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Biaxial model of cholesteric liquid crystals
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A model for cholesteric liquid crystals with biaxial molecules is introduced. It is found

that the biaxial order parameter for such systems is of order (q()a) where a is a molecu-
lar length and q0=2~/p where p is the helical pitch. The generalized susceptibility is cal-
culated and is found to predict a fluctuation instability as in uniaxial cholesterics.

Molecules which condense into the various liq-
uid-crystalline states are typically composed of
a central core of two or more benzene rings lying
in a single plane with hydrocarbon tails of varying
length extending from the core in the plane of the
core. ' On a gross scale, these molecules can be
viewed as flat plates with three inequivalent direc-
tions specified by the unit vectors v', v, and v '
(Fig. 1). In other words, the molecules are
biaxial. In usual treatments of the nematic state,
one assumes that molecular rotation about the
long axis is uninhibited so that the molecules can
be treated as uniaxial and characterized by a
single unit vector v' along the long body axis. The
planar character of molecules forming the choles-
teric state is more pronounced than that of mole-
cules forming the nematic state. Furthermore, it
seems reasonable to expect that the molecular
planes will want to align perpendicular to the cho-
lesteric pitch axis (Fig. 2). In this paper, we will
investigate some properties of the cholesteric
phase formed by biaxial molecules.

In Sec. I, we introduce the tensors needed to
describe biaxial molecules and the simplest Hamil-
tonian which produces a helical state with molec-
ular planes perpendicular to the pitch axis. We
also introduce the parameters defining the bi-
axiality of the cholesteric phase. This phase bi-
axiality is to be distinguished from molecular
biaxiality. In Sec. II, we show that the usual cho-
lesteric state corresponds to a minimum of the
mean-field free energy derived from our model
Hamiltonian. In Sec. III, we calculate the phase
biaxialities within the mean field. Finally in Sec.
IV, we calculate the fluctuations about the ground
state of a biaxial cholesteric.

The principal results of this paper are as fol-
lows. (a) All cholesterics which are composed of
molecules which tend to align with their flat planes

perpendicular to the axis of rotation (we believe
this to include virtually all cholesterics) have
phase biaxialities proportional to (qg)' when co-
operative biaxial effects are unimportant, where q
is the helical wave number (2n/pitch) and a is a
molecular length. (b) Biaxia1 cholesterics exhibit
the same fluctuation instability exhibited by uni-
axial cholesterics and smectic liquid crystals. The
first result has also been obtained by Wulf' using
a phenomenological free energy. The second re-
sult corroborates work on somewhat less general
models' and is consistent with the view that no
cholesteric can support a uniform shear. '

I. TENSORS AND MICROSCOPIC INTERACTION

As discussed by de Gennes, ' properties of liq-
uid-crystal systems can be discussed in terms of
second-rank Cartesian tensors. In particular,
we consider

Q,",(r) = vP(r) v,"(r) —-', &,, , a =1, 2, 3.

The object v,"(r) is the ith Cartesian component
of a. unit vector v", parallel to the body o. axis of

FIG. 1. Schematic representation of a biaxial mole-
cule indies, ting the three orthogonal directions v~, v2,

and v~.
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the molecule at the point r. Ne define the parity
through v'= v'~ v'. lt will be convenient to have
an explicit representation for the v's in terms of
Euler angles relative to a space-fixed axis. I et
x„x„and x, be space-fixed orthogonal unit vec-
tors and let x, be along the helical pitch axis of
the cholesteric. Anticipating that v' will on the
average be parallel to x, and v ' and v ' will on the
average be in x, -x, plane, we write

r sin 6' cosy

cos&

l sln6 slny

cosy cos ecos& —siny sing

-sin6 cos$

siny cos 0 cosg+ cosy sing

cosy cos & sing+ siny cosg

-sin& sing

lsiny cos & sing —cosy cosg/

H =H„, +H„2+H, ,

The repeated index sum convention is used here
and below. This form of H is general enough to
illustrate the features of biaxial cholesterics. The
term H, is actually a pseudoscalar. This implies
that it cannot be present in systems composed of
molecules which transform into themselves under
the operation of coordinate inversion. On the
other hand it should, in general, be present in
systems composed of molecules which are either
right or left handed. All known cholesteric. s belong
to the second class. Note that H, is minimized
when adjacent molecules are rotated relative to
each other with the axis of rotation along v'(r)//
v2(r'). This is most easily seen by reexpressing
H, in terms of the v's,

