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The free-energy density of a one-dimensional Ginzburg-Landau field with n components ), is

identified with the quantum-mechanical ground-state energy of an n-dimensional anharmonic oscillator.

Normalizing the anharmonic term by (4n) ' and expanding in powers of n ', we find for the

ground-state energy, n 8„+E + n 'F.', where F. = ~/2 —1/16m', and E'" = (~,—2~)/2 and
F-" = 3K2 —6K &2 —(11/4)~ ' ~2' are the Hartree and first and second screening approximations,

respectively. v and ~, = (4v'+v ')'" are the inverse correlation lengths for $, and XP',-, respectively.

The temperature is linearly related to the spring constant r, which in turn is connected with the
correlation lengths by ~ = x' —1/2x. The analytic results are compared with exact numerical

computations for n = 1, 2, 3, and 4. The second screening correction modestly improves the accuracy
of the approximation,

I. INTRGDUCTIGN

The phenomenon of a phase transition of second
order is encountered in systems of various spatial
dimensionality D and order-parameter dimen-
sionality n. Although D =2 is the case most com-
monly observed in the laboratory, D = 2 and even
D = 1 are not without experimental interest. On
the theoretical side, the pioneering solution of
Onsager' for D = 2 and n = I (Ising model) is the
cornerstone of the entire subject. It is therefore
useful to attempt to solve the statistical, -mechan-
ics problem posed by phase transitions for vari-
ous choices of D in the Ginzburg-I. andau model.
For D =1, the one-dimensional problem is es-
pecially rewarding as it lends itself to exact solu-
tion. Unfortunately, the sharp transition which
occurs for D~ 2 disappears for D =1,2 s but this
does not prevent one from calculating in detail
some physically measurable quantity, such as
the specific heat, as a function of temperature.
This has, in fact, been carried out and published
for both n =1 and n =2.~-' Furthermore, as we
shall see below, there are additional numerical
results contained in these references which in-
directly specify the thermodynamic functions for
n=3 andn=4.

The purpose of the present paper is to study the
systematic trend exhibited by the exact solutions
referred to above. It is well known that a general
solution to the phase-transition problem, the so-
called "screening solution, "' can be obtained for
n» 1 as a Taylor-series expansion in powers of
n '." To any finite order. and especially in re-
ferring to the first correction of O(n '), we call

this method the "screening approximation. " The. s
our goal here is to compare the trend exhibited
by the exact solutions, as n increases, with the
screening approximation. As we shall see, al-
though the comparison can only be expected to
become exact for very large values of n, it is in
fact surprisingly good even for relatively small
n.

After a review of basic preliminaries we dis-
cuss in Sec. II the simplification of the problem
which results from a kind of stochastic peaking
which sets in as n-~. In Sec. III we review the
extreme case n =~, the so-called "Hartree limit. "
This is followed in See. IV by a review of the
Feynman sum over paths which converts the task
of calculating the transfer matrix into the familiar
problem of solving the Schrodinger equation. "
In this formulation the thermodynamic free energy
becomes the quantum-mechanical ground-state-
energy eigenvalue. In Sec. V we do the quantum
mechanics to O(n ') to find the first correction to
the Hartree approximation. This permits a corn-
parison of the screening approximation with the
exact solutions for the free energy, the entropy,
and the specific heat. Section VI is devoted to
O(n '). In Sec. VII we present some results from
perturbation theory and establish that the screen-
ing approximation in its more familiar field-theo-
retic form is equivalent to the n ' correction cal-
culated in Sec. V. Section VIII concludes with a
brief summary.

Although the most familiar one-dimensional
phase transition is perhaps that of a supercon-
ductor (n =2), for the sake of simplicity we be-
gin our discussion of statistical mechanics with
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n =1. %'e imagine that the system is described
by the real order parameter P(x) at any point g
along the filament and that the free-energy densi-
ty at that point, in units of the Boltzmann constant
times the temperature, is given by the Ginzburg-
Landau functional" Z„= 5fexp L du (1 8)

g, E as the negative of an effective "Lagrangian"
L. In terms of L, the partition function for a
system of length 0 is given by the functional inte-
gral

E= gZ ' + ~a/~+ ~b

Because of the unidimensionality, the coefficients
a and h have dimensions of linear density times
[Q] ' and [Q]~, respectively. [Q] denotes the
dimensions of p. Similarly Z ' has dimensions
of length times [P] '. Thus we are led to form
characteristic parameters from these coefficients.
For the moment we avoid a, which depends lin-
early on the temperature and changes sign in the
critical region, and we use only b and Z '. The
latter are taken to be temperature-independent
constants in the model. As P is simply a vari-
able of integration in the functional integration
which we will need to carry out, any physically
significant parameter should be independent of
[P]. This feature is exhibited by the combination
bZ', which has the dimensions of (length) '. Con-
sequently we define a characteristic length (, by

),~=bZ .

(For general spatial dimensionality, we have to
write t' ~'~ on the left-hand side. ") Using this
characteristic length we can reduce all remaining
lengths to dimensionless form. In particular,
we replace the distance coordinate g by the di-
mensionless variable u according to

x=h„u.

Now the free-energy density per unit distance
measured in terms of u is given by

The thermodynamic free-energy density (again in
units of the Boltzmann constant times tempera-
ture) is

All of the above is readily generalized to an n-
component order parameter P, (f = 1, 3, . . . , n)
interacting via an isotropic quartic term. The
Lagrangian is then

with the thermodynamic free-energy density per
degree of freedom (i.e., per component)

(Here, as before, we are measuring energy in
units of the Boltzmann constant times tempera-
ture. ) Z„'"' is the obvious generalization of Eq.
(1.8), with f.„ in place of f Figure .1 exhibits
the results of the numerical calculations of W„

O

F

(1.4)

This expression can be simplified by changing the
normalization of the order-parameter field p and

introducing a new field P according to

Defining the reduced relative temperature 7 as

7 = 6',za (1 8)

E= —L=- ~ +-P +gQ2' 2

Here we have denoted the dimensionless quantity

and substituting for g in terms of P in Eq. (1.4}
gives now the free-energy density in the standard
form"

FIG. 1. Ground-state energy divided by n, E„, vs
spring constant v of an isotropic n-dimensional anhar-
monic oscillator. The coefficient of the anharmonic
term is normalized to (4n) . E„ is also the thermo-
dynamic free-energy density per degree of freedom of
an n-component isotropic Ginzburg-Landau field in one
dimension, in which case ~ is the reduced temperature.
The cases n =1, 2, 3, 4, and ~ ("Hartree limit" ) are
sholem by the solid curves. The dashed curve {MF) illus-
trates the mean-field approximation.
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(labeled E„ in the figure} for s = 1, 2, 3, and 4,
which will be discussed in further detail below
in Sec. IV. The Hartree limit derived below in
Sec. III is shown by the curve labeled ~, and the
mean-field (MF) approximation by the dashed
curve. weakening the interaction as n -~ by
including the factor n-' in the last term of Eq.
(1.10} is essential for obtaining the Hartree limit,
as will become evident in Sec. III [see especially
Eq. (3.1)].

For some purposes it is more convenient to deal
with the entropy rather than the free energy. This
is found by calculating the negative first deriva-
tive of the free energy with respect to the tem-
perature parameter 7. %'e prefer to deal with a
function which is —2 times this quantity, which
we shall nevertheless call the "entropy function, "
and which is given by

(1.12}

These functions for n=l, 2, 3, and 4 are shown

by the curves in Fig. 2, where the mean-field
approximation now appears as the dashed straight
line. By a kind of Ward's identity which follows
from differentiating inside the functional integral,
we obtain

(1.13)

where P, is one of the n components of the field
and &Ip}' is the sum of all of the squares,

(1.14)

The angular brackets denote the thermal-equilib-
rium average defined by the functional integral

Differentiating the entropy function, we obtain the
specific heat

(1.16)

normalized to unity in the limit 7- —~. The nu-
merical results for C„are shown by the curves
n=1, 2, 3, and 4 in Fig. 3, with the mean-field
approximation represented by the step function.
It will be noted that these curves and those of Figs.
1 and 2 exhibit a definite regularity as a function
of the parameter n. In Secs. II and III we will
study some simplifying features which set in in
the limit n-~.

II. STOCHASTIC PEAKING

In this section we want to demonstrate a simpli-
fication which enters the statistical-mechanics
problem posed in Sec. I when the number of com-
ponents becomes very large (n» 1). We will dem-
onstrate this in a particularly simple limiting
situation, 7»1, for which we can neglect the
interaction between the components of the fluc-
tuating field. First we Fourier analyze the or-
der parameter according to

g-x/2+ P e&au (2.1)

i.0

0

MF

0 l

-2

FIG. 2. Entropy function 9„=28E„/87 vs reduced tem-
perature v. The cases n =1, 2, 3, 4, and ~ are shown

by the solid curves. {8„is alternatively denoted by 8 in
the text. ) The mean-field approximation is illustrated
by the dashed line {MF). The thermodynamic entropy
density of an n-component isotropic Ginzburg-Landau
field in one dimension is proportional to —0„.

