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The problem of superradiant emission from a small atomic system is treated under conditions in

which the effects of inhomogeneous broadening are important, as in a solid. The treatment is

semiclassical, with the assumption that all atoms see the same electromagnetic field. A set of coupled
integrodifferential equations is obtained characterizing the state of each atom of resonant frequency co at
time t. It is found that, in general, atoms of different frequencies evolve differently in time, whether or
not they start from the same initial state. The effect of the inhomogeneous broadening is generally to
delay the onset and to reduce the amplitude of the superradiant pulse. Some effects of inhomogeneous
broadening are manifest even when the inhomogeneous lifetime is much longer than the usual
superradiance time. %hen the atomic system starts in the ground state and is then exposed to a
coherent excitation pulse, superradiant effects can appear even when the inhomogeneous lifetime is very
short compared with the usual superradiance time.

I. INTRODUCTION

The theory of superradiance, or collective ra-
diation from excited atoms, has been one of the
most intensely studied subjects in recent years. '
Following the results of the recent observations
by Skribanowitz et al. ,' there is now renewed in-
terest in the possibility of observing superradiant
effects in solids also. In principle, the formal-
isms that have been developed should apply to
solids as well as to gases, except that inhomo-
geneous spectral broadening is often much more
important in solids. It is, however, a little dis-
appointing to find that very few of the published
treatments of the superradiance problem incor-
porate the effect of inhomogeneous broadening.
The treatments are therefore not applicable to
solids in general, where the reciprocal T,* of the
inhomogeneous linewidth may be of the same order
as, or much shorter than, the superradiance time
T, . The only analyses that include some of the
effects of inhomogeneous broadening appear to be
those of Eberiy' and Agarwal' (see also Ref. 21).
Eberly made the assumption that 311 atoms behave
identically, which applies in the limiting case
T,*«T„while Agarwal made similar, though
slightly less restrictive, assumptions regarding
the expectation values of certain atomic operators.
It is clear that a full solution of the superradiance
problem, that includes the effects of inhomoge-
neous broadening, must be substantially more
complicated than previous solutions, in that every
atom belonging to a different frequency generally
evolves differently in time.

In the following we present such a solution.
However, while we include the effects associated
with inhomogeneous broadening, we make sub-
stantial simplifications in the theory in other re-

spects. The treatment is semiclassical, with the
atoms described as two-1.evel quantum systems
and the field as a classical c-number field. In the
limit of a large number of atoms, the results of
this treatment generally coincide with those given
by quantum electrodynamics. Secondly, we limit
ourselves to a microscopic sample of linear di-
mensions much smaller than an optical wavelength,
in order to avoid the complications associated
with geometry and propagation delays. These ef-
fects have been discussed by Rehler and Eberly. '
Thirdly, we simplify the analysis by assuming
that all atoms interact very nearly with the same
electromagnetic field, as in the treatment of
Stroud et aI, .' The validity of this assumption has
recently been criticized, ' and there is no doubt
that the atoms near the surface of the sample ex-
perience a different field from those near the
center. Nevertheless, we believe that there is
some merit in making this simplification. In the
first place, there exist special geometries for
which the equal-field assumption is strictly valid. '
Secondly„ for more realistic geometries, we show
in the Appendix that it is still a fair approxi-
mation under some conditions, that permits the
complications associated with (nongeometric) in-
homogeneous broadening to be emphasized. Strict-
ly speaking, however, our treatment is valid only
for the special geometries for which the equal-
field assumption holds.

With the help of these assumptions we derive a
set of coupled integrodifferential equations char-
acterizing the state of each atom of resonance
frequency cu at time t. The solutions show that
different atoms evolve differently in time and that,
moreover, there is no symmetry with respect to
the midfrequency (d„even when all atoms are
equally excited initially. The effect of the inho-
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mogeneous broadening is generally to delay the
onset and reduce the amplitude of the superradiant
pulse, and such effects are manifest even when

T,* is many times longer than the superradiance
time T, . %e show that time-dependent frequency
shifts, or chirps, appear in the superradiant
pulse. They are generally associated with phase
reversal when the field is close to zero.