The intermolecular interactions may be con-
structed from scalar combinations of the Q ten-
sors. A simple form of the orientational potential
energy of the liquid is This is minimized when r —r' is parallel to v (r),

and v'(r) is parallel or antiparallel to v'(r'), de-
pending on the sign of B. The second condition
causes a rotation of adjacent molecules and the
first puts the axis of rotation parallel to v'. The
competition between H„, and H„, which tend to keep
adjacent molecules parallel and H, produces cho-
lesteric ordering.

To analyze the biaxial model it is necessary to
calculate the thermodynamic -averages of the Q
tensors, (Q). Since there are no external fields,
every point in space in equivalent. This implies
that the principal values of the (Q) tensors are
independent of position. The orientations of the
principal axes of the (Q) tensors can be specified
by the unit vectors, called the directors, n"(r).
The vector n"(r) is parallel to the preferred orien-
tations of the body & axis at the point r. Vfe have
n' = n'x n'. In terms of the directors and their
principal values the (Q) tensors can be written

FIG. 2. Schematic representation of configuration of
two biaxial cholesteric molecules which minimizes
their potential energy. Note that the planes of the bvo
molecules are parallel and that the long axis of one is
rotated relative to the other.

(Q', ,(r)) = S(n',. n', ——,'&, ,)+-,'n. (n', n',. —n,' n,'), .

(Q', )(r)) = --,'(S —q')(n', . n,'. ——,'5„.)
+ (q ——,'a)(n2 n', —n,'. n,'), .

(Q,',.(r)) = --,'(S +q')(n', . n', --,'5, , )

+ ( rl ——,'S) (n',. n';.
' —-n,' n,').
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The dependence of n (r) on r is suppressed here
for ease of notation. The principal values of these
tensors are the indicated combinations of S, q, d,
and q'. In a space-fixed local coordinate system
with axes which coincide with the principal axes
we have

S =(-,' cos'8 ——,'&, n, =(sin'8cos2y&,

q' = &(sin'8 cos2$&,

q = (-,'(1+cos'8) cos2y cos2$&,

(6)

where y, 6), and g are the Euler angles introduced
in Eq. (2). In systems composed of uniaxial mole-
cules, only S is nonzero. If 6 or q is nonzero
the local environment is biaxial (i.e. , there are
three inequivalent directions). We will, therefore,
call b, and q the phase biaxialities to emphasize
that they are properties of a given phase and not

of molecular structure. If ~ and q are zero but

q' is nonzero, the local environment remains
uniaxial. %'e will, therefore, not refer to q' as a
biaxiality even though it can be nonzero only in
systems composed of biaxial molecules.

II. GROUND-STATE CONFIGURATION

In this section, we mill show that the helical
state with pitch axis along n, corresponds to a
minimum of the mean-field free energy, and we

will determine the equilibrium-pitch wave number

q in terms of moments of the fundamental inter-
action potentials A(r), A, (r), and B(r). To find
the spatial dependence of the equilibrium direc-
tors, we need only consider the internal energy
since spatial variations of the director do not

change the entropy in the mean-field approxima-
tion. The internal energy density at the point r
is given in the mean-field approximation by

E(r) = --,'g A(~ r' —r~ }(Q&,(r'+ r)&(Q~»(r)& ——,
' g A, (~

r' —r~)(Q', , (r'+r}&(Q', , (r)&
r'