FIG. 3. Specific heat C„= -28 E„/87 vs reduced
temperature ~. C„ is normalized to unity in the limit

The cases n =1, 2, 3, 4, and ~ are shown by
the solid curves, and the dashed line {MF) illustrates
the mean-field approximation. A sum rule requires that
the area under each of the solid curves be independent
of n and equal to the area under the dashed line.
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For the moment we work with a single-component
fieM. The integral over the Lagrangian in terms
of the Fourier components Q, is

(2.2)

where the interaction has been dropped. Substi-
tuting Eq. (2.2) into Eq. (1.8) replaces the func-
tional integral by the multiple integral over the
Fourier components,

g d2~ e-(P+r&] y, t'y2
0

from Eq. (2.4) by differentiating inside the inte-
gral before carrying out the integration. Alterna-
tively, it can be obtained from the expression for
the mean-square fluctuation in the Fourier com-
ponent of the order parameter,

(2.9)

According to Eq. (1.13) the entropy function can be
regarded as the sum of the mean-square fluctua-
tions in the Fourier components of the order
parameter field,

Z/2

q2

The free energy, according to Eq. (1.9), is given
by

(2.10)

1
$ = lnZ~

1=—~ ln(q'+ 7) +C
2A

Cg

dq ln(q'+ T)+C,
4m -e~

(2.4)

in complete agreement with Eq. (2.8).
The above result enables us to write the proba-

bility distribution for the ith component of the
multicomponent order parameter as the Gaussian
function

P (4 ) (2-18-I/v)1/2e-Q (I28

(2.11)
where {." is a constant and where the sum over
wave numbers has been replaced by an integral
extending between the Debye cutoffs at +q~.
Carrying oui this integral yields the following
dependence on the temperature variable v and
the Debye cutoff q~:

where the variance of the field is 8„=8 and is given
by Eq. (2.10). We are dealing with a multicom-
ponent field and therefore have to consider the
over-all probability distribution function for the
totality of all n components, which is expressed
by the product

d q ln(q' + v) = 2v ~' tan '(q /r'~')

+q~ ln(q~'+ v) —2qs

(2.5)

The last line is valid for q~»1. This gives us
a dependence on v which in the limit q~- ~ is ex-
pressed solely by the first term, the last term
being absorbed by a redefinition of the zero of
energy according to

(2.12)

At this point we note that the distribution depends
upon the field only through the sum p' =Qy', and
does not depend upon the components p& individu-
ally. Consequently, we change to hyperspherical
coordinates and make use of (I) as a "radial" coor-
dinate. Because of the lack of dependence upon
direction, we integrate over all solid angles,
which brings in the a.rea of the n-dimensional unit
hypersphere

P =E+{"'. ( 2.6) (2.13)

Here we have separated off the constant addition
to the energy and described what is left by the
energy function

Thus the radial probability distribution is

P (P) dP = C„Q"-'d P gP (P ), (2.14)

The entropy function is found from Eq. (1.12) tobe
where

8(7) = 1/2v'~' (2.8)
(2.15)

This result could alternatively be obtained directly and
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M(Q) = v /2~2- ()2 —1) 1 (2.16)

M'(y }=. 2r'/'y . (n-—1)/y . =0 (2.17)

or

The minimum of this function, corresponding to
the peak in the probability distribution, is found
from

moment, which results from the small amount
of skewness introduced by the cubic term. This
can be calculated by expanding the exponential
function of the cubic term in Eq. (2.24) in powers
of the cubic term and keeping only the first power,
leading to

&(y —y..)&-,&, ((y —y..)'&

it)2. = (s —1)/2r'/2 (2.18)

M" (y . ) = 2v'/'+ ()2 —1)/y2. =4v'/2 (2.19)

We will need the curvature and the third derivative
at the minimum. These are given by

&(e —e..)'&'

n —1 1

167 (t»~. 87 ~/~(II)
(2.26)

M'"(y . )=-2(s-1)/y', . (2.20)

The Taylor-series expansion for M(P) to third
order in p -

(1& is

M(p) = v'/2@)„- (2) —1)in' . +~2M" (it) ) (p —Q )„)'

Replacing the fourth moment by three times the
square of the second moment exploits a familiar
property of the Gaussian distribution. We now
obtain the entropy function from Eq. (1.13) by cal-
culating the mean-square value of Q = (iI) —P )
+it);, . Substituting from Eqs. (2.18), (2.25), and
(2.26} gives

«.=&e'&= C;.+((e e..)'—&+2e...&(e V..) &—

"-1 "-1 "-1
ln +(n -1)lnr'/'

2 2 2

n-1 1 1 n
27 z/2+4&x/2+4&a/2 2&i/2 ~ (2.27)

+2r'/'(y —p~)2-3 ~2 (0-0 )'.

(2.21)

For the moment we do not need the cubic term
and indicate it simply by the word "cubic." The
first two terms can be recognized as related for
large values of (s -1)/2 to the r function, by
Stirling's formula. Consequently we have

M(P)~ —ln
I'(( n. + 1)/2)

l 2+(n-1) inrl 4j,/4
s()2 -1) '/'

Comparison of Eq. (2.2V) with (2.8) shows 8„=8, as
expected when the interaction between components
can be neglected. The purpose of this exercise has
been to exhibit the stochastic peaking which takes
place for large values of n and which simplifies the
statistical mechanics. As we shall see below, it
is this simplification and the generation of the
Gaussian distribution in the variable P, even when
interaction is present, which makes it possible to
obtain results for all values of 7 in the n» 1
regime.

+2T / (Q —iI)~2,) + cubic (2.22) III. HARTREE LIMIT

We also note that asymptotically

r((n+1)/2}
( / ),/,

r(s/2)

Substituting these expressions into Eq. (2.15) and
simplifying gives

f2(y} (2r 1/2/v)l/2 e 2c (&-ci~~) -+cubic (2 24)

a Gaussian distribution centered at p ~ with vari-
ance equal to

In this section we extend the idea of stochastic
peaking, which was worked out in Sec. II for the
case of no interaction, to the case where the fluc-
tuations in the P, fields interact. The strength of
the fluctuation in a particular component (I), de-
pends on the coefficient in Eq. (1.10) of ct)2)/2,

which, in the absence of the quartic terms, is v.
Including the quartic terms gives an effective
stiffness coefficient

7' ff=T+ ~Qg+gf]n j22cg

&(y —y. )'&=1/4~".

At this point we also can calculate the first

(2.25)

(3.1)
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8 =—8=1/2(7„)'~'=I/2(v+8)' ' (3 2)

The second line follows from the addition of P', /2n,
a term of order n-'. The third line results from
neglecting the fluctuation in P and replacing P'
by its mean value n6„. From Eqs. (2.25) and (2.2V)

we see that this also entails an error of O(n ').
As both approximations introduce errors of order
O(n '), we see that Eq. (3.1) becomes accurate
in the limit n -~. In this l,imit, the "Hartree
limit, ""we designate the entropy function H„sim-
ply by 6 and obtain from Eq. (2.8) the self-con-
sistency condition

8(T»1) = 4 '=~~ -~~, '+~~~, '+ ~ ~

1 5
2z' ~2 8v 6477~2 (3.8)

E (r»1)=-,'K +~~ '-~~-'+ ~ ~ ~

In the second line, 7 has been eliminated by means
of Eq. (3.3). Equation (S.V) is illustrated by the
curve labeled "~" in Fig. 1. For the limiting case
of very large positive r we find from Eqs. (3.5a)
and (3.V)

or

7 = —6+1/48'. (3.3)
2 167. 64' ~2 (3.9)

Although we could eliminate 8 from Eq. (3.S} by
solving it as a cubic equation for 8 in terms of
7, it is more convenient to keep 8 as a param-
eter of the problem related to T by Eq. (3.3). It
is also convenient to introduce the inverse corre-
lation length a = (v „)'~' = (28) ' and its noninter-
action or "bare" value z, = 7 ~'. (The latter is
defined only for positive v. ) In this notation Eq.
(3.3) becomes

T=K —I/2K. (3.4)

K=K + K — K + K +'''
0 4 0 32 0 16 0

From Eq. (3.4} we have obtained the curve labeled
"~" in Fig. 2 of 6=(2a) ' vs r. Equation (3.4) can
be inverted for v&0 to give the series expansion

The first terms are simply Eqs. (2.5) and (2.V),
and would give the entropy and energy accurately
for all r if there were no interaction. The second
and third terms correspond to the interaction
correction from first- and second-order perturba-
tion theory, as demonstrated in Sec. VII. Note
that each successive order of perturbation theory
introduces a factor of z, ' =7 ' '.