%e also consider the case in which all atoms
start in the ground state and are then exposed to
a coherent excitation pulse. In that case selective
excitation takes place, and we find that, with a
suitable excitation pulse, superradiant effects,
as distinct from simple dephasing or free induc-
tion decay, appear even when the inhomogeneous
lifetime T,* is much shorter than the usual super-
radiance time T, .

II. EQUATIONS OF MOTION

Ne consider a set of N distinguishable two-level
atoms interacting with a classical electromagnetic
field, characterized by the electric vector E, via
an electric dipole interaction. If Pg(f} is the dipole
moment of the fth atom, and Eg(t) is the electric
field seen by this atom, then the total energy of
interaction 8g of the whole system is taken to be

ffg(~) =- Q Pg(~) Eg(&)

In this equation Pg(f) is a Hilbert-space operator"
acting on the state vector ) g g) of the fth atom, but

E,(t) is a c number. We assume that the atom has
no permanent dipole moment, only a transition
dipole moment. %e shall work in the interaction
picture, where the operators associated with dif-
ferent atoms commute, so that the time-evolution
operator for the whole system factorizes into a
product of time-evolution operators for the in-
dividual atoms. As a result, an atomic product

state at time t = 0 remains a product state indef-
initely. If we represent the state of the 1th atom
by the Bloch vector r„ then as is now well known,
the Schrodinger equation of motion in the inter-
action picture for this atom can be expressed in

the form"

d
rldt

(2)

where Q, is a vector characterizing the interac-
tion that is given by

If&gg = —2ll g (t) ~ E, (t) cosgggg I,
SQ„=2llg(f) ~ Eg(f) sin(ugt, (3)

hg, 3=0 .
egg is the matrix element (taken to be real) of the
dipole-moment operator between the lower and
upper atomic states of the 5th atom, and Se, is
the energy difference between these states in the
absence of any interaction.

The total field Kg(f) seen by the fth atom will
have contributions from the atom's own radiation
reaction field Egi"l(f), from the field due to the
other atomic dipoles Eg~ l(t), and from any ex-
ternal field Kg~»i(t) that may be present. The
first contribution has been given by Stroud and
Jaynes, "and can be expressed in the form

Eg~"g(t) =
&
'+~ [»g(t) cos&ug t —y(t) sin&ggg t]

+ [»g (I) slngggg f +yg (f) cosgggg f]
2(dg p. g

(4)

where x, , y„z, are the Cartesian components
of the Bloch vector r„and K is a cut-off fre-
quency of order of the reciprocal of the transit
time of light across the atom EIgn~(f. ) is express-
ible in terms of the near fields of the other dipoles
in the form' 3

E~(gg)(f) ~ kP'g ' n»g kg Pg + 'LPg egg kg k Pg k [» (f) cos I y (f}sin~ t]
»

a y a a»

+ ~' ' x t since t+y t cosset t
Sc

E g
gsg(t }= ZS(t) cos[(o,t + y(t ) J . (6)

e is a unit polarization vector, uo is some ref-

where d» is the position vector from the 4th atom
to the Eth atom, and n~g is the unit vector 8»/d».
We shall suppose that the external field E, (t}
is linearly polarized, as the field from a laser
would be, and we represent it in the form

erence frequency that we take to be the most prob-
able atomic resonance frequency (i.e., the peak
frequency of the inhomogeneously broadened spec-
trum), and $(f) and g(t) are amplitude and phase
functions that vary only very slowly compared
with the optical oscillations cos u~ot. On writing

E,(t) =K, '"l(f)+E,' '(I)+E, '(t), ( I)

and making use of Eqs. (4)-(6), we can obtain 0»
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and 0» in Eqs. (3).
In carrying out the substitutions we make sev-

eral approximations. %'e discard terms like cos
(&u, + e,)t oscillating at double the optical fre-
quency, on the grounds that these average to zero
over any measurable time interval. Secondly, we

suppose that the first term in Eq. (4), representing
the reaction- or self-field, will be negligible
compared with the terms under the first summa-
tion in Eq. (5}, representing the fields contributed
by all other atoms, when the number of atoms is
large. We then obtain

a()„(t}=Q (
~' ", "' ~ "' "" "' a, ") [-x(t}cos(~,-a, )t —y(() a' n(a, —,))}» »

+ Q g [x))(t}sm(())) —Q)g)t-yg(t) cos(()))) —(d))t] —pg ' t8(t) cos[(()pg —()))0)t —$(t)]

