change of volume at the smectic-A—-smectic-B
phase transition. We would also have a larger
change of order parameters and larger AS.
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V. CONCLUSIONS

We have presented a simple molecular model
and shown that, within the mean-field approxima-
tion, the model exhibits four phases; smectic A,
B, C, and H phases. The smectic B phase is de-
scribed by a translational order parameter «
=3(cosK "X +cosK, X +cosK, X);. The smectic
C phase is described by an orientational order
parameter B =(cos¢);. Inthe smectic H phase,
we have three order parameters; «,3, and ¥
= X cos¢(cosK, % +cosK, X + cosK,*%));. The self-
consistency equations for these parameters were
set up and were solved to find the temperature
dependence of @, 3, v, the entropy, and the specif-
ic heat. The experimental evidence that we have
examined indicates that the theoretical model pre-
dicts transition entropies qualitatively and so the
model is probably satisfactory for the smectic B,
C, and H phases. In the case of the smectic C
phase this reduces exactly to the theory of
McMillan.”

The assumed order in the various phases is as
follows (assuming rigid molecules):

(i) In the smectic A phase, the long-axes line up
preferentially parallel to the direction in space;
there is free rotation about the long axis; the
centers of mass sit preferentially near planes
normal to the preferred axis with an interplanar
spacing of the order of the molecular length (the
one-dimensional density wave); and the centers of
mass move randomly in the plane. If the molecules
are asymmetric and have a dipole moment, it is
assumed that the dipole moments are not aligned.

(ii) When the molecular structure is dominated
by the two oppositely directed dipoles, we have the
smectic C phase. The dipoles on one side of the

plane are oriented parallel. The long molecular
axis tilts over in the direction of polarization.
There is no translational order in the plane.

(iii) When the molecular structure is dominated
by the repulsive soft core, we have the smectic B
phase. The molecules remain free to rotate about
the long molecular axis. The two-dimensional
liquid has frozen into a two-dimensional hexagonal
crystal.

(iv) The phase with the highest order is the
smectic H phase. The dipoles on each side of the
plane orient and the molecular centers are
arranged in a two-dimensional hexagonal lattice.
The long molecular axis tilts over in the direction
of polarization.

It is worthwhile to list some of the assumptions
and approximations which we have made. (i) The
models for the two-particle-correlation function
S(r) have been crude. The actual form lies some-
where between the two models. (ii) The actual
form of the potential 7'(r) is not known, but prob-
ably contains a hard core, which cannot be handled
by these methods. (iii) We have worked within the
mean-field approximation which neglects short-
ranged order and the effects of the fluctuations of
the order parameters. (iv) We have assumed a
model of rigid molecules which means, in effect,
that we have assumed that the internal motions of
the molecules are not affected by phase transitions.
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