
PHYSICAL REVIEW A VOLUME 9, NUM BER 2 FEBRUARY 1974

Exact diffusion equation for a model for superradiant emission

L. M. Narducci
Quantum Physics, Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

and Department of Physics, 8'orcester Polytechnic Institute, worcester, Massachusetts 01602

C. Alton Coulter
Quantum Physics, Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

and DePartment of Physics, University of Alabama, University, Alabama 35486

Charles M. Bowden
Quantum Physics, Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

(Received 27 August 1973)

The super-radiant master equation {SME) of Bonifacio et al. is analyzed using the coherent-
atomic-state representation. %e have succeeded in deriving an exact Fokker-Planck equation
for the density function corresponding to the reduced atomic density operator in the diagonal
atomic-state representation. A solution to the Fokker-Planck equation has been provided in
an elementary fashion for arbitrary atomic states which are sufficiently removed from the
state of complete inversion at time zero. The general solution for arbitrary initial conditions
(including the initial state of complete inversion) has been obtained using the method of eigen-
function expansions and the final result expressed in terms of an integral over the initial den-
sity function. The moments of the collective atomic operators are also discussed.

I. INTRODUCTION

The cooperative emission of radiation (super-
radiance) from a large collection of excited ttvo-
level systems was originally discussed by Dicke'
in 1954 and has received renewed attention in the
last few years from a large number of authors.
In his original paper Dicke pointed out many fea-
tures of super-radiant emission, using a simple
model for the active medium and applying first-
order perturbation techniques to arrive at the
emission rates. Many of the more recent contri-
butions have attempted to improve on Dicke's
calculations so as to eliminate the restrictions
inherent in the first-order perturbation analysis.
(The groups in Rochester, N. Y., and Milano,
Italy, have been especially active along these
lines. )

Picard and Willis" succeeded in deriving cou-
pled equations for the density operators of the
atoms and of the field in the framework of the
theory of kinetic equations. Their treatment pro-
vides a very general description of the collective
evolution which requires a limited amount of as-
sumptions on the relative time scales of the inter-
actions and on the spectral nature of the radiated
field. As one might expect, the price one has to
pay for the generality is an increased complexity
in the resulting equations of motion. In contrast,
the model of Bonifacio and Schwendimann'0 and
Bonifacio et al. ,

"to be discussed shortly, assumes

on physical grounds that a single quasimode of the
field is present at all times.

Agarwal" used the master-equation approach to
arrive at a Fokker-Planck equation for a phase-
space distribution function associated with the
reduced atomic density operator. Here again, no
a priori assumption was made on the spectral
nature of the radiated field and the sample size.
This theory provides an exact hierarchy of equa-
tions of motion for the moments of the atomic
operators which cannot be solved exactly for a
macroscopically large number of atoms unless
some simplification is introduced. " Agarwal also
arrived at an operator master equation. which is
formally identical to the one analyzed in this paper
by restricting to an active volume with linear di-
mensions much smaller than the radiation wave-
length.

Of particular interest to the present work are
the results of Bonifacio, Haake, and Schwendi-
mann. " These authors analyzed in detail the dy-
namics of the super-radiant emission from a low-

Q pencil-shaped cavity containing the excited
atoms in an arbitrary initial state, using a master
equation for the reduced atomic density operator.
The advantage of the geometrical shape considered
by Bonifacio et al. (and originally proposed by
Dicke ) is that precise criteria can be established
for the validity of the master equation. Under
specified conditions (the so-called super-radiance
limit) and in the Markovian approximation, the
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master equation in question has the form

g'„( t ) = —'[R, W„( t )R '] + -'- [ R W„(t ), R '] . (1.1 }

Here, W„(t ) is the reduced atomic density opera-
tor and R' and R are the collective atomic opera-
tors which, with the collective energy operator R„
satisfy an angular momentum algebra. In Eq. (1.1)
the time variable is scaled to the emission rate
per atom in the diffraction solid angle of the end-
flre mode.

The super-radiant master equation [Eq. (1.1}]
contains complete statistical information on the
evolution of the atomic system. In addition, Boni-
facio et a/. "have demonstrated that it also pro-
vides information on the electromagnetic field
statistics. Specifically, they have proved that,
in the same super-radiant limit which defines the
domain of validity of the master equation, the
average of normal-ordered products of the elec-
tromagnetic field operators. a' and a, are related
to the averages of ordered products of the atomic
operators R and R as follows:

(a"a ( )t) = (-igjK)" (-1)'(R"R (t )) . (1.2)

Here, g is the atom-field interaction constant,
and K is the photon decay rate due to radiative
losses out. Of the cavity.

Different schemes have been produced to arrive
at solutions of the master equation [Eq. (1.1)].
Bonifacio et al."used numerical integration pro-
cedures to ealeulate the probability distribution
p(m, t ) that the collective system be in a quantum
state characterized by the eigenvalue m of the
collective atomic operator R, . Their results were
confirmed analytically by Degiorgio and Ghiel-
metti" using an ingenious heuristic procedure.
Haake and Glauber" arrived at a solution using
a quasi-probability-distribution representing the
density operator of the atoms and derived explicit
expressions for the moments of interest in the
asymptotic limit in which the number of atoms
(or more accurately the cooperation number) is
very large.

Quasi-probability-distributions associated with
density operators have in fact been used quite
extensively in connection with the evolution of
electromagnetic field operators. It is well known

that, by using the Glauber coherent states'0 es a
basis for a continuous representation, one can
associate with the density operator W(a, a', t), a
quasi-probability-function P(o, t) such that the
diagonal representation

holds. After the density-operator equation is

transformed to anti-normal-ordered form, a
simple rule of correspondence provides the differ-
ential equation for the function P(n, f). For most
problems of interest (e.g. , laser theory) the equa-
tion of motion for P(u, t) becomes a Fokker-Planck
equation containing only a drift and a diffusion
term and thus being, at most, of second order in
the variables n and a ." Very recently a number
of authors" ~ have proposed continuous-basis
representations to describe collections of two-
level atoms. In particular, Arecchi, Courtens,
Gilmore, and Thomas" (ACGT) have introduced
a continuous-basis representation analogous to the
coherent-state representation for the electro-
magnetic field. The formal similarity between
the coherent atomic states and the coherent Glau-
ber states has prompted the present investigations.