«g) 2(t) =P, +, ())) [xa(t) sin(&u, —ru))t-p, (t}cos((d, —(d,)t]
3(i 1 n)) j) p'l (pl nial) + pl 2

des' 2c'd„

+ Q 3)~" [x,(t) cos((d, —(d,)t+y„(t) sin((o, —(o,)t] + i), , eS(t) sin[(&u, —ru, )t —y(t)],

RA„(t) =0 . (10)

1 3(gg ~ n(),)' —p, '
y= S ~kl

(P) na&} +t('& a+
2 ad +0 ave)ega ) ( 11)C» over atoms

2Ps o
3ch average

over atoms
( 12)

Now the frequency spread, even for an appreciably
inhomogeneously broadened spectrum, is generally
very much less than the peak frequency u, . We
may therefore, to a good approximation, replace
the factors ~„' and ~~' appearing under the sum-
mations in Eqs. (8) and (9) by (d0' and ~0'. We also
make the reasonable assumption that the state of
the kth atom is not appreciably correlated with the
distance d» from the Eth atom, nor with the scalar
product p. , n». We then replace the coefficients
appearing under the summations in Eqs. (8) and (9)
by their mean values over all atoms, and write

the variation for a cylindrical sample of atoms
of thickness c/())0 or X/2s, when the dipole mo-
ments point along the axis. We show that the total
variation covers a range of 2:1, although it is
smaller for most of the atoms of the sample. This
contributes an additional inhomogeneous linewidth
of order 1/T„which is certainly not negligible
in general, although it is negligible if T, «T, .
However, we shall be content to ignore these vari-
ations in the following treatment of the super-
radiance problem, in order to emphasize the ef-
fects of the nongeometric inhomogenous spectral
broadening. Their inclusion would complicate
the problem by another order of magnitude, for
the desired solutions would become functions of
three variables (time, detuning, and position).
We may imagine, therefore, that the atoms are so
arranged that they see very nearly the same field. '

We now pass to the continuum limit, in which
the sums over atoms are replaced by integrals.
For this purpose we introduce the inhomogeneous
atomic spectral distribution function g((d), which
is peaked at (d„and is normalized so that

&:(g g &/ti ) average
over atoms

(13)
g ((u) Ao = 1 . (14)

where y, P, z$ have dimensions of frequency.
This amounts to the assumption that all atoms
interact with nearly the same electromagnetic
fie1d. In general, some errors are introduced
in this step, for the field varies somewhat through-
out a typical sample. In the Appendix we examine

If there are N atoms altogether, the number having
level spacing corresponding to a narrow frequency
interval between (d and ~+d&o is Ng((d) d&o. The
Bloch vector r and the interaction vector Q for
each atom are now characterized by a frequency
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(u and a i:ime t, and instead of Eqs. (8)-(10)we may write

tt (, t)= —Ny f dn [s'( ', t}g( '}cce(te- ')t y( t&'g, ( '&sin( ~ -s )t]'

+NP d+' e', t g ru' sin ~ —e' t-y ~', t g ro' cos + —~' t
0

—n8(t) cos[((u —(u,)t —]]i(t)],

t&, (te, t}=Nyf d '[s( ', t)g( '}sin( — }t 'y(c-', t}g(te'}ccs( — '}t]
0

+NP du' +', t g e' cos e-~' t+ e', t g e' sin v-e' t
0

+ a h(t) sin[((u —(uo)t —g(t)],

n, ((u, t) =0 .
With the help of Eq. (2), these equations for A((u, t) allow us to obtain the equations of motion for the com-
ponents x((u, t}, y((u, t), e(w, t) of the Bioch vector. It is convenient to introduce the complex variable

(18)p((u, t) = x((u, t) +ty((u, t),
which permits the equations of motion to be expressed in a somewhat more compact form. After some
rearrangement of terms, we obtain the two equations

p((u, t}e'~ ' = He((u, t)(8+i'} d(u' p((u', t)g((u')e'~ ' +tee((u, t) $(t)e'te],
0

e((u, t) =-,'p*((u, t)e '~~ -N(g+ty) f d 'St ', t)g( ')e'c '-tcg(t)e'"" c.c. , (20)

wher~ we have written d ~ =w- ~0. The second
of these equations is actually derivable from the
first and contains no additional information, as
can be seen at once if we make use of the normal-
ization condition for the Bloch vector

(21)

tt(t)=N f trsg( )e(, t)d
0

=NSrO0 g uZ au, t dm.