Equations (3.4) and (S.V) solve the problem in
the Hartree limit for the entire range ~& T& —~
or 0& 8&~. These results for entropy and ener-
gy as functions of 7 are shown by the curves la-
beled "~" in Figs. 2 and 1, respectively. As noted
above, they simplify for r» l. Simple limiting
expressions can be obtained not only for 7»1,
as noted above, but also for v « —1, where we
find

p/2 ++7~1 ~ ~7-5/2 +~7 1 + ~ ~ ~
4 32 16

For negative r we find the expansion

1 1

(3.5a)

(3.5b)

8(7« —1)= —7+1/46

~ —r+ 1/4r'

= 8„v+I/4r', (3.10)

The general expression for the thermodynamic
free-energy density per degree of freedom is
readily obtained from Eq. (3.3) and from Ward's
identity, Eq. (1.12):

8 8 1d8 1E„'(r) =-=-+-—7+6 ——
2 2 2 dg 48

and have identified the mean-field entropy func-
tion

(3.11)

The corresponding energy is

E„(v« —1)= —v'/4+ I/8 [ v [

d 7 1 1=——8+—8 +-
d7 2 4 88 (3 5) =E~+1/8) v),

with the mean-field energy identified as

(3.12)

1 1 g 1=-—8 +—= ——
4 48 2 16' ' (3 V)

The additional term, which vanishes by Eq. (3.3),
enables us to write E „' as a perfect derivative and
to identify the Hartree energy as

1 1
E„(7)=-8+—8'+—

2 4 88

(3.13)

Equations (3.11) and (3.13) are shown in Figs. 2
and 1 by the dashed strai. ght line and parabola,
respectively. We note in Eq. (3.12) that' the first
correction to the asymptotic energy is smaller
by the factor [ 7') ', and not by [ r [

'~', as might
be expected from Eq. (3.9) and the discussion
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dT 1 K~—=2K+
dK 2K 2K

(3.14)

where

which follows it. We shall see in Secs. IV and
V that this is a natural consequence of the isotropy
of the model. Because the quartic interaction de-
pends only upon the "radial" component of the
field, P =(g P', )' ', the 7 ' correction to the ener-
gy comes from this one degree of freedom alone,
and contributes to E„only in order n"'. It conse-
quently disappears from E„. The difference
8„-E„is plotted in Fig. 4 for n =1, 2, 3, and 4.

The specific heat per degree of freedom in the
Hartree limit, C„, is obtained by differentiating
(9 with respect to T. It is convenient to work in-
stead with the variable K and to obtain from Eq.
(3.4} the derivative

as can also be obtained by direct differentiation
of Eq. (8.8) or Eq. (8.9).

IV. QUANTUM-MECHANICAL EQUIVALENCE

In this section we review the equivalence of the
transfer matrix of statistical mechanics to the
unitary time-development operator of quantum
mechanics. This equivalence has already been
discussed in detail"; we will therefore content
ourselves here with a brief summary. The equiva-
lence is easily exhibited by means of an analytic
continuation of the space variable g into the com-
plex plane as the pure imaginary quantity u =i t,
with t the analog of the time variable in the quan-
tum-mechanical evolution of the oscillator. The
extent of the system becomes the imaginary quan-
tity 0 = i(i, —f,) = it» and the partition function
becomes

~, = (42 + z ')'~' (8.15)

is the inverse correlation length for energy fluc-
tuations, as will be discussed in Sec. VII below.
Figure 5 shows x„8z, and the ration 8z/a, plotted
vs 7. From Eqs. (3.14) and (3.15) one finds"

Z« = 5 exp i dt I.

The Lagrangian now assumes the usual form of the
difference between kinetic and potential, energies,

1 1 dK

dT 2K 2K dT

~= g~)'-.(~),

with potential energy

I (e) =

(4.8)

(4.3)
1 1

KK2 1 +4K
(3.16)

&T ' &T +''ey T&&1

I-ilail '+ " (3.17}

This is the smooth monotonic function of T shown
by the curve labeled ~ in Fig. 3. It has expansions
outside the critical region of the form

For the sake of simplicity, we limit ourselves for
the moment to a single-component field.

The functional integral in Eq. (4.1) is nothing
other than the Feynman sum over paths, which
can be expressed in terms of X, the Hamiltonian,
as the trace

/, 0

0.5

0

FIG. 4. Deviation of the free-energy density from the
Hartree limit, E„-E vs reduced temperature T, for
n=1, 2, 3, and4.

FIG. 5. Reciprocal correlation lengths vs reduced
temperature 7. /(:

~ and K 2~ are the correlation lengths
for the order parameter and the square of the order
parameter, respectively. The minimum in f(:2 corre-
sponds to the phase transition which occurs in higher-
dimensional systems, but which is smeared out by
fluctuations in one dimension. In the absence of an-
harmonic interaction, /f2 would be equal to 2f(:. With an-
harmonicity taken into account, the ratio 2/(; jf(:& varies
monotonically between the limits 0 and 1.
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Z« =(const. )x Tre "ai (4 4)
Rl

We now analytically continue back to real values
of u and find that the desired function is given in
the thermodynamic limit by the quantum-mechani-
cal ground-state-energy eigenvalue E:

Z„=(const.}xTre "
= (const. ) x e -"s . (4.5)

By substitution of Eq. (4.5) into Eq. (1.9) it is
evident that the ground-state energy appearing in
Eq. (4.5) is identical to the E of Eq. (2.6). The
last line of Eq. (4.5) follows from the fact that in
the thermodynamic limit (Q-~}, contributions to
the trace from excited states become negligibly
small compared to the ground-state contribution.
The Hamiltonian function which appears in the
above equations is that of a one-dimensional an-
harmonic oscillator,

1 8~
X = —2, + V(P) . (4 6)

18' n —18
(4.V)

All of the above is readily generalized to an
n-component field. Because of the isotropy of
the model, the Hamiltonian can be written in terms
of the radial and angular variables. The depen-
dence on the angle coordinates ean be dropped
from the Hamiltonian function„as we are only
interested in the ground state. Thus there re-
mains only the dependence on the radial coordi-
nate p,

The new potential includes a kind of "centrifugal"
term

l(l +1) r ~ 1
+ -y'+ —(t)'

2y
(4.10)

associated with the "angular momentum"

l = v —1=(n —3)/2. (4.11)

Because of the factor P'+' in the transformation
in Eq. (4.8) the eigenfunction of H„mu st vanish at
(1} =0. This boundary condition applies for all
n& 1. Equations (4.9) and (4.10) can be interpreted
as meaning that the ground-state problem for
arbitrary n has been transferred to the problem
of computing the excited states of the three-di-
mensional model corresponding to various values
of 1. (See Ref. 2 for another discussion of this
equivalence. ) According to Eq. (4.11), l can
formally be extended to half-odd-integer values.
l even becomes a continuous variable if n is re-
garded as such. But returning now to integer /

and letting nE„, represent the l th excited-state
energy of an n-dimensional oscillator, we use
Eqs. (4.8) and (4.9) to obtain the connection be-
tween E, , and the ground-state eigenvalue E„,
where n =3+2/. To make this connection exact,
we have to allow for the minor complication of
the differing normalization of the anharmonic
term. We take this into account by scaling the
order parameter to P' = (3/n)~~6$. Then Eq. (4.9)
becomes

Here the dependence on the dimension n appears
in both the potential-energy and the kinetic-energy
terms. It is convenient to transfer all of the n

dependence to the potential energy term by trans-
forming to the new operator

H „—= P"3C„Q""

1 8 l(l+1} r, 1
H =-284," 24, '24" 4n

3 '~' 1 8' l(l +1)
n 2 8')" 2$'~

n '~'v
yl2 ++yI412 (4.12}

The desired connection between the eigenvalues
is therefore

1 8 n -1-2v 8 np- p -2p
E„(~)= (3/n)'~'E, („,) g,[(n/3)'~'~ ] . (4.13)

1 8
Hn=

2 8
a+U (p). (4.9)

(4.8)

Choosing 2v equal to n plus a constant eliminates
the n dependence from the coefficient of the first-
order differential operator. The specific choice
2v=n -1 eliminates this term altogether and
leaves us with the effectively one-dimensional
Hamiltonian

This kind of reduction can also be applied to the
n =3 ground state itself. We see this from the fact
that l (f + 1) =0 for n = 3, according to Eq. (4.11).
Consequently the centrifugal term disappears in
this case, and both n =3 and n =1 involve finding
eigenvalues of essentially the same operator, Eq.
(4.9). The only substantial difference in the two
cases is in the boundary condition at P =0, so that
the ground-state eigenvalue for n =3 is in fact the
first-excited-state eigenvalue for the n =1 prob-
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lem. Here we scale the order parameter to P'
=3 '~' P, in order to allow for the difference in
anharmonic normalization, obtaining

v= (n —2)/2. (4.15)

Distinguishing the operator which we thereby ob-
tain by a prime, we have

(4.16)

where the nem potential

(4.17)

contains a two-dimensional. centrifuga, l potential
term corresponding to the planar angular momen-
tum v. Here again, as mith the three-dimensional
oscillator, the correspondence to excited states
can be extended formally so that v takes on not

only integer values, but half-odd-integer and con-
tinuous values as mell. In both models only the
excited states associated with eigenfunctions
having no radial nodes correspond to the ground-
state energies of the higher-dimensional oscilla-
tors.