Our calculations, which appear to be the firs~
application of the ACGT formalism, lead to an
exact Fokker-Planck diffusion equation for a
quasiprobability distribution P(H, y, t) which is
the diagonal weighting function of the density oper-
ator W„(f) in the ACGT representation The.
Fokker-Planck equation can be solved in simple
form for initial conditions such that the atomic
system is not in. the immediate neighborhood of
the state of complete inversion. (This result,
given in Sec. IV, follows from neglecting the dif-
fusion term of the Fokker-Pianck equation. ) Fur-
thermore, under the same conditions, we have
demonstrated that the expectation values of normal-
ordered products of atomic operators can be cal-
culated by averaging powers of trigonometric
functions according to the rule of correspondence,

R"R '- (rsin&P',

R",- (-r cos &)" .

Here r and 6) are, respectively, the atomic cooper-
ation number and the polar angle of the coherent
atomic states. It follows from this that the arbi-
trary atomic moments (R"R",R ') are completely
specified by the set of reduced moments (Rf), a
circumstance which might prove useful for com-
putational purposes. Finally, we have obtained
the general solution in integral form for arbitrary
initial conditions by using the method of eigen-
function expansions. This solution can be used to
describe the physically interesting case of initial
complete inversion.

Our presentation is organized as follows: In
Sec. II we review the physical model and the
super-radiant master equation of Bonifacio et al.
In Sec. III we introduce the ACGT states and sum-
marize the properties which are relevant to the
present work. In Sec. IV we give an outline of the
derivation of the Fokker-Planck equation. (The
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details of the calculation are presented in Appen-
dexes A and B.) The solution of the Fokker-Planck
equation in the limit of negligible diffusion effects
is presented in Sec. V, together with the calcula-
tion of the atomic moments. In Sec. VI the proper-
ties of these atomic moments are studied further
and the hierarchy of time-dependent coupled equa-
tions which govern their evolution is constructed.
The explicit solutions given by Haake and Glauber
for the time-dependent atomic moments are shown
to satisfy our coupled equations. Finally, the
analysis and solution of the complete Fokker-
Planck equation which includes the diffusive term
is presented in Sec. VH using the eigenfunction
expansion method described by Titchmarsh.

II. SUFER-RADIANT MASTER EQUATION

The master equation (1.1) has been derived by
Bonifacio et al."from the consideration of the
radiative properties of a collection of N two-level
systems contained in a pencil-shaped cavity with
a very low Q. The atomic system prepared in an
arbitrary initial state is assumed to interact with
only one resonant axial eigenmode. Some ques-
tions have been raised in connection with the
validity of this assumption, since there seems to
be no reason a priori why the atomic system
placed in the vacuum state of the field should ra-
diate initially only in a specified mode. However,
it is proved in Ref. i6 that this ansatz can be made
consistent with the spectral properties of the ra-
diated pulse which, in the super-radiant limit,
has indeed a bandwidth which is much smaller than
the separation of adjacent eigenmodes of the
cavity. Radiation processes in other axial as well
as nonaxial modes of the cavity are not supported
by cooperative effects, so that they can be treated
as a noise background. In addition to the inco-
herent radiative losses associated with the low
cavity Q, the model includes decay mechanisms
for the two-level systems leading to the familiar
damping of the population (characterized by a
longitudinal relaxation time T, ) and of the trans-
verse polarization (with a relaxation time T,).

The cooperative radiation process has been
shown to occur under the following conditions:
(i) The incoherent atomic decay times T, and T,
are much longer than the cooperative radiation
time t, (super-radiance coherence time); (ii) the
length of the active medium is smaller than a cer-
tain correlation length / „so that the envelope of
the radiated field is constant over the active vol-
ume. The mathematical conditions on t, and l,
required for the existence of superradiant decay
have been discussed by Areechi and Courtens"
using a self-consistent argument based almost

[R', R-] =2R„

[R„R']=2R'.
(2.2)

The parameter I, representing the radiated inten-
sity of a single isolated atom into the diffraction
solid angle of the end-fire mode will be eliminated
in the following development by a suitable scaling
of the time variable.

Two properties of the master equation which are
important in connection with the continuous-basis
representation are

(i) TrW„(t) = 1 [conservation of probability],

(ll) (R'( t)}-=Tr(R'W„( t)) = (R'(0)}

[conservation of the cooperation number].

The first property offers a convenient check
against algebraic errors in the rather involved
derivation of the Fokker-Planck equation (Sec.
IV); the second and more fundamental property
allows the consideration of a continuous basis rep-
resentation in the angular momentum subspace
of a given cooperation number. Both properties
can be verified quite easily from the master equa-
tion (2.1).

As show'n by Bonifacio et al. and confirmed by
a number of other authors, the behavior of the
physical variables of interest (population inver-
sion, polarization, field intensity, etc. ) is essen-
tially classical for all initial preparations of the
atomic systems that are sufficiently removed
from the state of complete inversion. It is impor-
tant to emphasize that, , while the classicallike
behavior is characterized by statistical fluctua-
tions of the collective parameters which decrease
as the radiated intensity grows, the quantum
fluctuations do not damp out if the atomic system
is initially prepared in a state of complete inver-

entirely on physical considerations. The mathe-
matical development adopted by Bonifaeio et al.
consists of projecting the I.iouville equation for the
total density operator on the subspace of the atomic
variables by means of the Zwanzig projector tech-
nique. '6 The resulting integrodifferential operator
equation is then reduced to a manageable form
by using the first Born approximation. The final
form of the equation of motion for the reduced
atomic density operator, in the Markovian approxi-
mation, is