From Eq. (20) we then have for the rate of energy
flow from the atomic system

Ne now have a set of coupled integrodifferential
equations for the components of the Bloch vector
in the two variables ~ and t. The solution allows
us to determine how each atom evolves in time.
In general, it is to be expected that different at-
oms having different resonant frequencies evolve
differently.

where

"If d 'S( ', t)g( ')e""I'
0

=Ma(u, p[S(t) (2,

III. ENERGY FE.OVf

The integral occurring in Eqs. (19) and (20) is
rather closely related to the energy flow from the
atomic system, in the absence of an external field.
To see this, we recall that, for any atom, Ace

times the z component of the Bloch vector is the
expectation value of the atomic energy, relative
to the ground-state energy level. If U denotes
the total mean energy of the atomic system in the
absence of an egernal field, then

IS(t) I
=

I d(u p((u', t)Z((u')e'
0

Equation (24) does not define S(t) unambiguously,
but the ambiguity will be removed shortly. As
usual for a superradiant system, we find that the
enex gy flow rate is proportional to the square of
the number of atoms. From energy-balance con-
siderations of the whole system, it is clear that

~
S(t) ~' is intimately related to the intensity of the

total electromagnetic field radiated by the sample.
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IV. EQUATIONS OF MOTION IN POLAR

COORDINATES

Instead of working with the Cartesian components
of the Bloch vector r, we shall find it convenient
to work with the boo polar coordinates 8, P, which
form an irreducible set. On putting

x((e, t) = sin 8((d, t) cosf((d, t ),
y(ru, t ) = sin8((o, I ) sin4)((u, t ),
z((u, t) =cos8((u, t),

in Eq. (19), we obtain the complex equation

(25)

[cos8((e, I) 8((L), t) +i sin8((d, t) 4i((d, t)] e +
eo

=cos8((d, t) N(p+iy) sin8((L)', t) g((u')e'+ '++ ' d(e'+ia(g(t)e'~", (25)
0

which can be expressed in the form of two real coupled integrodifferential equations:

8(u, t) =NpRe[S((d, t)] —Nyim[S((L), t)]+ a(()(t) sin[4&et+ (()(u, t) —g(t)],

p((d, t) = cot8((d, I ) [N pim[S(&u, t)] + NyRe[S(~, I)] + a $(t) cos[b~t+ (t)(e, I) - (J)(t)]),
(27)

(28)

with S(&o, I ) given by

S((e, f) =—e '+~+~~')) d~'sin8((d', t)
0

I
)ei

(ae't+ qf(e ,t)]'
(29)

S(&u, t) will be seen to differ from ]S(f)~ defined
in Eq. (24) only by a phase that carries the (d de-
pendence.

Inspection of Eq. (29) shows that, in the limit in
which g((e) —()(e —&u,), and there is no inhomo-
geneous broadening, S((d, t)- sin8((eo, t), and Eqs.
(27) and (28) reduce to the Eqs. (46) and (47) of
Stroud et aE.,

' as expected. In this limit, when

$(t }= 0, we find the usual well-known solutions

8((e, f ) = 8(t ) = 2 tan 'e"@' '0',

V. EXTREME INHOMOGENEOUS BROADENING

Because of the two variables ~ and t and the
nonlinearities, the coupled equations (27)-(29) are
not easy to solve when g(&u) is not a () function.
However, the other limiting case of extreme in-
homogeneous broadening can be handled without
difficulty. If g((d) is a very broad spectral density
of width 1/T, i', with T, *« I/Np, then the S(u), I )
integral in Eq. (29) will be very small for times
appreciably in excess of T, *. Hence, except for
such very short times, both 8(&u, I) and $((d, I) will
be determined largely by the external electro-
magnetic field. If, in addition, there is no ex-
ternal field and h (f) = 0, then f,' 8((d, t ') dt' and

J,
'
P(~, I' ) dt ' are negligibly small, and 8((0, t)

and i))(&u, t) retain their initial values 8(~, 0) and

i})(cu, 0) indefinitely. In that case it follows from
Eq. (29) that

with

t, = (1/N p) ln cot[-,' 8(0)], (31)
s(, t) e" "'~' "~ =J s' st ', o)

