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The problem of minimizing the general fourth-order Ginzburg-Landau free energy for d-
e&ave pairing in a homogeneous system is solved. The highly degenerate family of solutions
arising vrhen the fourth-order term has the elementary BCS form, is found to be associated
with a point lying on the boundary of two regimes in the general parameter- space, On either
side of the boundary the degeneracy is reduced to the minimum required by gauge and rota-
tional invariance, but in very different ways: on one side pairing is in a state vrith L, =2; on
the other, pairing is in a state with (L)=0. It is therefore essential to know the form of the
corrections to the elementary BCS theory, vrhether or not they prove to be large.

I. INTRODUCTION

The newly discovered low-temperature phases of
liquid 'He have reawakened interest in theories of
pairing with 1.40.' Vfithin a pairing model there
is conclusive evidence that the & phase is triplet
pairing; whether the 8 phase is triplet or singlet
pairing is presently less clear. ' The question can
be resolved by measurements of the magnetic
susceptibility down to submillidegree tempera-
tures, to determine whether its limiting low-
temperature form is (singiet) or is not (tripiet)
zero. In the absence of conclusive measurements,
models of the B phase with both odd and even L,

are being explored, with particular emphasis on
P- or f-wave models for the triplet phase, and
d-wave models for the singlet phase.

Earlier studies of pairing with L 0 have been
based on BCS theory in its most elementary form. '
One of the more interesting aspects of the dis-
coveries in 'He has been that the elementary form
of the BCS theory of triplet pairing does not de-
scribe the observed magnetic behavior of the 4
phase. ' Spin fluctuations have been suggested as
the mechanism underlying the failure of the ele-
mentary form of the theory. '

It; has also been
pointed out that the observed behaviour of the
susceptibility is contained within the general form
of the Ginzburg-Landau free energy for P-wave
pairing near T„provided the parameters that
characterize the fourth-order term deviate enough
from the values they assume in the elementary
theory. ' The spin-fluctuation model suggests that
such deviations may indeed have the form and size
required to account for what has been observed. '

In the case of d-wave pairing, it has been noted
that the free energy of the elementary form of
BCS theory gives a misleading description of the
order parameter near T, „even if deviations of
the free energy from its elementary BCS form

are not large. ' This is because the elementary
form of the d-wave free energy is minimized by
a family of order parameters with a nontrivial
degeneracy far in excess of that required by gauge
and rotational invariance. From the point of view
of a general free energy, however, this excess
degeneracy is an accidental consequence of the
particular values assumed by the elementary BCS
forms for the parameters characterizing the
fourth-order terms. The degeneracy is reduced
to the minimum required by gauge and rotational
invariance by slight deviations of the free energy
from the elementary BCS form, ' and it is with
this far more restricted set of order parameters
that one should build a description of d-wave
pairing near T, .

The purpose of this paper is to give, as a
starting point for studies of d-wave pairing near
T„ the form of the energy gap that minimizes the
general d-wave free energy. The general d-wave
free energy and the special form it assumes in the
elementary BCS model are described in Sec. II,
and the solution is given for the problem of mini-
mizing the general free energy. The derivation of
the solution, though elementary, is not entirely
trivial, and is summarized in the Appendix.

II. d-WAVE ORDER PARAMETER AND

FREE ENERGY

It follows from the most elementary form of the
BCS theory that just below T, the d-wave order
parameter & is determined by minimizing a free
energy of the form

over all second degree spherical harmonics:
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Here o, ~(T T,-), ii,&0, and & "&=jdQ/4v. By
writing & in terms of a normalized &„

(I~.l )=1, (3)
and minimizing with respect to ~, the problem of
minimizing f, can be expressed as the equivalent
problem of minimizing

By inserting the order parameter ( i) into the
special BCS form (1) of the free energy, perform-
ing the angular averages, and exploiting the iden-
tity (6), one establishes that the elementary form
(1) of the free energy is a special case of the
general form (6}assumed when

15 0) I 2 ~l 315I Oy I 3 (12}

fmig~f mmnmm(2f mm/ )i/2nmm (5)