W„( t) = —,I,([R,W„( t)R ' ] + [R 'W„( t), R ]},
(2.1)

where 8' are the collective atomic raising and
lowering operators which together with a third
operator R, obey the angular momentum algebra
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III. ATOMIC COHERENT STATES

Several attempts have been made recently to
define continuous-basis representations for collec-
tions of identical two-level atoms. '2 ~ A very
elegant and convenient representation was inde-
pendently proposed by Hadcliffe" and by ACGT"
in terms df what ACGT have called Bloch states. "

The Bloch states, which represent fully sym-
metrized states of the two-level atoms, are de-
fined in the subspace of cooperation number r as

~8, y)= g ~r, m)(r, m~ 8, q)
m=-r

= p (., -)(„'",„"
x (

a 8)r-)))e-((r + m) ((

(sin-,' 8)"'

(3.1}

where 6) and cp are the angular variables in a
spherical coordinate system, and where 8=0 cor-
responds to the south pole of the sphere, Fig. i.
The quantum states ~r, m) are the usual Dicke
states satisfying the eigenvalue equations

sion. From a mathematical standpoint, the classi-
cal behavior will be accurately described by a
simplified version of the Fokker-Planck equation,
while the evolution of the density function cor-
responding to the initial state of complete inver-
sion appears to be describable only by the exact
Fokke r-Planck equation.

R'(r, m) = r(r+I) )r, m),

R, )x, m) =m)r, m).
(3.2)

+r

dpi ( 8, q)(8, q[ = g )r, m)&r, I(=1,
4m

(3.3)

where dO = sin6}d6}dy. Furthermore, they are
normalized but not orthogonal; the inner product
is given by

~
(8, (p~ 8'p') ~' = (cos-,'8)'",

where cose =cos8cos8'+sin&sin8'cos(y —y'}.
Perhaps the most important property of the

atomic coherent states in connection with the pres-
ent work is the existence of the diagonal repre-
sentation

The cooperation number r ranges from 0 or ~

(depending on the parity of the number N of atoms}
to —,'N, while the energy eigenvalue m is restricted
to the range (-r, +r}. In view of the conserved
nature of the cooperation number during the super-
radiant emission, it will be sufficient to restrict
our considerations to

~ 8, &p) states with a single
value of r.

The atomic coherent states defined by Eq. (3.1)
possess a striking similarity to the coherent states
of the electromagnetic field. " They form a com-
plete set in the sense that the identity operator in
the (2r+1)-dimensional space of the angular mo-
mentum R can be resolved as follows:

C= dAg 6), (p 6}, cp (3.4)

for a wide class of operators 6 in terms of a
c-number weighting function g(8, qr). In particular,
the representation (3.4) is always valid when G

is the density operator, i.e.,

W„( t) = dQ P (8, y, t) i 8, q)( 8, c) i . (3.5)

In this case the quasi-probability-distribution
P (8, y, t}, which in a sense defines the density
of Bloch states on the surface of the sphere, is
subject to the normalization condition

T (t)= f)d)()P(((), t)=(. (3.6)

FIG. 1. Relation between a point on the Bloch sphere
and the corresponding point in the complex plane. The
complex plane is shown tangent to the north pole of the
Bloch sphere, and & is the complex number defined by
the intersection of the line, tangent to the sphere at the
point {8,$) and passing through the Z-axis, with the
plane.

Unlike the well-known I' function associated with
the density operator of the electromagnetic field,
the P(8, qr, t) function need not be singular (e.g. ,
a tempered distribution), as it can always be ex-
pressed as a finite sum of at most (2r+1)' terms"
using as a convenient set of basis functions the
spherical harmonics 1, (8, p) with /=0, 1, . . . , 2r
and ~m(~/. Besides the obvious significance of
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the ACGT formulation from a purely formal point
of view, the coherent atomic states provide a
useful alternative for the calculation of arbitrary
moments of the collective operators R' and 8,.

It follows from the representation (3.5) that the
expectation values of ordered products of the form
R"R",R ' are given by the integral

15=0

2F 2&»2
Iytp& (sin-,'8) (cos-,'8)'" 'e "~.

=0

(4.1)

We observe that we now have the relations

(R"R R' ",) Jdt)P=( ~8, t),(8, r(R" R", R 'l 8, 8).-

(3 'I)

R'Iy, p& =[(» -P)(P+1)1'"lP -I&,

R Iy, p&=[(2y p+I)-P1'"Ip -»,
(4.2a)

(4.2b)

The matrix elements (8, yIR" R",R '
I 8, y& have

been calculated in Ref. 32. ACGT have defined
the characterisitic function

R.i.,p&=(p —.)I,p&. (4.2c)

If we use Eq. (4.1), the representation (3.5) of the
density operator becomes

x(~, 8, y)=-(8, @Ie"" e'"Re" IB, (t» (3.6} W„(t) =
J

dBsinBP(8, t)A (8), (4 3)

x (ye (~sin-,'8+cos-R'8)]". (3.9)

The required moments can then be evaluated by
direct differentiation of the function y(n, P, y) as
follows:

(8, yIR" R",R "I 8, q
&-

and, by using a powerful "disentangling theorem, "
have proved that &t(&, P, y) is given by

lt(o, sty) =[e() 'sin'-,'8+e 8~'(o(e(P sin-,'8+cos-,'8)

where

A(8)=g (cos-,'8)'"" "(sin-,'8)'~Ir, p)(r, pI.
2r

P=O

(4.4)

In Eq. (4.3) we have integrated over the variable
y under the physically plausible assumption that
the initial phase of the collective atomic system
is unspecified. From Eqs. (3.3), (4.1), and (4.4)
we observe that

TrA(8) =1. (4.5)

BO,' BP By

(3.10)

This result will prove extremely useful in dealing
with the moments of the atomic operators for the
super-radiant emission process, in which the
number of atoms is intrinsically a very large
number (Sec. V}.