0

Q( &u, I ) = (ti(t)

y coshNP(t- I,)

P cosh(NPto)
(32) so that

x 8 (~ i)e i g(&u', 0) e i zw'i d ~ i

(R=N'K(e, p iS((d, I )i'
= N'Scud sech'NP(t —t,}, (33)

] S((L), (}[ =
)

sin8((gp', 0)g((a)')
0

xe(4(~ 0)

eider't

'd, ~i~ 2 (34)

where 8 is the rate of the energy flow. The width
of the superradiant pulse, which is of order 1/NP,
is generally known as the supperradiance
time T, . The time of occurrence t, of the pulse
peak depends on the initial state, but is generallya
smal& multiple of T, and of the same order of
magnitude for atoms excited near the upper state.

and the energy flow from the sample is propor-
tional to the square of the Fourier transform of
sin8((d', 0)g((d') exp[i(( ((u', 0}J.

We notice that ~S(~, t)~
' is determined entirely

by the initial orientations 6}, Q of the atomic Bloch
vectors, which gradually dephase in time. The
radiated signal therefore has the character of an
optical free-induction decay.
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1.0—
p =20/

0.4—

In the special case in which all atoms are ex-
cited equally initially, so that 8(&u, 0) = 8 and P(~, 0)
= Q, the integral reduces to the Fourier transform
of the spectral densityg(e), which is the amplitude
correlation function r(t ),

r(~) -=g (~')e" " d~'. (35}
0

Hence, in this case

&'+&u, pIS(~, &)('=&'+~,P»n'8 Ir(~)I', (36)

which is the result obtained previously' for the

5 IO

TIME t IN UNITS OF I./NP

FIG. 1. Energy radiated by an initially excited atomic
system as a function of time, for various values of the
inhomogeneous lifetime T2*. The energy Qow rate is
given byiV2hwoP~SIt)~ .

rate of energy flow. For example, for a Gaussian
spectral density g{&e}, this implies a Gaussian fall-
off of the radiated intensity with time, and for a
Lorentzian spectral density g(~) it implies an ex-
ponential fall-off with time. But, irrespective of
the form of g(&u), Eq. (36) implies that IS(~, f) (

~ IS(u, 0) I. The conclusion that 8(u, t) and P(&u, t)
retain their initial values 8(ur, 0) and P(&u, 0) in-
definitely of course implies that extremely little
of the stored atomic energy is radiated away by
coherent processes. In practice, any excitation
energy will tend to be dissipated by incoherent
processes eventually, but, if the incoherent dissi-
pation is slow, the excitation may persist for some
time. It is this persistence of the stored energy
in a strongly inhomogeneously broadened sample
that makes it possible to observe the photon echo
effect. '~

VI. GENERAL SOLUTIONS FOR ZERO
EXTERNAL FIELD

When the inhomogeneous linewidth 1/T, * is of
the same order as NP, the solutions of Eqs. (27)
-(29}become much more complicated, even when
8=0, and we find that in general different atoms
evolve differently in time. Because of the atomic
dephasing that takes place during the growth of
the superradiant pulse, fewer and fewer atoms
radiate cooperatively or coherently as T, * de-
creases from infinity. As might be expected from
inspection of Eqs. (30)-(33), the effect of reducing

LLJ

5 IO

TIME t IN UNITS OF I/NI8

l5
I I

5 IQ

TIME t IN UNITS DF I/NP
l5

FIG. 2. Time variation of the polar angle 0(coo, t) of
the atomic Bloch vector, for atoms at the center of the
inhomogeneously broadened line, for various values of
the inhomogeneous lifetime T2*.

FIG. 3. Time variation of the azimuthal angle P(~„t)
of the atomic Bloch vector, for atoms at the center of the
inhomogeneously broadened line, for various values of
the inhomogeneous lifetime T2*.
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the number of cooperating atoms is to broaden
and to delay the superradiant pulse, and to reduce
its amplitude.