+2 B(Ir' —rl )(r,' —r;) &(,g&Q,'g(r)&(Q,'((r'+ r)&

If we assume that spatial variations are slow on the
scale of the range of the interparticle potentials,
we can perform a gradient expansion of Eq. (7)
and arrive at a local Frank free energy' for a
biaxial cholesteric. To perform this expansion,
we express n,"(r') (a=1, 2, 2) in terms of gradients
of n,"(r),

n,"(r') =n,"(r)+(r,' —r, )V, n,"(r)+-,'(r,'-r, .)

of the potentials. A. and A, have units of energy
and B has units of energy over a length. If we
let a be the length of the long molecular axis, we

can define three constants which have units of
energy,

x(r,' r, )v, v, n, (r-). (6) , PA, (r)r',5 3g2

Continuation of the above Taylor series is un-
necessary because of the short range of A(r),
A, (r), and B(r). Application of Eq. (6) to Eg. (5)
yields a local expression for the internal-energy
density in terms of spatial derivatives of the direc-
tors with coefficients depending on the moments

Ke= 8 r t'2.
30

The internal-energy density, which results from
Eqs. (7)-(9) after a fair amount of algebra and

judicious integration by parts, is

E( r) = (const) + ,' f V, n', V n', —+f, n ' ~ V X n' + ~g V n', V, n',. (n', n,'. —n,' n,'. ) + g(n,' n', V,. n,' + n', n', .V,. n', )

+-,'h (V, n', V, n' + V, n' V, n' —2n' n' V, n' V, n') + h ( n ' V x n '+ n ' V x n ' —2n', n,' V, n') (10)

where

f, =- S2K,aa+~(s —q') K,a',

f, = 2 S(S +q')K~a,

g, = -Sn.K,a'+ (S —q')(q --,'n. )K,a',

g, =[S(q+-,'n)+ —,'q'61K a,

h, =~6 K~aa+ (q —46) K5a,

h, = zn (q + 4 n, )K~a.

n'(r) =x, cos(qr x,)+x, sin(qr x, ),

n'(r}=x„n'(r) =n'xn',
(12)

I

Here f, and f, are zeroth order, g, and g, are
first order, and h, and h, second order in the
biaxialities q and h. f„g„and h, have units of
(energy}x (length)' whereas f„g„and h, have
units of (energy) x (length).

We now verify that E(r) is a minimum for the
usual cholesteric state. That is
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—(f, +g, +h, )]

+ (second-order terms).

Vfe will consider the second-order terms in Sec.
IV. The coefficient of V, o" must be zero in equi-
librium. Hence, the equilibrium value of q is
given by

q= f.+ g2+~2
A -a+hi

or

1 [S'+ S(q'+6 +2')+-,'d(2q'+4@+a)]
2 (S+-,'a)'K, +[-,'(S —q') —(rl -4a)]'K,

corresponds to a local minimum of E(r). To do
this, we introduce three Euler angles e, p, and

y which give the orientation of the principal coordi-
nate system at the point r. In terms of these
angles, the directors are

sinp

cosp cosa

cosp sin+

cosp cosy

n = ! -siny sine —copy cosa sinp
~

~ ~

siny cos& —sin& sinp cosy

cosp siny

n' = sin& cosy —cos& sinp siny

-cos o. cosy —sinn sinP siny /

where n =a'+qr x, . Equation (12) is retrieved
if o. ' = p=y=0. We now express E(r) of Eq. (10}
in terms of the variables a', p, and y. In order
for Eq. (10) to represent a minimum of E(r), there
must be no terms linear in &', p, y or their spa-
tial derivatives. Tedious calculation yields

Q E(r) =(const)+g v, +'[q(f, -g, +h, )

a minimum, we will consider in detail the case
with A, =O. If A, =O, the coefficient g' is zero.
If A, and hence g' is nonzero and A, «A, the equa-
tions to be derived for q and ~ will be somewhat
modified but their functional dependence on qa
will not change.

In the mean-field approximation, we have

l dQ sin'8cos2@e ~f'")~'B

)( dg e- F~f ( 0 ) /k B
1'

I dQ-,'(1 +cos'8) cos'y cos2& e r~"'"' 'er

1

X dQ g F~f(~) ~DEBT

y „=-QA(r)&q'„(r)&q'„(0)

+ Q E(r)4(,~ r(&ql)(r)&q]i(o)

-e„„r,&q'„(r)&q,', (0)] .