Allowing for the change of the anharmonic nor-
malization in Eq. (4.1V), in analogy with the deri-
vation of Eq. (4.13), gives for the eigenvalue of
Eq. (4.16) the connection

E„(T)= (2/n) ~ E („„ / [(n/2} ~' T] . (4.18)

For the special case n =4, Eq. (4.18) reduces to

E,(T}=2~ 'E, ,(2'~' T) . (4.19)

Vfe have applied this equation in the preparation
of Fig. 1. The n =2 ground-state energy and the
reciprocal of the n = 2 excitation energy are dis-

(4.14)

The n =1 ground-state energy and the reciprocal
of the n = 1 excitation energy are displayed by the
curves labeled "REAL" in Figs. 2 and 6, respec-
tively, of Ref. 6. From these sources and Eq.
(4.14) as well as from further numerical com-
putations, me have prepared the curves labeled
n = 1 and n = 3 in Fig. 1 of the present paper.

The ground-state problem for arbitrary n can
alternatively be reduced to the problem of finding
excitation energies for the tmo-dimensional in-
stead of for the three-dimensional model. For
this reduction we return to Eq. (4.8) and choose

pla.yed by the curves labeled "COMPLEX" in Figs.
2 and 6, respectively, of Ref. 6. Allowing for a
further scaling, because of the n-independent nor-
ma, lization of the anharmonic term in Ref. 6, me

have used this material and further numerical
computations to prepare the curves l.abeled n =2
and n=4 in Fig. 1.

Although no use of it mill be made in this paper,
we note here in pa.ssing that the connection be-
tween the ground-state energy E„and the ex-
cited-state energy E„o ( )/, which is illustrated
by Eqs'. (4.18}and (4.13}for n, = 2 and 3, respec-
tively, can be generalized to n, &3.

V. CORRECTION TO THE
HARTREE APPROXIMATION

In order to obtain systematic corrections" to
the Hartree approximation as an expansion in
powers of n-', me return to the effective one-di-
mensional problem defined by Eqs. (4.9) and (4.10).
A typical example of the effective radial potential
U„(P) is shown in Fig. 6. Here we have chosen
T = 2 and n = 5, so that l = (n —3)/2 = 1. The curves
show separately the harmonic potential Tp'/2 = p',
the centrifugal potential 1(l +1)/2P~ = P ', and
the sum of the two, which has a minimum of U„(1)
= 2 at p' = 1. At the minimum the anharmonic term
equals (4n) '

=2~0 or only 2.5@ of the total potential.
It has therefore been neglected. As me need to
calculate the ground-state eigenvalue for the
Hamiltonian operator of Eq. (4.9), it is natural
to approximate U„(P) by a parabola centered at
the minimum and matching the curvature at that
point. This approximation is also shown in Fig.
6 (by a dashed curve), and reduces the eigenvalue

4—

~r
05($)

FIG. 6. Effective quantum-mechanical potentia, l Us
vs order parameter P for 7 =2 and n =5. For this choice
of reduced temperature and oscillator dimensionality,
the anharmonic term can be neglected. The harmonic
and centrifugal terms are sholem by the curves labeled

and P 2, respectively. The parabolic fit to the sum
is illustrated by the dashed line. The quantum-mechani-
cal zero-point energy calculated in this parabolic ap-
proximation is an important contribution to the first-
screening-approximation correction.
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y' = l(l +I)/r.
The value of the potential at the minimum is

(5.1)

problem to that of the harmonic pscillator. Carry-
ing this out for arbitrary n and 7» 1, for which
we are still permitted to neglect the anharmonic
term, gives a potential minimum at P, deter-
mined by

Sec. 0 can be recovered in the quantum-mechani-
cal formulation of the problem, we employ again
the parabolic fit to the potential —but this time
including the anharmonic potential in the total
potential to be fitted. This will enable us to ob-
tain results in the range n» 1 which are valid for
all values of v. With the anharmonic term in-
cluded, the minimum is determined by

—) s7)/&(I 3/s)&/2(I 1/s)&/&

I ny/3 &
j. /2 (5.2}

U„'(P„)=-
~ +vQ +-P~ =0,l(l +1) 1

haft
n

The curvature is

to O(1). The bar on U„ indicates the neglect of
anharmonicity.

The curvature at the minimum is

(5.3}

We find the ground-state energy by adding to the
potential at the minimum the zero-point energy:

l (1+1) 2

= I/O'+28=48+~ '=2, (5.8)

(5.4)

The zero-point energy has exactly canceled the
n ' correction to the potential energy, yielding
a net energy exactly proportional to n. This is
the result to be expected in the absence of inter-
action and is in agreement with Eq. (2.7). The
corresponding ground-state wave function g„ is
a Gaussian function centered at (II} . Substituting
from Eq. (5.3), we obtain

)~/2 -r»(4-4 ) (5 5)

where z, has been defined in Eq. (3.15}and is
discussed in Sec. VII below. In Eq. (5.8) we have
approximated Eq. (5.7) by Eq. (3.3) and we have
substituted p' = n8 and l(l + 1)=n'/4 into Eq. (5.8).
This last approximation is sufficiently accurate
for Eq. (5.8), it being of O(1). But for computing
the potential minimum U„(4) ) we need the more
accurate expression l(l +1)=n'/4-n. We can
still use P'=n8, however, as the resulting error
in U„(Q }by virtue of Eq. (5.7) is of the order of
[P -(N8)' ']'=(@ -s8)'/[Q +(n8)'/']' or O(n ').
Thus we obtain to O(1)

squaring this„we get a probability distribution of
exactly the form of Eq. (2.24}. An apparent dis-
crepancy occurs in the location of the maximum
of the distribution, because from Eq. (5.1) we

obtain to O(1)

1 1 1—n -8+-8 +—
2 4 88 28

=nE —1/28 =nE —g .

Adding the zero-point energy to this gives

(5.9)

n —2
2

(5.6)
nE„=nE„—1/28+ a[U„" (Q )] /~

= nE„+ (1/28)[ —1+1(1+28~)'/~], (5.10)

as compared to 4)'. = (n —I)/2r'/' in Eq. (2.18).
Thus P w Q and it is necessary to distinguish
between the maximum of the distribution and the
minimum of the potential. This discrepancy can
be resolved by noting that the skewness of U„(P)
causes it to deviate sufficiently from the symmet-
rical parabolic approximation to shift the maxi-
mum outwards from P to the slightly larger val-
ue p . We will return to this point again in Sec.
VI below.

Having now demonstrated that the simplification
of stochastic peaking which was worked out in

which can also be expressed in terms of the in-
verse correlation lengths as

(5.11)

This result is shown by the curve labeled "s" in
Fig. V. The curves labeled 1, 2, 3, and 4 there
exhibit the corresponding numerical solutions for
these values of n.

We note that for v» 1, a, =2m, according to Eq.
(3.15), so that the two contributions to Eq. (5.11}
cancel, just as we saw above in Eq. (5.4) when
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neglecting the anharmonic term in the potential.
The leading terms in the n ' correction to E„ in
this region are [from Eq. (3.5a)J

g(l) ~ J g-2 J g-5 gg-2 ~+-5j28 8 0 i28 0

Collecting powers of (1+28')-'~' =2K/«„ we find

—8&'&/8 =n(1 —8„/8)

=(1+28') '&'+2(1+28') ' —3(i+2(V) '~',

~&-5/2
128 (5.12) (5.16)

while for v« -1 we find from Eqs. (5.11) and

(3.5b}

E&
' & =&«-'~' —« —-(2 ) r

~

)'&' - 1/2
~

7 ~, (5.13)

where 2
~ r[ will be recognized as the stiffness in

this limiting region, where the centrifugal con-
tribution to U„(&f&} can be neglected E. quation
(5.13) supplies the expected [ 7 P

&' correction to
the energy, which we remarked above was missing
from the Hartree energy, Eq. (3.12).

Differentiating Eq. (5.10), we find the correction
to the entropy function

8&»=n(8 —8) =2n
"(~"

which is shown by the curve labeled "'s" in Fig. 8,
The curves labeled n=1, 2, 3, and 4 show the
results of numerical computation, i.e., the re-
sults of differentiating the corresponding curves
in Fig. 7. For )7 ~

»1 Eq. (5.16) reduces to

6) 1(, ) 1/2r' ', T»1

Jl/v 2[~~'~' r« —1. (5.1'I)

Thus, aside from a factor of v 2, the fractional
entropy change has symmetrical asymptotic be-
havior.