We have not succeeded in finding analytic solu-
tions of the coupled integrodifferential equations
(27}-(29) in the general case. However, the equa-
tions readily lend themselves to step-by-step
integration. For the purpose of numerical solu-
tion, we have taken g(&u) to be in the form of a
Gaussian function:

g(4p)
2 sg 2 exp

—((u —(u,)'T, *
4m'

centered on eo and having a standard deviation
1/V2 T, * in frequency, or v 2 w/T, ~ in angular
frequency. " We have chosen y and P given by
Eqs. (11) and (12) to be equal, which is probably
appropriate for a sample that is only modestly
smaller than a wavelength, as the evaluations of
the averages y and p in the Appendix suggest. If
the external field 8=0, and if we express all
times in units of the superradiance time T, =1/NP,
then the only adjustable parameter is the
ratio of the inhomogeneous lifetime T, * to T, .

To illustrate the solutions, we assume that all
atoms start very nearly in the excited state, "
with 8(&u, 0)=0.01 and P(+, 0)=w/2 for all ~. Fig-
ure 1 illustrates the rate of energy flow from the
system, which is proportional to

~
S(&u, I }I', as a

function of time t, for several different ratios
of T, ~/T, . When T, ~/T, =20, the solution is very
close to that given by Eq. (33) for negligible in-
homogeneous broadening. Smaller values of T2~/T,
lead to smaller, more spread out, and more

delayed pulses, as might be expected from the
fact that there is an increasing amount of de-
phasing among atoms, so that fewer atoms ra-
diate cooperatively. When T, ~/T, =3 the output
pulse is already so small as to be invisible on the
scale of this figure.

Figures 2 and 3 illustrate the solutions for the
angles 8(&u„ t) and P(&u„ t) of the Bloch vector at
the center frequency ~0 of the inhomogeneous line,
for the same values of T, */T, . It will be seen
that 8(&u„ t) does not quite reach the value w, cor-
responding to the ground state of the atom, in the
steady state. This is so even when T, *//T, is as
large as 20, when it might be thought that the
effects of inhomogeneous broadening would be-
come negligible. The implication is that the at-
oms do not quite return to the ground state, but
that some of the energy of excitation remains
trapped within the system, to be dissipated even-
tually by incoherent processes. "

The azimuthal angles p(&u„ t) shown in Fig. 3 at
first increase with time, but, after some fairly
complicated variations, they tend towards definite
values depending on T, */T, in the steady state

20

l5

IO

C9

a

5 IO

TIME t IN UNITS OF I/NP
l5

I

5 IQ

TIME t IN UNITS OF I/NP

FIG. 4. Time variation of the polar angle 8(~,t) of the
atomic Bloch vector, for atoms of three different fre-
quencies, with inhomogeneous lifetime T& =5T, =5/NP.

FIG. 5. Time variation of the azimuthal angle P(~, t)
of the atomic Bloch vector, for atoms of three different
frequencies, with inhomogeneous lifetime T2* = M; = 5/NP.
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VII. SOLUTIONS FOR A COHERENT
EXCITATION PULSE
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der = 2'/IQ T2

de = 2w/Il. 6T2

dot s 2w/20T2

dt's s 2'/l4T2

2
LIJ T2 = I/ION/

I I

I 2
TIME t IN UNITS OF I/)VP

with T, ~/T, =~» and g(t) =0. The amplitude of the
external field g(t) was chosen so that a f 8(t')dt'
= n, which, in the absence of inhomogeneous
broadening, would produce almost total inversion.
Ordinarily, we would not expect to find significant
superradiant effects when the inhomogeneous life-

l5

FIG. 8. Time variation of the polar angle of the atomic
Bloch vector, for a system of atoms that is initially in
the ground state and is then exposed to an exciting pulse
of area x, of frequency coo, for a time T =2/A'p, with
T2* =

+&0 T, =1/10'. The response is shown at atomic
frequency coo and at four atomic frequencies slightly
above coo. The response at frequencies below ~o is very
similar.

time T, * is much shorter than the superradiance
time T, =1/NP, as is implied by Eq. (36). How-

ever, because of the long duration T of the excita-
tion pulse, only those atoms having frequencies
close to ~„within a range of order 1/T, will be
excited appreciably. This small group of atoms,
corresponding to about ~20 of the total number, is
able to radiate collectively within a much longer
time than T, *, although the presence of the other
atoms tends to quench the radiation.