In Sec. IV the results summarized here mill be
applied to obtain the equation of motion for the
quasi-probability-function P(B, dt), t).

IV. DERIVATION OF C-NUMBER

FOKKER -PLANCK EQUATION

In this section we derive the equation of motion
for the quasi-probability-distribution P(8, &p, t)
which appears in Eq. (3.5}. As we shall see, this
will turn out to be a c-number Fokker-Planck
equation on the Bloch sphere (Fig. 1}. The solu-
tion of this equation with the appropriate initial
conditions together with the results discussed in
Sec. III allow one to calculate all the moments of
interest for the atoms as mell as the radiation
field.

We find it convenient in this section to relabel
the Dicke states which appear in the expansion
of the Bloch states so that Eq. (3.1) is written

Next we replace W„(t) in the super-radiant
master equation (SME), Eq. (2.1), with Eq. (4.3),
and note that this results in the following terms
on the right-hand side of the equation:

Rr

dBsinB A(8) ' +P(8, t) g
P=O

x (cos-,' 8)'"" "(sin-,' 8)"

x [(2r -p+1)p —(2r -p)'

x (tan-,'8)'] Ir, p&(r, pI (4.7)

R W„R' = dBsinBP(B, t}R A(8)R', (4.6a)
0

tr„(t)R R= J ds ~ HP'(s, t)A(8)R R''
0

(4.6b)

R'R ts„(t)= J dsst HP(8, t)R RA(8). '

(4.6c)

The expansion of the above expressions in terms
of Dicke states is given in Appendix A. When
Eqs. (A2), (A3), and (A4) are used in Eq. (2.1)
the SME becomes
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Now we express the coefficients of I' andI' in
Eq. (4.V) in terms of A (8) and its derivatives. In
order to accomplish this, the identities, Eqs. {A6)

and (A'I), are used in Eq. (4.7); after collecting the
coefficients of A and its first and second deriva-
tives one obtains for the SME the form

d& A(8) —+'[{2r+I)+2rc os&] Q(&, t) —-', (1 —cos&)Q(&, t) =0,aQ sin& &A (8) 8'A(8)
at 1+cos8 ' a 8 a8

(4 9)

where we have written for convenience in the development which follows

2'{l'

Q(6, t) =sin&P(8, t) =sin& d&pP(6, rp, t). (4.9)

If we integrate by parts, Eq. (4.8}becomes

�

&@(8 t) 1 8
d&A(8} ' —— [(2r+I)+2rcos&] Q(6, t) ——

+ [(1 —cos&)Q(8, t)] +I", +I; —I;=0,sin8 1

at 2 a8 1+cos8 2 a8

(4.10)

where I;, I"„and I; a,re surface terms which are
shown in Appendix 8 to add to zero. Thus, it is
sufficient for Eq. (4.10) to be satisfied that the
term in the integrand in large square brackets be
identically zero. Therefore, the solution to the
SME is equivalent to the solution of the partial
differential equation

a a sin8—Q(6, t) = — -rein& — Q(8, t}
& t ' 8 8 2(1+cos8)

(4.11)

with the appropriate initial conditions. This to-
gether with Eq. (4.9) determines the reduced den-
sity operator (4.3) for all time.

It is to be noted that Eq. (4.11) is a Fokker-
P1.anck equation on the Bloch sphere which pro-
vides the equation of the quasi-probability-density
Q(&, t}. The roefficient of Q(8, t) in the first de-
rivative term, the drift coefficient, describes the
motion of the peak of the function on the sphere.
It contains two terms, the first of which is con-
sistent with the classical description of the evolu-
tion of the Bloch vector. The second term in the
drift coefficient is, on the other hand, completely
negligible for large values of the cooperation
number r, except for values of 8 very close to the
state of complete inversion, i.e., 8= n. %'e in-
terpret this term as the source of spontaneous
decay. The coefficient of the second derivative
term, the diffusion coefficient, contributes to the
spread of the function Q(8, t) on the Bloch sphere~
and has its maximum value for the state of com-
plete inversion. It will be indicated in Sec. V that,
for sufficiently large values of r, the second term

tan 2 8=1/z,
2 +1

(4.12a)

(4.12b)

which has the advantage of reducing the coeffi-
cients of the Fokker-Planck equation into simple
polynomials in z. The independent variable z
is the modulus squared of the complex number ob-
tained by mapping the Bloch sphere on the complex
plane in the manner shown in Fig. 1. The factors
appearing in Eq. (4.12b) are introduced for con-
venience and lead to a normalization condition
for the weighting function (P (z, t) on the plane of
the form

(4.12)

By using Eqs. (4.12a} and (4.12b) in Eq. (4.11)we

in the drift coefficient and the diffusion term con-
tribute to the same order in the region where they
are important, namely, in the neighborhood of
8=@.

Equation (4.11), although quite elegant from the
point of view of the physical interpretation, is not
in a convenient form for the mathematical solution.
For the condition where the diffusion term and the
second term in the drift coefficient can be ne-
glected, we have solved the reduced equation by
the method of characteristics. This we treat in
Sec. V along with the calculation and discussion
of the relevant moments.

For the case where the system evolves from a
state of complete inversion, the noise and diffu-
sion coefficients cannot be neglected and we must
solve Eq. (4.11). This can be best accomplished
by performing the following transformation:
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find the tra.nsformed equation to be

86' 86' 8%
8t =[1+2(r+I)~1 +i(I+~)

BZ Bz
(4.14)

This equation is readily converted into canonical
form; the solution by an eigenfunction expansion
method will be presented in Sec. VII.

This result, which strictly speaking applies only
to the case in which fluctuations are negligible,
actua. lly holds for most ini'tial conditions except
those in the neighborhood of 8p 1T provided the
cooperation number is sufficiently large.