The integration is over all orientations 0 = (y, 8, g)
as measured in the local coordinate system. The
tensors Q»(0) depend on 0 [see Eq. (1)]. Spatial
variations in (Q«(r)& are determined by q

' and
those of A and 8 by a. Since qa ~1, we can obtain
an expansion of V, in powers of qa by expanding
&Q,"&(r}& about the origin

&q.
..(;)&=&q,",(o)&+(-.~ «, ) [v, &q.

..(-.)&]„,
—,'(r «, )'[v,'&q, ,(r)&]„,+ ~ ~ . (10)

This yields

V f =V f+V, +V f,

(16}

If the phase biaxialities are zero, this reduces to

1 S(S +q')K,
2 S'K, +-', (S -r&'}'K, '

Hence, the helical state minimizes the internal
energy, Eq. (10), even if the phase biaxialities
are zero.

V', =(qa) K eU —V, &Q~, (r)& Q), (0}6 1fA'
q

1 k
—r=o

-(qs) K,~„, —V, (Q'„(r)&1yk
q

1 f l - r=O kl &

1"f= -2K.(qn)' —
2 vi&q]g(r)& Q', ((o)

— r=o

(20}

III. COMPUTATION OF BIAXIALn'KS

In this section, we will calculate the phase bi-
axialities b, and q within the mean-field approxi-
mation to lowest order in qa. To keep algebra at

The quantities in the square brackets are sec-
ond-rank tensors. They can be calculated from
Eqs. (12) and (5). For the purposes of a lowest-
order calculation of the biaxialities, the explicit
biaxialities in these expressions are set equal to
zero. This leads to
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v0, = -gg(r)g-;q„(0) kQ,', (0) —-', q'„(0)],

= -SK (qa) [-,'q'„(0) --,'Q'„(0)

+ C.(0) —9,', (0}],

V =-SK (qa) t-Q' (0)+Q' (0)].

(21}

a = (qa)' S-,'K, (sin'8&,

q = (qa)' „S—,', K,((1 +cos'8)'}. (22)

Here the averages are with respect to the uniaxial
weight e ~~~'&~. They may be approximated as

The form of Q„(0) may be found from Eqs. (1)
and (2). Note that V0, depends only on 8. Hence
the integrals over y and P are unweighted and may
be carried out directly. The results are

lational invariance along a single spatial direc-
tion. " One can also show that the absence of such
an instability would imply that the system in ques-
tion could support a uniform shear. "'" In this
section, we will investigate the fluctuations of a
biaxial cholesteric and show that one of the in-
verse director susceptibilities is proportional to
k,'+O(k~') where z is along the 2 direction. This
leads to the expected instability of the low-temper-
ature phase.

Fluctuations about the cholesteric state are
governed by the quadratic terms in the expansion
of the internal energy, Eqs. (10}and (14). Choosing

q so that the coefficient of V, Q.
' is zero, we obtain

after very tedious application of the steps out-
lined in Sec. II:

QE(r) = (const)+-,' Q X,(r) y„'(rr')X, . (r'},
r rr'

(sin'8}- (-', —-', S)',

((1+cos'8)'}-(—', +-', S)'.

When A, (r) is nonzero, V~0 becomes

V.0, = -S ~ r cos2e--.')+-,'(S- g')
r

(23)
with X, =&', X, =P, X, =y, and

2 1 1-A—2V -B—n' V C —n

(20)

xg A, ( r) sin'8 (1 + cos2$). (24)
r

q' to lowest order in qa is then
-v0 ar -1

dQ sin'8 cos2$ e ~~~~~a~ dg g- ~&

(25)
Hence q' is nonzero whenever A, ( r) is nonzero
even if q =0. In other words, q' is nanzero in a
nematic liquid crystal composed of biaxial mole-
cules. Note, however, that a nonzero q' does not
change the uniaxial symmetry of the nematic state.
There is still only one preferred direction in
space. The phase biaxialities 6 and q are zero in
the nematic state. Hence, within, the mean-field
theory for the Hamiltonian, Eq. (3), the nematic
state cannot be biaxial. %'e believe this property
to be quite general. It is in agreement with ex-
periment since to date there has been no report of
a biaxial nematic.