Figure 8 shows the polar angle 8(&u, t) of the
Bloch vector for five different groups of atoms as
a function of time. It will be seen that only the
atoms of frequencies close to ~, are excited al-
most fully; the others become only partly excited
at the end of the exciting pulse, after being taken
through a few cycles of partial excitation. The
figure illustrates the behavior of atoms having
resonant frequencies at and above e„but in this
instance the time development is similar at fre-
quencies below &u, . The polar angles 8(&o, t) change
very little when t & T(T = 2/Np) and the excitation
pu1, se is over, which indicates that relatively little
of the energy of excitation emerges as radiation.
Figure 9 shows the azimuthal angles p(&u, t) of
the same groups of atoms as a function of time.
Atoms appreciably off-resonance experience phase
reversals when the field is close to zero, at times
dependent on their resonant frequencies.

Figure 10 shows the value of
I S(t) I' as a function

of time. Here the interesting result is that, fol-
lowing the end of the excitation pulse, the system
radiates a pulse of energy, whose duration is of
the same order of magnitude as the duration of

0.003

IO

T& ' I /10 gtti

/ION@ 0.002

0 00I

t2 4
TIME I' IN UNITS OF I/NP

FIG. 9. Time variation of the azimuthal angle of the
atomic Bloch vector, for a system of atoms that is ini-
tially in the ground state and is then exposed to an ex-
citing pulse of area m, of frequency coo, for a time
T =2/Np, with T2*= &&T, =1/10Np. The response is
shown at five different atomic frequencies very close
to 4)0.

TIME I IN UNITS OF I/NP

FIG. 10. Time variation of IS(t)It for a system of atoms
that is initially in the ground state and is then exposed to
an exciting pulse of area ~, of frequency coo, for a time
T =2/Np, with Tt" ——$&T, =1/10Np. When the exciting
pulse is over, the energy flow rate from the system is
given byN gruoPI S(t)I . A small superradiant pulse is
seen to follow the exciting pulse.
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p(sr) —p(&o, )- -(60T,*/v) r ~. (39)

It then follows from the Fourier transform struc-
ture of Eq. (34) that the output intensity (S(&u, t)~'
should reach its greatest value at a time 60T,~/v
-2%P following the excitation pulse, if the process
were purely a free induction decay. In fact the
pulse peak occurs after a time that is nearly an
order of magnitude shorter, which suggests that
superradiant effects, involving at least a partial
decay of the atoms, are making a contribution.
As the length of the coherent excitation pulse is
increased, the number of atoms left sufficiently
excited at the end of the pulse decreases, until
superradiant effects become negligible compared
with free induction decay. This appears to have
been the situation in most of the observations re-
ported so far ie, m

the exciting pulse. However the magnitude of the
radiated pulse is very small; it is about 700 times
smaller than the radiation pulse of which the sys-
tem is capable in principle, if all atoms were to
radiate cooperatively. But, remembering that
only about 1/20 of the atoms were appreciably ex-
cited initially, we see that the pulse amplitude
is still consistent with a superradiant effect pro-
portional to the square of the number of atoms.
The phenomenon is very similar to effects re-
ported by Bloom in nuclear magnetic resonance
experiments in inhomogeneously magnetic fields. "

In many respects the response of the atomic
system resembles an optical free induction decay, "
in which the atomic dipoles simply dephase pro-
gressively following the excitation pulse. Indeed
the curves in Figs. 6 and 9 indicate that 8(&o, t)
and P(&u, t) change rather little after t =2/NP,
although a small rise in 8(~„f) can be discerned.
We can carry out a rough test of this interpreta-
tion of Fig. 10, by comparing the shape of the
output pulse with the form predicted by Eq. (34)
for free induction decay. From Fig. 9 it appears
that, immediately following the excitation pulse,
g(&u) is very approximately a linear function of
, with

as great as the superradiance time T, =1/NP.
When T,*«T„ the superradiant pulse from

the sample is normally wiped out by the destruc-
tive interference of radiation from the different
atoms. However, with the help of a coherent ex-
citation pulse that selectively excites a small
group of atoms of the sample, it is still possible
to produce conditions under which a delayed su-
perradiant-pulse appears. These results suggest
that superradiant-effects, as distinct from free
optical induction decay, should be observable in
a solid, inhomogeneously broadened sample of
matter.