Turning now to the specific heat, we differentiate
Eq. (5.16) to find the O{n-') correction,

=——-[-1+(1+28')'&']d8 dl
de d88

C&'~ =n(C„C„)-= „n(8—„-8)

d8 283—=-C =- =-1+(1+28') '
dy " &+283

(5.15}

as exhibited in Eq. (3.16) and as displayed by the
curve labeled "~" in Fig. 3. It is convenient to
divide Eq. (5.14) by 8, which gives us the frac-
tional correction to the Hartree entropy function.

[(1+28')'~'+ 2 —3(1+28'} '~']d8
d7 28

(5.14)

The remaining derivative is the negative of the
Hartree specific heat,

(1+28 )
' 2+4(1+28 ) -a&-(1+28 ) ~~2

—10(1+28') '+ ~(1+28') ' '+6(1+28') '

-~2 (1+28') '~'. (5.18)

7 « 1
(5.19)

Equation (5.18) and the numerical computations
are shown in Fig. 9. Equation (5.21) reduces for
[ri»1 to

l.0
0.50

I

c 0.25

0 l I

0
0-4

I

-2
FIG. 7. Deviation of the free energy from the Hartree

limit, n(E„-E„), vs reduced temper'ature T. The cases
n =1, 2, and 4 show the tendency toward the first screen-
ing correction (curve labeled "s") E(~&(v) in the limit

pg, ~. (The curve for g =3 falls too close to that for
n =4 to be included. )

FIG. 8. Fractional entropy reduction vs reduced tem-
perature T. 8 —8„ is the reduction of the entropy function
from its Hartree value, 8. The cases n =1, 2, 3, and 4
show the tendency toward the first screening correction
(curve labeled "s") in the limit n -~.
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C =1+~en 2. (5.21)

The computer calculations for small positive inte-
ger values of n show a maximum which is more
pronounced than would be indicated by Eq. (5.21}.
Truncation of the series expansion at 0(n ') im-
plies only qualitative validity for small n. The
requirement of positive definiteness for specific
heat, or convexity for the energy, "puts an abso-
lute lower bound on n. Figure 10 shows the ratio
C ' /C„as a function of v. The minimum of —1.24
falls at 7 =0, which would lead to a negative spe-
cific heat in this vicinity for values of n smaller
than the minimum ratio. Therefore, the convexity
theorem permits the use of the first-order screen-
ing approximation only for n ~1.24, or if we limit
n to integer values, for

n)2. (5.22)

VI. HIGHER-ORDER CORRECHONS

In this section we derive the corrections to the
free-energy density which are of order n-'. These
are of relative order n ' compared to the Hartree
contribution to the free energy and of 6(n-') rela-

as expected from direct differentiation of Eq.
(5.17) or Eqs. (5.12}and (5.13). Comparison of
Eq. (5.19) with Eq. (3.17) shows that the g depen-
dence of the n ' correction to the specific heat
dominates for sufficiently large negative v. This
ensures a maximum in the specific heat, located
for n»1 at

(5.20)

of magnitude

tive to the correction which has been calculated
in Sec. V. The first effect which we need to ex-
amine is the discrepancy noticed in Sec. V in
connection with Eq. (5.6). There we noted that the
maximum of the wave function determined in the
quantum-mechanical problem occurred at a small-
er value of the order parameter than found in
Eq. (2.18) for the equivalent stochastic problem
studied in Sec. II. %e remarked that the reason
for the discrepancy was that the potential contained
some skewness which was neglected in the par-
abolic fit used for the quantum-mechanical cal-
culation. This skewness is illustrated in Fig. 6
by the deviation of the solid from the dashed
curve, and we now proceed to take it into account
by returning to Eq. (4.9} and expanding the poten-
tial of Eq. (4.10}to higher order It .will be suffi-
cient for our present purposes to truncate this
Taylor-series expansion at fourth order, which
gives us the approximation

(6.1)

For the purpose of clearing up the discrepancy
in the location of the maximum of the wave func-
tion, we concentrate first on the simplified prob-
lem which is obtained by neglecting the anharmonic
term in the potential. This simplified potential,
designated as before by a bar, is given by

(6.2)

0.2

0, 1

8
0c

O
-0.1

i l o (o

-0.2

-0.3
-1.0

FIG. 9. Deviation of the specific heat C„ from the
Hartree limit C„vs reduced temperature 7. The cases
n =1, 2, 3, and 4 show the tendency toward the first-
screening-approximation correction (curve labeled "s")
in the limit n

FIG. 10. Fractional deviation of the specific heat from
the Hartree value. The cases n =1, 2, 3, and 4 tend
toward the curve labeled "s", which shows -2C „~82E& ~/

87, the ratio of the first-st;reening-approximation cor-
rection to the Hartree specific heat C„, The minimum
of —1.24 in the latter implies that the first screening
approximation violates the positive definiteness of the
specific heat for n & 1.24.
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The value of this potential at its minimum has
already been given in Eq. (5.2) and the location
of the minimum is determined by Eq. (5.1). The
curvature is expressed by Eq. (5.3) and the higher-
order derivatives occuring in Eq. (6.1) are

Consequently, neglecting terms which are quadrat-
ic in the shift, we find for the square of the order
parameter at the maximum

(4-+&4.)' = 4'. + 24.&4.

l (l + 1) 123 12&2 (6.3)
=(n —2)/27' ' +1/2~'~3

= (n —1)/2T'~3 (6.14)

60 l (l + 1) 607. 120 ~
n

(6 4)

We are thus led to the quantum-mechanical prob-
lem of finding the lowest eigenvalue of the operator

H„=U„(Q„) +2efT„' (6.5)

where the reduced Hamiltonian has the form

2
fedH =-- +-q -Aq +A, q2 8/2

We have introduced the reduced coordinate

(6.6)

(6 'l)

and the dimensionless coupling constants for the
cubic and quartic terms,

~ = —(1/3 t) (2~)-"30'"= 1/2n'~3,

~' = (1/4 i) (2s)-3 fl" = 5/631 .

(6.8)

(6.9)

~ Hq )10' 1 + 3 (q )30'4l

—Ag Qo. (6.10)

The unperturbed spectrum of the reduced Hamil-
tonian is E„=n+ 2. g„are the associated ortho-
normal eigenfunctions. The approximation of the
last line of Eq. (6.10) is valid for q « l. The
ground-state wave function is the Gaussian

y0(q }= W-'/4 e-"~3 (6.11)

so that for A, «1 we find the shift in maximum to
be

(6.12)

Returning to Eq. (6.V} we find that the shift in the
location of the maximum in the oxder parameter
relative to the parabolic approximation is

The shift in the maximum is produced entirely
by the cubic term, as the quartic term preserves
the symmetry of the parabolic approximation.
To calculate the shift in the maximum we need
-the first-order perturbation in the ground-state
wave function,

(q').0

n-l&0-~.
= (1/32n) (-11+15)=1/831 . (6.15)

Consequently the second term in Eq. (6.5), in-
cluding the unperturbed zero-point energy, is

2Mo = e+ ~/4n

(6.16)

Now we must calculate to O(n ') the first term in
Eqs. (6.5), namely, the potential evaluated at its
minimum. The location of the minimum is given
in Eq. (5.1), which in turn leads to

—
( )

l(l +1)
N tlat 2 y2 2

=3y3 =[3.1(l +1)]1&3

n / 1 l/ 3 l/2

Ne have substituted from Eq. (5.6), and it is evi-
dent that the asymmetry of the potential does
restore agreement between the quantum-mechan-
ical treatment of the problem in Sec. V and the
stochastic treatment given in Sec. II.

It is instructive to carry further the comparison
between the quantum-mechanical and the stochastic
treatments of Secs. V and II, respectively, by
calculating the shift to O(n-') in the free energy.
Here we know from the stochastic treatment that
we are really dealing with n independent degrees
of freedom without any interaction between them.
Consequently, the total free energy is exactly
proportional to n and there are in fact no terms
of order unity, or of order n ' or higher in n '.
Thus, if the quantum-mechanical treatment is
carried out accurately, it must follow that all such
higher-order contributions cancel in the final an-
swer. We briefly sketch how this happens, as a
prototype for the subsequent more complicated
calculation which includes anharmonicity. First,
we note that the reduced Hamiltonian gets its
ground-state energy shifted by second-order per-
turbation from the cubic term and by first-order
perturbation from the quartic term. These two
contributions are of the same order and combine
to give

~Z' = ~z'+ ~x'
C 8 4

b, p =(47) 1~4~=1/4p v~3. (6.13) 7 1/2 ~l/2 T1 /21-2 '-4n (6.17)
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Here we have terminated the expansion at O(n ').
Substituting Eqs. (6.1V) and (6.16) into Eq. (6.5)
gives, for the ground-state eigenvalue of II„,

E„(T)=V„(y„)+2~'~'Z"

the dimensionless coupling constants for the cubic
and quartic terms of the reduced Hamiltonian of
Eq. (6.6) have become

(6.18) = (2n) -"~'~-'~'~ ~'(4a' —1), (6.22)

We see that the required cancellation of higher-
order terms has indeed occurred.