Substituting these values of the parameters into
(9}, we find that

The form (1) of the free energy, however, is
only a special case of the general fourth-order
Ginzburg-Landau free energy for d-wave pairing,

f= n Tra*a+/i, l
TrB'I '+l3, (Tra*a)'+ P, Tr(B'B*'),

(6)
where & is here represented in the alternative
form

f.= —(~'J4P.)~(I + 12»a'. I
'} ',

f: =- ~(~'./4P. ),

for any order parameter satisfying

(14)

which is evidently minimized by any B, with
Tr(B,)'=0. Thus the elementary BCS form of the
free energy assumes its minimum value, '

n=P k,a,„k„ ( / ) cf TrB000 (Is}

k =(sin& cosi/i, sin& sin(i, cos&),

and B is a traceless symmetric tensor.
The general form (6) is arrived at by noting that

the general fourth-order term must obey gauge
and rotational invariance, and can therefore con-
tain only contractions of productions containing
two B's and two B*'s. Since TrB=O, no B or B~
can be contracted with itself; as a result it is
easily verified that there are just four distinct ways
to form contractions when B is symmetric.
Furthermore, the identity'

Tr(a*a)' = —,
' ITra'I '+ (Tra*a)' —2 Tr(a*'B'),

(6)
which holds for any traceless 3&3 matrix 8, re-
duces the number of independent fourth-order
terms to three. That three independent param-
eters are required follows from the form of the
solution to the general minimization problem given
below, in which three different matrices B will be
specified leading to three linearly independent
combinations of P„P» and P„when substituted
into the fourth-order terms in the general free
energy (6}.

It is also convenient to write the general mini-
mization problem in terms of a normalized order
parameter:

f = —(ko")(P,l»a'. I'+ii, +P, » Bo'B'.) ', (9)

i.e. , for any order parameter in which the coeffi-
cient of Y20 in the expansion (2} is given by

a 0
= —2(a,a, + a,a, ), (16)

P3& —3l32, 2/1+$3 & —2/2.

Region I. i3, & —P, + lj3i I. Here the minimum is
given by

a~ (k, + ik„)' ~ 7». (16)

Except for a constant phase factor and a rotation,
the solution is unique. At the minimum

regardless of the values of a„a „a„ora, .
From the perspective of the general form (9),

this vast degeneracy is an accidental consequence
of the vanishing of p3. In the general case, for
given p2, the portion of the Is, —p3 plane consistent
with the general requirement of thermodynamic
stability, divides into three subregions (Fig. 1).
In two regions (I and II) the solution is unique (to
within a constant phase factor and a rotation). The
elementary BCS case lies on the boundaries of
these regions. In the third region (III) there is
still some excess degeneracy, though not as much
as in the elementary BCS case. The regions and
solutions are as follows"

Region of stability. Stability requires a positive
definite fourth-order term. This in turn requires
a positive p2, and restricts the p, —p3 plane to the
region (see Fig. 1):

where f = —~'/4P, (19)

and

TrB0*B0

fmm f mm Bmm ( 2f min /+)i/2amm

(10)

(20)

gegion II. 0 &$3& —6p, . Here the minimum is
given by

e2«» y.2+e4~/3 j 2
x + +e g ~
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Except for a constant phase factor and a rotation,
the solution is again unique. At the minimum

f ~= —o'I4(S, +kP, )

Itsgion IH. P, & —4i), —2', I . Here the minimum
is given by any cL, that is real (except for a con-
stant phase factor). At the minimum

(21)

f "=-&'/4(P, +S,+kP, ) (22)

REGLON

II

Within regions I and 8 the best order parameters
lie within the family (16) of minima of the ele-
mentary BCS free energy, the elementary BCS
case (12) lying on the I-II boundary (see Fig. 1).
A reliable computation of P, and P, has yet to be
done, but assuming they do not deviate so much
from the form (12) as to be in region III, one
should base studies of d-wave pairing near T, on
order parameters of the form (16) or (20), but not
of any of the other inequivalent forms consistent
with (16}.

Note that the solution in region I has maximally
aligned orbital angular momentum, while that in
region II (and III) has a vanishing expectation val-
ue of L along any axis. Thus even if corrections

to the elementary BCS case should prove small,
they will determine some very fundamental. prop-
erties of the ordered state.

Q(M) = TrM' —~(TrM')'=0. (23)

To prove the theorem, note that if M is Hermi-
tian with eigenvalues m„m„and —(m„+m, ), then
(23) reduces to the trivial identity

m', +m', +(m, +m, )' ——,'[m', +m', +(m, +m, )']'=0.
24

For general traceless M, define the traceless
matrix

N(A) = ~ (I- i A.)M+ 2 (I+i X)M

which is Hermitian for any real &, so that P[&(X)]
=0. But P[&(X)] is a fourth-degree polynomial in

~, and must therefore vanish for all A. if it vanishes
for all real X. Since &(f) =M, this establishes (23).