APPENDIX: EVALUATION OF CERTAIN
ATOMIC AVERAGES

In the following we shall examine the variation
of the quantity

1 3(» n~g)' —I,'
~ll 5 &al

(W, n»)'+ p, ,
'

2c d 0 everege over
lsl atoms k

(A1)

a = c/(u, , (A2)

which is the midwavelength multiplied by 1/2v.
This ensures that the sample is appreciably

2.0

where the average is to be taken over all atoms
k, for various fixed positions of atom l, for a
sample in the form of a disc. %'e take the dipole
moment p. , to point along the axis of the disc, and
choose the radius a and the height h to be of the
same order of magnitude, with

VIII. CONCLUSION

We have derived the integrodifferential equations
yielding the behavior of different atoms in time,
for an inhomogeneously broadened sample of mat-
ter interacting with radiation. " The results show
that different atoms evolve differently in time,
that there is no symmetry, in general, with re-
spect to the midfrequency, even for a symmetric
spectral distribution, and that the effects of in-
homogeneous broadening are significant even
when the inhomogeneous lifetime T, * is 20 times

i

0.5
I'0 /a

1,0

FIG. 11. Variation of yl over a cylindrical sample of
radius g and height g for different positions of atom /.
xo is the radial coordinate of atom l, and zo its axial
coordinate measured from the center of the sample.
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smaller than the wavelength of the midfrequency
(de.

If the average in Eq. (Al) is to be finite, there
must exist a minimum distance c between the
atoms k and atom /, and in general this will be
determined by the atomic density p, such that

(A3)

In evaluating the average in Eq. (Al), we shall

replace the sum over atoms by a continuous in-
tegral, and integrate over the volume of the sam-
ple up to a small region of linear dimensions e
surrounding atom /. %e choose a system of cylin-
drical polar coordinates, with the z axis pointing
along the sample axis and the origin at the center
of the sample, and let (r„8„z,) be the coordinates
of atom /. Then if ~ ~re ~a —~ and —pk+ ~ ~ze
+ —,'h —e, we can express y, in the form:

0 ~/2re d8 dzI' r 8 z ro 8o ze
e+6 0 -a/2

2 2m 'e ~ a/2

~ ", (r,2e) ~ da
'

d* ~ d.) F(. e, .. .„„„e..)
1TQ9E Qo -ah go+ ~

6I -&/ye+,'„(r,4e') d 8 + d8 r, 8, z;r, 8, z
ma'h 0 Qg+ 6/f'e

where

(A6)

F(r, 8, z; r„8„z,) =3(z —z,)'[r' +~,
' —2xr, cos(8 —8 )+(z —z,)'] '~' —[r'+r, ' —2rr, cos(8 —8O) +(z —z,)'] '~'

+ [(z —z,)'/2a'][r'+r, ' —2rr, cos(8 —8,) + (z, —z)'] '~'

+ (I /2a') [r ' +r,' —2rr, cos( 8 —8,) + (z —z,)']

The second and third terms in Eq. (A4) represent
corrections to the first term, corresponding to
volume elements excluded from the first term.
If re=0, the r integral in the first term extends
from e to a, the factor (ro2e) in the second term
is replaced by &e', and the third term can be
eliminated.

For certain positions (ro, 8O, zo) of atom I, such
as for points on the axis, the integrals can be
evaulated and expressed in terms of elementary
functions, but the expressions are quite long. %e
have evaluated the terms numerically for a number
of different positions of atom /, for a sample for
which a = h = 100m, and the results are summarized
in Fig. 11. It will be seen that y, varies by a
factor 2 over different positions, but that, for
most of the atoms, the variation is within the

range +201.
For comparison, we find from Eq. (12) that

SP=0.6'Ip, '/a' under the same assumptions, so
that y and P are of the same order of magnitude.

If this variation of y, throughout the sample is
interpreted as a frequency variation with a certain
linewidth 1/T„ then since y in Eqs. (27) and (28)
is multiplied by the factor N, the effective line-
width 1/T, resulting from the dispersion of y is
of order Ng'/Sa'-XP=1/T, . The geometric ef-
fects are therefore certainly not negligible. How-

ever, in the examples considered in Sec. VII, in
which the system is selectively excited with a
coherent excitation pulse and T, *=T, /10, the
geometric contribution to the linewidth is rela-
tively small.
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