The effect of anharmonicity to O(n ') wiB now

be calculated in the same way. (Of course, here
we do not expect cancellation. ) Just as before,
we specify the deviation from the parabolic fit to
the potential, which is shown for n = 5 and vari-
ous values of z in Fig. 11, by the third derivative

12
l (l + 1) 6

~'=(1/4!)~ U"

=(4n) 'v, '(20'' +1) . (6.23)

The terms -1 and +1 inside the parentheses arise
from the anharmonic term in the Ginzburg-Landau
expression. Dropping them and replacing ~, by 2a
reduces Eqs. (6.22) and (6.23) to the earlier ex-
pressions, Eqs. (6.8) and (6.9), respectively. The
cubic and quartic terms inH„'~ produce a shift in
ground-state energy of

~ &E' =~,(-, )p+~az')

=n '~2~(-2~~ '+10m +4~') . (6.24)

and the fourth derivative

l(l +1) 6 6 5 n'
U"=60 +- =- 1+-—

n n 2 p

6 5 6= —1+ =-(1+208) .
n 28 n

The dimensionless variable is now

(6.19)

(6.20)

(6.21)

Just as in Eq. (6.1'l), to the above quantum effect
has to be added the correction to the minimum in
the potential energy. This is purely a classical
calculation and involves two effects. The first
effect is the deviation of the centrifugal term from
its ideal n=~ form, which we obtain as an expan-
sion in powers of n-':

U. (t.~)")= . —0* —0')l(l +1) ~, 1
2(II) 2 4n y („e&l/2

n 3 1 T n=—1 —— 1-—+—ng+-0
88 n n 2 4

1 4 3=n —6I+- 6)'+—1 —-+—,
2 4 86) n n

1 1 1 3=n —6I+-6I +———+—n
2 4 88 28 88

FIG. 11. Effective quantum-mechanical potential vs
order parameter p for n = 5 and various values of the
reduced temperature 7. The case 7 =2 is illustrated in
Fig. 6, which also shows the parabolic fit to U&(P). As
7 decreases the parabolic fit becomes worse and the
skewness of Us(tYI)) about its minimum becomes more
marked. This effect contributes to the second screening
approximation.

U„" &Q +n/p' =0. (6.26)

The true minimum value of the potential is lower
than that calculated in Eq. (6.25) by the s,mount

(6.25)

The first term in the above equation is simply the
Hartree expression, Eq. (3.7), while the second
term is the first correction to the Hartree ex-
pression, already found above in Eq. (5.9). The
final term is a new correction of O(n '), For
convenience, we have evaluated the potential at the
approximate value P =(n8)'~'. The actual potential
minimum falls at a slightly different value of (I),

which deviates from (n8)'~2 by n p„, as determined
by
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~U. =U. (e.) U-. (( 8)")= .'-U-."(~~.)'

= —(n'/2U„") (n8)-' = —4g'/ng', , (6.27)

where 4Q has been substituted from Eq. (6.26).
Adding the quantum correction of Eq. (6.24) to
the classical corrections of Eqs. (6.25) and (6.27),
we obtain, in analogy with Eq. (6.18),

(6.28)

Unlike Eq. (6.18), however, this does not give the
full correction of O(n-'). In the present calcula-
tion an additional effect enters which was not
encountered in the calculation earlier in this sec-
tion. This is a correction to the zero-point energy
arising from a change in the curvature at the mini-
imum of the potential. This effect did not occur
previously because, by virtue of Eqs. (5.1) and
(5.3), the curvature at the potential minimum in the
absence of anharmonicity is given exactly by
4K =4m, to all orders in n '. This is no longer
the case when anharmonicity is present and we
calculate the value of the curvature at the potential
minimum in a fashion very similar to the way that
we found the value of the potential itself in Eqs.
(6.25} and (6.27). First, to O(n '), the curvature
at the approximate location P = (n8)'~' is

Z(') =12——6 —+
K K 1

K 4KK2 2 2
(6.33)

Asymptotic expressions for E(" in the high- and
low-temperature ranges are

g(2) 3 6
1 K 11 1

K2 K2 4 KK2

-~K-'+~ K-' =-~T-'~'+~7-', g» 164 Sj.R 64 512
g (2)

6s5/2 +(7)-1 (3/23/2) (7,)-5/2 T(g

(6.34)

Figure 12 shows a plot of Eq. (6.33}, the second
screening approximation, identified by the label
"ss", as well as numerical computations of
n[n(E„-E„)-Et'l] for I =1, 2, 3, and 4. One
sees that the main deviation of n(E„E„)fr-om
E(', which was displayed in Fig. 7, has been
accounted for by E('). The residual deviation can
be ascribed to the terms in Eq. (6.32) of O(n ~)

and higher. E ' has been obtained numerically
and is shown in Fig. 13 along with E(') and E(').

For the purpose of deriving second-screening-
approximation formulas for the entropy and specif-
ic heat, it is convenient to reexpress Eq. (6.33)
in terms of the correlation-length ratio 2z/z,

I +28')-'/'. Thus we find

U„"((n8)'~') = ~', —122/n . (6.29)

U» (y } Ue((s8)1/2)

=(12m/ne', ) (4a' -1}. (6.30)

Consequently, the zero-point energy in the para-
bolic approximation to the potential, but with the
correct curvature, is to O(n ')

A further change arises because of the difference
in the location of the potential minimum, This

brings in the third derivative, so that substitution
from Eqs. (6.19) and (6.26) gives

=38 (1+283) ' —38 (1+28 ) —+8'(1+28 )

= 8 [~~(1+28 )
' -3(1+28 ) '~2+~(1 +28 ) ~]

(6.35)

Substituting from Eq. (5.15), and denoting the
quantity appearing within square brackets in Eq.
(6.35) by [" ], we find the second-screening-
approximation fractional-entropy correction

2[U„"((n 8)' ') + &U" ] '~' = —'(K —24K/SK')'~'

=-,'~, —6x/na, . (6.31)

Adding the combined classical and quantum con-
tributions of Eq. (6.28) to the additional quantum
contribution of Eq. (6.31) gives finally

S =S' +S(')n-'+S(') n-'+"
n (6.32)

where the first and second terms are the Hartree
expression, Eq. (3.7), and the correction, Eq.
(5.12). The third term expresses the new higher-
order correction

FIG, 12. Deviation of the free energy En from the first
screening appraximation E„+n ~E(~) vs reduced temper-
ature 7. The cases g =1, 2, 3, and 4 tend toward the
second screening correction E(2) (7) (curve labeled "ss"}
in the limit n —~.
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8&'~ 2 dE~'~ 2 d8 d sl" ]=- ——8' [ ~ ]=2[-l+(1+28') '] 2[ ~ ]+68'
8 8 d7 8d7d8 s(1+28')

=2]-i.]i.ms']-']In& "].3]i.2e*],',",',, -s, ',",'„I.
The first term of the first factor and the first and second terms within braces do not affect the power of
(1+28') ', while the second term of the first factor and the third term within braces increase the exponent
by unity. Carrying out the indicated operations yields

8' '/8= ~(1+28') -15(1+28 } s~ +20(1+28') +42(1+28 ) '

-~(1+28'} ' —27(1+28'} '~'+33(1+28') '. (6.3"I)

Designating the right-hand side of E&I. (6.3'I) now by [ ] and differentiating once more, we find for the
second-order specific-heat correction

de~'~ de d=-——8[" ]=[1-,'1+28 }-'][" ]+3(1+28')
df dv d8 8(1+28 } s(1+28 )

= - (1+28]} '+~2 (1+28 ) ~ 2 -~2(1+28 )-' —393(1+28 )-5 2+~2(1+28 ) +912(1+28 ) '~'

-au]]](1+28'} 4-855(1+28') ']"+asu(1+28'} '+sn(1+28'} "~' —396(1+28'}-'

Figure 14 illustrates the application of E&I. (6.38)
to the specific case n =2. The curve labeled "2"
shows the exact numerical evaluation of C,(v) while
"s" and "ss" show the first- and second-order
approximations C +C&']/2 and C„+C&']/2+C&2]/4,
respectively. [C&'](r) and C&'&(r) were computed
from E&ls. (5.18) and (6.38), respectively. ] It is
evident that including the second-order term has
modestly improved the accuracy of the approxima-
tion. It is interesting to note from Fig. 13 that
E ' is almost exactly proportional to the deriva-
tive of E&'~. Thus the third-order correction will
be equivalent simply to a shift of E ~ along the T

axis toward negative r. Such a shift wi11 very
much better reproduce the true variation of C,

with r, as can be seen from the fact that the "s"
curve crosses the "2" curve at v values just 0.3
smaller than where it crosses the "ss" curve. It
obviously would be worthwhile to carry the quan-
tum-mechanical calculation to yet one higher order
in n ' in order to see if the resulting formula for
E&" is in fact reasonably represented by sE&']/sr.
This, however, will remain a task for the future
and we do not attempt it here.