It is interesting to observe4' that in terms of the
angle y, defined by

V. SMALL-FLUCTUATION LIMIT (R,&
——,

'- =(r+-,') cosy, (5.9)

A(8) = rsin8-- sin8
2 1+cos8 (5.1)

which governs the motion of the distribution func-
tion as a whole on the sphere, can be given an
attractive physical interpretation in the limiting
case of negligible fluctuations. In this case, the
average value of the energy operator 8, is essen-
tia.lly equal to

(R,&
= -r cos8, (5 2)

where 8 = 8(t) is the instantaneous angle between
the Bloch vector and the south pole of the sphere.
If fluctuations are neglected the evolution of the
Bloch angle is given by the Langevin equation

d8 . 1 sin8= —r sin8+—
2 l +cos8 (5 3)

Using Eq. (5.2), one can easily arrive at the equa-
tion of motion for (R,&,

d(R, &

dt
r'(1 —cos'-8) —-'r(I —cos 8)2 (5.4)

which in the limit of large cooperation numbers
and upon identification of (R,&' with r ' cos'8 be-
comes

As demonstrated in Sec. IV, the diffusion equa-
tion for the quasi-probability-distribution Q(8, t)
is a Fokker-Planck equation on the surface of the
Bloch sphere. Beginning with a given initial con-
dition, the function Q(8, t) evolves in the direction
of the south pole of the Bloch sphere while it is
broadened (or narrowed) until, for very long times,
the asymptotic distribution is essentially a 6 func-
tion at 8 =0 corresponding to the physical situation
in which the system is in the ground state ~r, -r&.

The drift eoeffieient

the equation of motion (5.3) simply becomes

Gg--- = -(r+-, ) sin&p, (5.9)

which is the semiclassical equation discussed by
Bonifacio et al. Unlike the equation of motion (5.3)
with the "noise term" removed, Eq. (5.9}evolves
even when the initial atomic state is one of com-
plete inversion ((R,(0)& =r) due to the fact that the
initial value for y,

y(0) = arccos[(r ——,')/(r +-,'-)], (5.10)

although quite small, is not identically zero. Still
we must remember that Eq. (5.9) is an approxi-
mate result valid only when the atomic fluctua-
tions which accompany the cooperative emission
can be neglected.

On the other hand, if one assumes an initial
distribution Q(8, 0) which is sharply peaked around
a value 6, sufficiently removed from m, it is
obvious that for large cooperation numbers the
dominant contribution to the evolution of Q(8, t)
comes from the drift term -r sin8. In fact, it is.
easy to see from the short-time behavior of the
averages of ordered atomic operators (which can
be obtained by replacing 8Q/at with the incremen-
tal ratio Q[(8, t} —Q(8, 0)]/tj that for initial density
functions peaked about 8, $ v both the diffusion
term and the noise contribution to the drift term
a.re negligible. On the contrary, in the case 8p
= z, 60th terms contribute significantly to the
evolution. In this section we analyze the behavior
of the quasi-probability-function Q (8, t) assuming
that the initial distribution is sharply peaked
around a value of 8, which is sufficiently removed
from g.

In this case the Fokker-Planck equation (4.11) is,
to order r

(5.5) [rsin8Q(8, t)].8

Bt 88 (5 11)

The solution of Eq. (5.5) has the familiar form

(R,&= rtanhr(t+t), -
where t is defi:ned in terms of the initial angle 8p

of the Bloch vector a,s

rt = arccosh[(sin8, ) '] .

A convenient procedure to solve Eq. (5.11) for an
arbitrary initial condition,

Q(8, o) =f(8), (5.12)

is to use the method of characteristics. " Accord-
ingly, we replace Eq. (5.11)by the equivalent
system of equations
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dt/1 = d-&/(r sin&),

d-&/(r sin&) = dQ/(r cos &Q) .

Integrating, we find

e"' tan-'6) =H,

sin&@(8, f) =K,

(5.13)

(5.14)

To facilitate the integration involved in calcula-
ting the moments of the collective atomic opera-
tors, it is convenient to rewrite Eq. (5.19) in the
form

(
. t. C Se cDSllPE s IlbYt

)Q 8, t) =sin&& cos&-
cos 6), sinhrt + coshrt

where H and K are constants of integration inde-
pendent of 6 and t. The objective is to determine
the values of 8 and K such that for t=0 the pre-
scribed initial condition (5.12) is satisfied. At
time t =0 we have from Eqs. (5.14) and (5.12),

H =tan-,'6),

K= sin(&)f (&).
(5.15)

d&Q 6, t =1.

This is indeed easily verified by means of the
substitution tan-,'y = e"' tan-,' 8 in the normalization
integral. Furthermore if f(8)=Q(8, 0) is-zero in
a small neighborhood of 8=@ at time t=0, then
Eq. (5.17) shows that this remains true for all
time. In particular, for an initial state of excita-
tion corresponding to a given value e= e„we car
conveniently choose for f (8) the following distri-
bution~':

f (8) =sin&6(cos& —cos&,), w —&, ~e &0. (5.16)

The solution of the Fokker-Planck equation evolves
on the sphere in such a way that the singularity
satisfies the differential Eq. (5.3) without the
small noise term. Specifically, we have

sin6}
(coshrt —cos & sinhrt)'

If we eliminate 8 from the pair of Eqs. (5.15), we
arrive at

K = [2H/(1 + H')] f (8 = 2 arctanH), (5.16)

which expresses the functional relation which H
and K must obey in order that the initial condition
is met. Since H and K are independent of t, Eq.
(5.15) must be true at all times. From Eqs. (5.14)
and (5.16) we finally arrive at

Q (8, t) = (coshet —cos & sinhrt) ' f(2 tan '(e"' tan-,' &)).