1 1, , 1B—n' ~ V -D —E—2V' E—V,
q

1-C —n ~ V
g

1 2G+H —V
(g

2

where

A =q'(f, -g, +h, ),

a =2q(f, - h, ),

C = -2q(g, + 2h, ),

D =q'( f, —g, —3h, ) —q(2 f, + 2g, + 3h, ),

E =q (fi +gi + h»)»

E=-q'(2g, +4h, ) -q(2g, —4h, ),

G=eq g, +4qg,

0=-4q h, .

(27)

(23)

IV, FLUCTUATIONS

Fluctuations about the cholesteric ground state
are of some interest. It is already well known
that the uniaxial cholesteric is unstable with re-
spect to fluctuations' in much the same way that
a two-dimensional Heisenberg ferromag net' or
superconductor' is unstable with respect to fluc-
tuations. This instability also exists in smectic
liquid crystals. " Landau and Peierls have argued
that such an instability is a result of broken trans-

The long-wavelength fluctuations away from the
ground state described by the variables a', p,
and y are static distortions of the ground state.
Since there is no entropy associated with static
distortions, E(r) is equivalent to the free-energy
density associated with static deformations. This
implies that the reciprocal of y, y, is just the
zero-frequency generalized susceptibility of the
system. The susceptibility is related to the equal-
time-correlation function through the equipartition
theorem:
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(X,X,.) =kzTy„,. (29)

The susceptibility is related to the eigenvalues
and the eigenfunctions &" of y

' through the
relation:

„(„,) g &((&)C",(&')
(3( ~a (3o)

Therefore, by finding the eigenvalues of g ', in-
formation is obtained about y and the equal-time-
cor relation function. This information allows us
to determine if the biaxial cholesteric has a fluc-
tuation instability as does the uniaxial cholesteric.

The quantity p
' is translationally invariant

Q X() (kl. , z ', z ) i("(z ', kl. ) = X"i ) (kl. , z). (31)

This equation can be solved by an extension of the
method used by I ubensky' to solve this equation
for the uniaxial case. We note the following sym-
metry property of y '.

with respect to translations perpendicular to x, .
It therefore may be Fourier transformed with

respect to (r' —r) —[(r' —r) x,]x, =(r' —r)~. The
Fourier transform y, &'(k~, z', z), with z along the
1 axis, can be obtained from Eq. (27) by replacing
V with ik+V, x, and ~„„with 4„.. The eigenvalue
equation for )(,,'(k„z ', z) is

(1 0 0)
0-S 0

~0 0 -1I

(1 0 0)
0 -1 0 To

(0 0 -1J
(32)

where T' is the translation operator for a half-
twist length ((/q and N is any integer. This implies
that the eigenfunctions of X,

' can be expressed as

g~(k~, z) = & "(k~, k„z)

(k ) z(2 lll00

be substituted into Eq. (31) to find X"(k„k,). The
lowest band of eigenvalues is given to order k' by

u2 k~~
x'(k k )=A~+(A+ J)—'
J= [(D —E)(G —H) +E']

~ [2 (C —H) a2+ ZEC +-,'(E —D) C2]. (34)

(k ) zi(201+1)00 z(2(0 (33)

(k ) z( (2111+1 000

The index + is now interpreted as a "band" index
and k, as a "band" momentum. Equation (32) may

Substitution of Eq. (28) into (34) gives A + 4=0.
This ensures that the susceptibility diverges as
[k'+O(k', )] '. The integral fd'kg diverges, which
means" that the biaxial cholesteric, like the
uniaxial cholesteric, has an orientational fluctua-
tion instability.
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