VII. PERTURBATION THEORY AND SCREENING

In this section we present an abbreviated de-
scription of the application of the perturbation
techniques of quantum field theory" to the prob-

1.0
I.O =

:0.5
Ld

0-4
I

-2
[

2

FIG. 13. Higher-order screening corrections E(~ ~(v)

vs reduced temperature 7.. The first-, second-, and
third-order corrections for p =1, 2, and 3 are shown

by the curves labeled "s " "ss " and "sss " respectively.

FIG. 14. Specific heat C„vs reduced temperature 7
for n =2. The curve labeled "2" shows the exact numeri-
cal results, while "~"shows the Hartree approximation.
The improvements upon the Hartree approximation are
shown by the first and second screening approximations,
whic'h are plotted as the curves labeled "s" and "ss",
respectively.
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L'(u) =-(4») 'Q y', (p)y', (u). (7.1)

lem of the Ginzburg-Landau field in one dimen-
sion. We show how to establish contact with the
methods used previously in this paper and we
relate the results obtained earlier in this paper
to the method of screening which has been applied
to the general problem of the Ginzburg-Landau
field in an arbitrary number of dimensions (e.g. ,

D = 3 and D =2) " First we note that the problem
posed by Eqs. (1.8), (1.10), and (1.11) is trivially
solvable in the absence of the fourth-order an-
harmonic term in the Lagrangian I„. It is, there-
fore, natural to attempt a perturbation expansion
in the anharmonic term, which we distinguish by
a prime,

By substituting from Eq. ('l.2) and regrouping
the terms according to the number of times I.„'

occurs, we obtain the perturbation expansion

~$„=$„,+$„~+%„,+' ' ',
where the first-order term is simply

'(1)&.=-„-( !& .1 I

(7.5)

(7.6)

The second-order term 5„, receives contributions
from both the first and second terms of Eq. (7.4).
These two terms tend to cancel one another so as
to leave the result independent of the volume 0
of t:he system. The result depends only on the
correlation function for I.„' according to

According to Eq. (1.8) we have to expand the ex-
ponential function exp J L„'(u) dc. The individual
terms in this expansion are to be summed over
all configurations of the n-component P field.
According to Eq. (1.15) such sums, or functional
integrals, ca@ be written as averages carried out
over the noninteracting field, which we denote
by the subscript O. This gives for the ratio of
the additional portion of the partition function to
the unperturbed partition function,

gZIn ) ZIn)

ZI)" ' ZI)

41 L 1 0+— 8142 I„

1
2ng

dl d2[& L„'(1)L„'(2)&,

-& Ll(1)&a& Ll(2)&0)

dl d2(6L„'(1)6L„'(2))0

dl2( 6L„'(1)6L„' (2))o.
1

(7 7)

0 cancels out in the last line because in a homo-
geneous system the correlation function depends
only upon the relative coordinate 12=-u, -u, . Here
the subtraction which occurs leads to the correla-
tion of the fluctuations of the perturbed term of
the Lagrangian,

6L„'Q) = L„'(u) -( L„&,. (7.8)

P„o = —(1/»D) 1nZI)0) (7.3)

and is found in Eqs. (2.6) and (2.7) to be, up to an
additive constant, r'~'/2. By expanding the loga-
rithm we find for the remaining portion of the
free-energy density

nZIn)
&n = n —+~ = ——» 1+ ~e)

r,Z)n) 1 4Z)~)
- 2 1 UZI~) 3

na ZI,",) 2»n ZI,",) 3»a ZI,",)

(7 4)

+ — d1d2d3 I.„' 1 I„' 2 I„' 3 0+ ~ ~ ~ .
31

(7.2)

As already stated, the subscript on the angular
brackets indicates that these averages are to be
computed according to Eq. (1.15) by dropping L„'

from L„. The coordinates g„g„and u, of vari-
ous points are abbreviated by 1, 2, and 3, re-
spectively. The zero-order free-energy density
in the absence of interaction is given according
to Eq. (1.11) by

This cancellation of the unphysical terms in the
free-energy density (i.e., those which wou]d de-
pend on the volume linearly or on higher powers
of the volume) is, of course, essential for a phys-
ically acceptable perturbation expansion, and is
familiar in the many-body problem and in quantum
field theory as the linked-cluster expansion. Only
linked clusters contribute to the free energy in
a statistical-mechanics problem or to the ground-
state energy of a many-body quantum system. The
unlinked clusters which occur in ZI)" and which
depend on higher powers of 0 cancel out of the
perturbation expansion for J„. In this section we
exhibit in detail only the calculations through
second order of perturbation theory and for the
sake of brevity shall simply sketch schematically
the contributions of higher order. A detailed
treatment of the application of higher-order per-
turbation theory to the one-dimensional Ginzburg-
Landau field will be postponed to a later publica-
tion. "

We now proceed to evaluate the first- and
second-order contributions, Eqs. (7.6) and (7.7).
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In this it is necessary to treat the terms in the
sum in Eq. (V.l) differently depending upon whether
the indices i and j are unequal or equal. %'hen

i w j the expectation value factors because of the
statistical independence of the fluctuations of the
ith and j th field components in zero order:

& 4l 4»&0=& Al&0& 0&&0=G'0(0). (7.9)

&e', &. =3&sf&.&el &.=3G:(o). (7.10)

G,(0) is the order-parameter correlation function
evaluated at zero separation, and will be computed
further below. First we pass on to the case i =j,
where there are now three mays in which the field
variables can be paired, giving the factorization

(e) (g)

FIG. 15. Feynman diagrams for the free energy shaw-
ing the first-order contribution (a), the second-order {b)
and (c), and all third-order diagrams (d)-(g).

Therefore, in summing j over all n values, we
have to add a correction term of +2 for the case
j = i. The result of the summation is thus an over-
all factor of n+2. The remaining sum over i
yields an additional factor of n, so substituting
Eqs. (7.1), (V.9), and (V.10) into Eq. (7.6) gives

= —,n(n+2)G', (0) =-G', (0)+—G',(0). ('t. ll)=1 a

The correlation function is the Fourier integral

G.(») =&a, (1)4, (2)&

The higher-order terms in the perturbation ex-
pansion are the more complicated to evaluate and
it is useful to depict the integrals encountered by
means of the Feynman diagrams of Fig. 15. Graph
(a) illustrates the first-order calculation just
completed, while (b) and (c) correspond to the
integrals required for $„,. %'e designate these
parts by P„» and P„„,respectively. If we denote
the indices at 1 by i and j and those at 2 by i '

and j ', then we see that graph (b) requires one
of the indices i' or j ' to equal either i or j,
assuming i qf: j . This gives factors of 2 at both
points. If we denote the remaining index at 2 as
k w j, then the sum over all such ca,ses contributes
to the required correlation function the amount

1
dP g (P, 0«0)e'~», (7.12) Q Q4&6[y'(l)P', (I)16[4'(2)0'(2)]&o

where the Fourier component is

g0(P, «,) = I/Q'+ «', ) (7.13)
= 4(n —I)'&y', &, (y', &,P &6y', (I)6y,' (2)&,

G.(12) =(1/2«, ) e "0~""~, (V.14)

so that at zero separation me obtain

G,(0) =1/2«, . ('l. 15)

Substitution of Eq. (V.15) into Eq. (7.11) gives the
first-order correction

6:„,= 1/16«', +1/Bn«0. (7.16)

We note that the first term in Eq. (V.16) is identi-
cal to the leading correction to the free energy
found in Eq. (3.9). The second term in Eq. (7.16)
of O(n ') is identical to the leading term in Eq.
(5.12).

and ~, is the inverse correlation length in the
absence of interaction, as discussed in connection
with Eqs. (3.4) and (3.5). Carrying out the Fourier
integral gives explicitly

=4n(n -1) G (0)&6lg(1)6yy(2) & . (7.17)

The subscript b in the above average excludes the
additional term which arises from 0 = i. This
term corresponds to graph (c) and will be com-
puted further below. But we must include with
graph (b) those cases when k =j or i =j. In the
latter case we lose the factor of 2 associated with
the choice of which index at point 1 to pair with
point 2, but we replace this factor with the com-
binatorial factor 4x 3/1 x 2 =6 representing the
number of ways in which two factors of p, (1) can
be chosen out of $0&(1); i.e.,

(64)(I)5[Ii(2)4'(2)1 & =&54'(I)60'(2)&.&4l&.

= 6& eg &0&4'0 &0&54',(I)5yg (2) &0

(V.19)
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and similarly for 0 =j . (The special case 0=i =j
is handled in the same way. ) Thus we see that the
factor (n —1)' in Eq. (7.17}has to be replaced by

(n+ 2)', giving for the required correlation func-
tion

( 6I.'(1)61," (2)&, = 4„G',(0)(6$"(I)64/(2) &. .