(5.17)

From the definition Eq. (4.9) of Q(8, f) we see that
the solution (5.17) must satisfy the normalization
integral

(5.20)

As stated in Sec. III, the expectation value of any
ordered product of operators can be reduced to an
integral of the form (3.7), where the matrix ele-
ment in the integrand can, be calculated by repeated
differentiation of the characteristic function (3.9).
The multiple differentiation of X(n, p, y) leads to a
trigonometric polynomial upon setting a, P, and
y equal to zero. It is easy to see that each term of
the polynomial contains successively lower powers
of r. In particular, in the limit of large coopera-
tion numbers, and for &/w, the leading contribu-
tion to the matrix elements of interest is of the
form

(8, rp~(R" R",R '
~
8, y) & 2')"

si n"&(-1)"cos"8.
y~ Oo

(5.21)

Matrix elements involving different powers of
raising and lowering operators R' and R can be
reduced to a similar asymptotic expression, but
their weighted average vanishes on account of the

independence of the distribution function. Car-
rying out the integral in Eq. (3.7) using Eq. (5.20),
we arrive at the required result

(R"R,"R '}=(r sechr(t+ t ))"(-r tanhr(t+t ))".
(5.22)

The same expression has been obtained by Haake
and Qlauber using an entirely different procedure.
In Sec. VI we shall demonstrate that the result,
Eq. (5.22), can also be derived from the hierarchy
of coupled moment equations which in the asymp-
totic limit r-~ becomes exactly soluble in the
small-fluctuation limit.

VI. MOMENTS OF COLLECTIVE
ATOMIC OPERATORS

In Sec. IV we stated that the expectation values
of the ordered products R"R",R ' can be reduced
to an integral of the form

( *')(,")( ')()=
/

dnP(e ), t)&e p(R"RR '(6 y),
(6.1)

cos 6 coshrt —sinhrt
cos 6)0— coshrt —cos 8 sinhrt

(5.19)

where the matrix element in the integral of Eq.
(6.1) can be obtained by repeated differentiation
of a suitable generating function [Eq. (3.9)]. For
large values of r and not too large values of l, l',
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and n, the cumbersome differentiation can be
avoided if we confine our attention to the leading
term of the trigonometric polynomial $, (t)( ' (8)S).
In particular, if the density function P(8, y, t) is
independent of (I(), the moments involving 14 l' are
identically zero. We shall be interested in the
moments of the collective operators where l = l'
and where n and l are sufficiently small compared
to r. A simple calculation reveals that the trigo-
nometric polynomial (8, 4)~

. (8, (t)) contains de-
creasing powers of the cooperation number r. The
leading term is of the form of Eq. (5.21) provided
8$ w. We thus find the attractive rule of corre-
spo ndence»

to an initial state of complete inversion is still
an open question, at least in connection with the
representation (6.1). If, however, we make the
simplifying assumption that the initial distribu-
tion is not vanishingly small outside a small area
surrounding g = m, some interesting general results
can be derived from Eq. (6.4). In particular, we
see that the arbitrary ordered moments (R"R",R ')
can be constructed from the hierarchy of moments
of the energy operator R,. This result can be
shown as follows: We define the scaled moments
$„„(t}as

8„„(t) = „,„(R"R",R-')
R"R '- (rsin8}" (6.2)

dgQ g, t sin2g ~ -cosg ~

0
(6.5)

R,"- ( rco-s8)" . (6.3)

More precisely, the expectation values in Eq.
(6.1}can be reduced to weighted averages of the
classical functions (6.3) as follows:

(R"))",R ')=) dP()(8, q, i)( i 9) '(- t'os9)".

(6.4)

If 8 = w Eq. (6.2}breaks down in view of the pres-
ence of the factor (sin8)". If, however, the dis-
tribution function P(8, (t), t) is not sharply peaked
in the neighborhood of 8 = v, the result (6.4} is
still valid if we can ensure that the major contri-
bution to the integral arises from a region of the
Bloch sphere which is outside a small circle
surrounding the north pole. If one is interested
in expectation values of operators of the form
R", the rule of correspondence (6.3}holds without
restrictions.

The usefulness of this representation has been
demonstrated in Sec. V in calculating the moments
of the collective atomic operators corresponding
to an arbitrary initial state which is sufficiently
removed from the state of complete inversion.
For the initial condition discussed in Sec. V [Eq.
(5.18)] the moments (6.4) factorize into products
of the form (R'R )'(R,)". This factorization is
clearly a consequence of the sharpness of the
assumed initial distribution. It is easy to see that
in general the expectation values (6.4}will not
factorize, although for most initial situations of
physical interest it appears that a quasi-probabil-
ity-distribution of the form given by Eq. (5.19)
will be quite adequate to represent the evolution
of the atomic system from an initial state suffi-
ciently removed from the state of complete in-
version.

At this time, the description of the moments
of the collective atomic operators corresponding

where tI)(8, t) is the solution of the Fokker-Planck
equation on the Bloch sphere. We can also express
Eq. (6.5) in the form

8„„(t) = d 8tI) (8, t)(1 —cos'8)'(-cos8)"
0

=p '. )a. „,„( i), (6.6)

where 8,, „,„ is the scaled expectation value of
R',"". The range of validity of Eq. (6.6) is limited
to values of l and n which are much smaller than
the cooperation number r and to initial quasi-
probability-distributions which satisfy the restric-
tions discussed above. With these limitations,
Eq. (6.6) can be used to derive all the relevant
statistical informatioa about the super-radiant
decay. "

Another interesting consequence of Eq. (6.5} is
the existence of a hierarchy of coupled equations
of motion for the scaled moments 6l„„(t). If we
differentiate both sides of Eq. (6.5}with respect
to t, replace SQ/St with the right-hand side of the
Fokker-Planck equation, and integrate by parts
until each term reduces to a weighted average of
powers of sing and cosg, we find, in the limit of
large cooperation numbers,

8

st dt, ( „(t)=2Lr$2( „„—rn6t, („„, (6.7)

We have summarized a few pertinent comments
regarding the derivation of Eq. (6.'7) in Appendix
C. Presently, we focus on some of the conse-
quences of the hierarchy of Eqs. (6. 't}. In view of
the restrictions imposed on the indices l and n,
Eq. (6.7) becomes inaccurate when I and n are
comparable to or larger than r [in fact, when
L&r, 6t2( „(t)=0]. If however, as—expected, the
scaled higher-order moments become small as n
and l increase, it is possible to define a generating
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function W(x, y, t} such that
00 «o

W(x, y, t) =g g a„, ".