As a corollary of (23), if M=X+ g I; with Tr(X)
= Tr(I"}=0, then the coefficient of each power of

in P(M) must vanish. Looking, in particular, at
the coefficient of p, ', we find

0=4TrX P+2Tr(XI')' —2(TrXI')' —TrX Try .
(26)

This identity reduces to (6) above, in the case X
=B, Y=B*, and is of further use in the analysis
below.

According to (9), to minimize the free energy we
must minimize

g(B,) =P, [ TrB', i '+IS, +P,TrBg'B'„(27)
subject to the normalization condition Tr(B,*B,)
=1 [Eg. (10}]. Since g(B,) is independent of a
multiplicative phase factor in j3„ it suffices to
consider only Bo satisfying

APPENDIX

The following theorem provides the key to solving
the d-wave problem near T,: Any 3x3 matrix M
with zero trace obeys the identity

UNSTA BLE REGION

He(Tr8', ) = 0.

Letting

(26)

FIG. 1. Parameter space for the general fourth-order
d-wave free energy. The scale on the P& and P3 axes is
in units of P2, which stability requires to be positive.
The point P&

= +~ P2, P3 = 0, corresponding to the elemen-
tary BCS case, is indicated by an "x." In regions I and
II the equilibrium order parameters are unique (to with-
in a constant phase factor and a rotation) and are given
by 2 tx (k„+ik)2 (region I) and 4 ~k2+e2"'~ 42
+ e4~'~3k~2 (region IQ. In region III the free energy is
minimized by any suitably normalized order parameter
that is real (to within a constant phase factor).

BeBO = X, ImB, = Y,

Since X and Y are traceless, they also obey (23),
and therefore

Trx' = Tr Y' = g .

condition (28) and the normalization condition (10)
require

Trx'= Tr Y = &.
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Using the identities (26), (30), and (31), we can
reduce (27) to

g(BO}=P,+ zP, +(4P, +2P,)(TrXY)' —4P, TrX Y .
(32)

g(BO) = cg, (BO) + (1-c)g,(BO),

where

g, (B,) = P, + sP, + (P, +,el, ) cos' y,

(40)

To minimize g(B„) in the form (32), we work in
the representation in which the real symmetric
matrix X is diagonal, with eigenvalues x„x„and
x3 It is easily verified that a general parametri-
zation for three real numbers satisfying

and

tan5 = v 3 (z', —z', )/(2z,' —z', —z', ). (43)

g, (B,) =P, +.i1,

—~8P, [ z (g zl)- z]"cos{26+5), (42)

is

X)+%2+ X3 = 0, +1++2++3

x„=F~ sin(8+zs-nz), s= 1, 2, 3.

(33)

(34)

Since g, (B,) depends only on y, and g,(B,) depends
only on 8 and the z„, they can be minimized inde-
pendently, and e should be taken to be 1 or 0,
according to whether g1 or g2 is the lower. Thus

The further conditions

Trl'=0, TrF'= &,

can be insured by a parametrization similar to
(34) for the diagonal elements of Y,"

Y„„=(-',c)'"sin(6+(p+-', nz), n =1, 2, 3,

and the parametrization

Y„=—,
' (1-c)' ~'z

Y„=-,'(1-c)'"z„

(35)

(36)

(37}

fmin (g2/4gmm ~ /4mm(g gmm ) (44}

The separate g& (B,) can be minimizedby inspec-
tion":

gi =P2+ 3P~, cos(p = 0, if Pi+ 66)~ & 0; (45)

g, '"=P, +(), + iz„coos=1, if (),+,P, «;
(46)

os28 1 zj z2 0, if P, & 0;
(47)

g,
'

=P +3P, , cos28= —1, z, =z, =0, if I3&0.
(46)

for the off-diagonal elements. Here

0 ~c-1
and

z'+z'+z'=1

(36)

(39)

Substituting the forms (34), (36), and (37) into
the form (32} for g(B,), one finds

The stability condition (17) is just the require-
ment that all four possibilities give a positive g at
the minimum (andhence a positive fourth-order
term in the original free energy). A straight-
forward examination of (45)-(46) reveals that the
absolute minima of g(B,} are indeed as described
in Sec. II, the minimum being given by (47) in
region I, (45}or (46) in region II,"and (46) in
region III.
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