(7.19}
The last factor in this equation can be evaluated by
pairing the field variables in two different ways
to yield

d 12 G',(12}

—+ — du ~2 e 4 "0~"»~1 1 2
64K', n n'

1

128n iso 64nl g50
(7.26)

The sum of Eqs. (7.26) and (7.23) gives the total
second-order correction

( ey', (1)64,'( 2)), =2G', (12) . (7.20)

It is convenient to write G', (12) as the Fourier
integral

&.g =&ngs+&n2c

1 9 5
64m~ 128naso 64n~tPO

' (7 .27)

1
G', (12) =— dqII, (q, «,)e""». (7.21)

As G', (12)=k, '(4k, ) 'e "0"»' is of the same form
as G,(12) itself, it iollows in analogy with Eq.
(7.13) that

These terms are identical to the third term in

Eq. (3.9), the second term in Eq. (5.12), and the
first term in Eq. (6.34), respectively.

1.st us denote the term in 6'„„oforder n " by
and collect all of the p, = 0, or "Hartree, "

terms to obtain, from Eqs. (7.16) and (V.27),

Il o(q, Ko) = Ko /(Qo + 4KO) . (7.22)

Substitution of Eqs. (7.22} and (V.19) trit Eq. (V.V)

gives

1 1

1620 64m' (7.28)

22P,=-- 1+- G', 0 d12C', 12 in agreement with Eq. (3.9). Similarly, the p= 1

terms combine to give

~(~) ~(~) + ~(~) + ~(~) +...

1 1

64)(~ 16ng~ 16n~g~~
' (7.23)

Turning now to graph (c), we have two different
ways in which the indices i' and j' at 2 can match
i and j at 1. Thus the sum over j for j e i is

2 2&6[4 l(I) y', (I)]6[4 l(2)4', (2)1 &

=2 Z«4l(I)64)(2) &.&64*,(I)64', (2)&.

= 8(n —l)G4(12) . (V.24)

On the other hand, when j = i the pairing between
points 1 and 2 can be accomplished in 4l =24=3~8
different ways. Consequently, as before, the
factor n —1 in Eq. (V.24) has to be replaced by
n+2, giving for the required correlation function

1 1 1
8]co2 16go5 128'~

1 1
8' 128m'

(7.29)

Here we have used Eq. (3.5a) to introduce ~, the
Hartree self -consistent reciprocal correlation
length. This corresponds to "dressing" the i =j
parts of graph (a) of Fig. 15 by the closed-loop
appendage shown in (b}. Further such dressing
in third-order perturbation theory is illustrated
by graphs (d) and (e). Thus, the problem is great-
ly simplified and many of the graphs shown in
Fig. 15 are automatically included if we use
dressed linea, which by definition include all
possible closed-loop appendages. This corre-
sponds to a rearrangement and partial summation
of the perturbation expansion. If we denote by a
bar the terms in perturbation theory evaluated in
such a way, we have in "first order" (containing
in fact all higher-order dressings)

&6L„'(I)6L„'(2)&„=-2 G', (12). (V.25)
1 1 1=- G'(0) =— dqll, (q, ~) .82 2 4m

(7.30)

Substituting this result into Eq. (7.7) gives the
corresponding contribution to the free energy, In this rearrangement of terms, graph (b) is in-
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eluded in $~(') and no longer needs to be considered
explicitly. The only second-order graph not auto-
matically included by dressing graph (a) is (c),
which in turn gets dressed in third order by graph
(f). The latter is therefore included implicitly in

].
d12 6'(la}128K' 4

(c)

dq II', (q, z) .1 (7.31)

The second line follows from dropping the sub-
script zero from Go(12) in Eq. (7.26)—indicating
that K is to be used instead of K, . Substituting
from Eq. (7.21}gives the last line.

As already stated, graph (f) of Fig. 15 is in-
cluded in Eq. (7.31) as a dressing of (c). Similar-
ly, graphs (e) and (d) are included in Eq. (7.30)
as higher-order dressings of (a). These three
graphs are the third-order perturbation diagrams
describing one, two, and three closed-loop
dressings, respectively. The only third-order
graph not yet included is (g), containing no ap-
pendages. Including higher-order dressings, we
find

(V.32)

Equations (7.30), (7.31), and (V.32) can be com-
bined to give

FIG. 16. Feynman diagrams for the pair propagator.
(a) shows the bare propagator wo(q, f(:), while (b) and (c)
illustrate first- and second-order corrections, respec-
tivel. y. The sum of all the open-chain diagrams of type
(d) gives the screened propagator 7}(q,K).

To conclude this section, we give a brief dis-
cussion of the power series in II, which is con-
tained in the integrand of Eq. (V.33). The ring
diagrams shown in graphs (a), (c), and (g} of
Fig. 15, if opened up into open chains, become
graphs (a), (b), and (c), respectively, of Fig.
16. Summing to all orders of perturbation theory,
corresponding to graph (d), gives the "screened"
pair propagator

Il(q, a) = IIo —Iio+IIo —~ ~ ~

llo 1
1+Ilo 1+II

p(&) —p(j ) —$'(&) + $'(j ) + $'(&) +me 3h 1 K

1+Kq +4K q +K~
' (7.36)

dq ln(1+ II,}. (V.33) }.00

Equation (7.33) is the special case D =1 of the
general first-order screening formula" 0.75

5P= s d q In[1++(q, «)]
1

(V.34)

and can be readily evaluated by integrating by
parts:

0.50

q' dq

ss o (q'+«, ) (q'+4«')
0.25

~K ddt 4K

1T 0 q +K~2p O q +4K
PC2—

I

I 2 3
Ie

I

1=-(« —2~) .
2 2 (7.35)

Eq. ('l.35) is identical to El' of Eq. (5.11), the
f}(s-') correction to the energy obtained by the
method of quantum-mechanical equivalence.

FIG. 17. Screened pair propagator 7(.(q, fit vs q for
different values of 7 (labeled at the ends of the curves),
The inverse of the wave vector ~2 sets the range of the
spatial correlations of the square of the order parameter.
As 7 decreases from 1.8 to -4.4, I~2 decreases to a min-
imum at v =-0.75 and then increases.
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where the new reciprocal correlation length

K = ( 4~' + ~ ')'~' (7.37}

has already been encountered in Eq. (3.15}and

is plotted as a function of 7 in Fig. 5. Substituting
from Eq. (3.18), we see that the screened pair
propagator can altexnatively be written as

C„(v)
II(q, ~) = (7.38)

Equation (7.38) is plotted in Fig. 17 for five differ-
ent values of 7 It w.ill be noted that II(q, a) at first
becomes more peaked as 7 decreases, corre-
sponding to decreasing z, . But as 7 becomes
negative, the Hartree specific heat C„(r) begins
to saturate at unity, its 7--~ asymptotic value,
and the plot of ll(q, ~) becomes flatter again-cor-
responding to the rise in z~ shown in Fig. 5, to the
left of the minimum.

VIII. SUMMARY

MJe have studied the classical statistical me-
chanics of an n-dimensional order parameter
which exists in one spatial dimension. This many-
body (field) problem was reduced to a quantum-
mechanical one-body problem which we solved
numerically. It, therefore, provides a convenient
testing ground for studying the convergence as
well as understanding the nature of approxima-
tions used for higher spatial dimensions, Here
we have shown in various figures how the results
for finite n converge toward the n =~ answer. In
addition, we have investigated the n ' expansion
by computing the first- and second-order correc-
tions to the n =~ result.

%'e find that the second screening approximation
improves the accuracy in a kind of mean-square
sense. This can be seen directly in Fig. 14, where
we have plotted the exact specific heat for n =2
and the zeroth (Hartree), first, and second
screening approximations given by C„, C„+2C ',
and C„+2C{' + &C{'), respectively. Note the os-
cillatory fit of the second screening approxima-
tion (C„+&C&" + 4C"') to C, . Computing C"'
would clearly be worthwhile.

The nature of the large-n limit was discussed
in terms of a stochastic peaking which takes place
in the distribution function of P when n-~. It
is this effect which allows one to obtain results
for all temperatures (and spatial dimensions) when
n»]. .

The quantum-mechanical formulation of the
problem provides insight into the n ' expansion.
This was previously developed for higher spatial
dimensions as a selective summation of certain
Feynman graphs. In the quantum problem, the
n dependence of the kinetic energy was eliminated
in favor of adding a centrifugal term to the poten-
tial. Then the screening approximation was seen
to arise simply from expanding this new potential
about its minimum. Keeping the value of the po-
tential at its minimurq to order n-' and adding
the zero-point motion about the minimum with the
curvature calculated to order n' gave the first
screening approximation. Expanding both of these
effects out one more order in n and including
in lowest order the anharmonic part of the poten-
tial leads to the second screening approximation.
It will be interesting to study the Feynman graphs
which give rise to the second-order screening
approximation since we now know their contribu-
tion for the case of one spatial dimension. ""
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