,
',

i=0 )=0
(6.6)

In terms of W(x, y, t) the reduced moments can be
calculated as follows:

peaked near 8 = m but is not identically zero out-
side a small region surrounding the north pole
of the Bloch sphere.

A more detailed analysis of the connection be-
tween the results of beefs. 22 and 29 and our mo-
ment equation will be presented in a separate
paper.

{R2, „= 8" x, y, t (6.9)

8%' 8 8' 8%'
= 2yx

Bt Baby Bx
(6.10)

In particular, corresponding to the initial con-
ditions

It is easy to verify from Eqs. (6.7} and (6.8) that
the generating function W(x, y, t) satisfies the par-
tial differential equation

VII. SOLUTION OF FOKKER-PLANCK
EQUATION

(7 1)

We can derive the general solution of Eq. (4.14)
for a specified initial condition at time zero by
separating variables and solving the resulting
eigenvalue problem. Setting

(P (z, t) = (ts(z ) e

dl» „(0)= (sin8, )"(-cos80)" (6.11)
in Eq. (4.14) leads to the eigenvalue equation

z(1+z) y" +[I+(2r+2)z] y'+~y =0. (7.2)

W(x y 0) e(sin«eo)x z(- «0(&0)y (6.12)

it is rather easy to verify (e.g. , by Laplace-trans-
form techniques) that the solution of Eq. (6.10)
corresponding to W(x, y, 0) given in (6.12) is

W(x, y, t) =exp[x sech'r(t+f)] exp[-y tanhr(t+ t )],
(6.13)

where rt is defined as in Eq. (5.7). Hence, in the
limit of negligible fluctuations we recover the
moments of the ordered atomic operators calcu-
lated in Sec. V from the explicit solution of the
Fokker-Planck equation.

It is interesting to observe that the scaled mo-
ments derived by Haake and Glauber [Eq. (6.9) of
Ref. 29] for the case of an initial state of "com-
plete inversion" satisfy our Eq. (6.V) identically.
The proof of this statement, which involves a few
mathematical manipulations, is presented in
Appendix D. Here we mention that, since our
moment equation is equivalent to the Fokker-
Planck equation in the limit of negligible fluctua-
tions, one would expect (as is indeed easily veri-
fied) that an initial condition of complete inversion
(6l» „(0)= 6, ,) would correspond to an unstable
equilibrium point for the hierarchy of coupled
moment equations. An analysis of the Haake and
Glauber scaled moments reveals that correspond-
ing to their initial state of "complete inversion"
[v =0 in Eq. (6.9) of Ref. 29] the initial value of
82 f is unity fo r t = 0 only within a correction
of order I/r. This correction is the significant
feature which enables the moments of Haake and
Glauber to evolve in time. In terms of our proba-
bility function Q(8, t) this is equivalent to choosing
an initial condition such that t«((8, 0) is sharply

%e must now solve the eigenfunction exoansion
problem for Eq. (7.2). Once this is done the solu-
tion of Eq. (4.14) for an arbitrary initial condition
can immediately be written down.

Equation (7.2) is the hypergeometric equation
for parameters

(s, h; c) =(r+-,'+[(r+-s)'- ~](ts, r+-,'

—[(r+-,')' —Z] "t'; 1)

& E ?'+ p XPy -t'+ 2 spy 1 %2Py' 1+8

(7.3)

p=[(r+l)'-&]" (7.4)

For future use we note that the square root de-
fining p in Eq. (V.4) will be made unique by cutting
the complex A. plane from (r+-,') to ~ along the
positive real axis and requiring p to be positive
when (r+-,'}'—X is real and positive. It follows
that Hep &0 when ImX40.

%'e can now derive the relation for the expan-
sion of a function g(z) in an appropriate linear

and variable -z.45 However, since c =1 is a singu-
lar case involving a second solution with a loga-
rithmic term, and since the variable z is of in-
terest for O~z &~, and not just for the range
(0, 1}in which the hypergeometric series con-
verges, it is convenient to express the solution
of Eq. (V.2), not in terms of hypergeometric func-
tions E(a, ts; c; u) of the arguments above, but
rather in the form
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d'g(x, ~} +[~ -q(x)] p(«, ~}=0 (7.5}

by setting

combination of the functions (7.2) by employing
essentially the method described by Titchmarsh. 4'

We first transform Eq. (7.3}to the standard form

The boundary condition at the origin requires
more attention. Both solutions (7.9}are square
integrable at the singular point x =0, so one has
Titchmarsh's "limit-circle" case there. " Specif-
ically, by utilizing the representation" for the
hypergeometric functions near the singular point
cosh'(-,'x) =1, we find

z = sinh'&x (7.6) g, (x, X) =a„(A) «'~'inx+b, (X) «' '+O(x'"lnx)

x-O (7.»)
((x, Z) = sinh'~'(-, '«) cosh'""~'(-,'«} y(z (x), &}.

(7.7)

Explicitly, we find

(4r + 2)' sinh'(-,'x) + 4 (4r + 1)sinh'(-,'x) —1

16 sinh'(-,'x) cosh'-(-,'x)
(7 6)

The form of the eigenfunction expansion formula
for Eq. (7.5) will now be obtained, and reversing
the transformations (7.6) and (7.7) will then yield
the solution of the eigenfunction expansion problem
for Eq. (7.2}. It is important to note in this con-
nection that transformations (7.6} and (V.V) applied
to any function P(z) [not necessarily a solution
of (7.2)] which is analytic at z = 0 will lead to a
function g(x) of the form

x' 2x function analytic in x at x = 0.

This fact will be important in determining the
appropriate solution of Eq. (7.2) [or Eq. (7.5)] to
be used in the eigenfunction expansion.

From Eq. (7.3) we see that linearly independent
solutions of (7.5) [with q(x) given by Eq. (V.8)] are

(x y) sinhl/2(jx)cosh 1/2+ 2P{1«)

X I' r + 2 +P, -S+-, +P; 1 +2P; cosh (2x)

(V.9}

%e must now construct a Green's function of the
form

where

The correct boundary condition to be imposed at
the origin in this case is that the W'ronskian of
g, with the function g(«) to be expanded in eigen-
functions must vanish at x =0. As noted earlier,
it is expected that at the origin g(x) will satisfy

g(x) = cx'i'+O(x"'). (7.14)

Ne can easily verify that a necess&y condition
for

g (a ~, )l.—.=o,

if the O(x'~') term is actually nonzero, and a
sufficient condition in the other case, is that
g, («, X) contain no x'~'1nx term. We may then
assume that

( )
I'(r+-,'+ p) I'(-r+-,'+ p)

( )g~xA, =
( )

g+ xiA.

I'(r+l -p) I'(-&+k -p)
( )

g (x, X).

(7.15}

By looking at the large-x limit we find

9 (~, C, )=-2p,

so the Wronskian appearing in Eq. (7.10) is

2pl'( +-' p) I'( +~--p)-8' g„g2 = I"(1 —2p)

C, (x, ~) C, (3, ~)
W(4„4.)

~

q, (3, Z)q, (,~)
W(4„0,)

(7.10)

This completes the specification of the Green's
function.

Now let g(x) be a function satisfying (7.14) and
the condition that both g and g" are square inte-
grable at infinity, and define the function

C.(«, 3) =~, (x, ~). (V.11)

where g, and g2 are linear combinations of the
solutions (7.9) satisfying appropriate boundary
conditions at 0 and ~, respectively, and W(g„g, )
= g, g~ —g,'$2 is their (x-independent) Wronskian.
The appropriate boundary condition at ~ is
square integrability, which for Im~t 0 leads to

OO

4'(x, 3, g) = G(«, 3, ~) g(3 ) d3

=
W'(~ '~

)
0, (y, 3)g(3')d3'q, («, ~)

192 0

+ ~ 42(3'» ~) g(3')A'q, (x, Z)

l~ 2 x

("I.17)
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By using (7.5) to replace g((y, &() in Eq. ('1.17}by
X ([q(j)( —gt'] and integrating twice by parts (using
the properties of g and the g, to verify that all
integrals converge), we find

4(x, X, g) =&( '[g(x)+C(x, A. , qg-g")], (7.18)

where 4(x, &(, qg-g") is calculated from the func-
tion qg-g" in the same way 4(x, A, , g) is calcu-
lated from g.

The next step is to integrate Eq. (7.18) with

respect to ~ over the path C„comprised by the
straight line segment from -8 -ic toR-ie plus the
straight line segment from ft + ie to -R + ie (ft
and e positive real numbers). Since we can easily
verify that, as a function of &(, G(x, y, A) has no

singularities in the finite ~ plane except on the
real axis, the path of integration in the
4(x, X, qg-g") term can be distorted into the path
CR' comprised by the positively directed semi-
circle of radius R in the lower half-plane begin-
ning at -8 -ie and ending at +8 -i c plus the
complex conjugate of this semicircle (in the upper
half-plane) also traversed in the positive direc-
tion. By slight modification of the proofs of
Titchmarsh's Lemmas4' 2.8 and 2.14 we conclude
that for fixed x&0 and large

~
&(~

as a function of ~ for fixed x shows that it has no

singularities in the finite ~ plane except for the
cut along the positive real &( axis from (r +-,')' to
~ arising from the cut in the definition of p, and
that along this cut the limit of 4(x, A. , g) for ImA

-0+ is the complex conjugate of the value for
ImX-0-. By inserting Eq. (7.17}into Eq. (7.20)
and transforming to the integration variable

c=[&(—(r+-,')']" ~~r+ (7.21)

we obtain the relation

where

I'(I +2i(&) I'(r+-,' icr) I-'( r+ ,' --i(r}-
I'(1 —2i(x) I'(r+ —,

' +icr) I'(-r+ —,
' + ia)

(7.23)

&), (x, (() =sinh(~'(-,'x) cosh (~"2('(-,'x)

1 " 1
g(x) = do —. [e(e(a&&) (x o) e (e(o-)&l (x o)]27 + 7 7

0

00

[e(—e.("n, (y, a) e (e—(")-n (y, c)lg(y)dy,
0

4(x, &(, qg —g") =0([X(') '(im&((-").

It follows that in the limit as R -~,
(7.19) &(E(r+-,' bio, -r+-,'+i(&; 1+2ia; cosh '(-,'x)).

(7.24)

lim A, '4(x, &(2 qg -g ")dA. =0,
R ~ C'

R

and, in this same limit, the integral of Eq. (V.18)
becomes

(&0 ~ f f OC) + $ Q

2 'g(2)= —J 2(, 2, (()22. (2.M)
~oo~ f g ~()o+gf

Examination of the analytic properties of 4(x, &(, g)

Equations (V.21)-(7.24) give the solution to the
eigenfunction expansion problem for the differen-
tial equation specified by Eqs. (7.5) and (V.8) for
all functions g(x) satisfying (7.14) and the condi-
tion that g and g" be I,'(0, ~). To derive from
this the solution to the eigenvalue expansion prob-
lem for Eq. (7.2) we only need to invert the trans-
formations of dependent and independent variables
given by Eqs. (V.6) and (7.7). We find

1 1f(z)= do —, [e(e"'(j),(z, (r) —e (e"'(j) (z, a)]
277 0

a)
—. [e(e(a&4, (z' 8) e-(e«)Q (z', a}]f(z )(I+z)') "(fz'

0
(7.25)

with [cf. Eq. (7.3)]

(j), (z, o)=(l+z) " '~'"' E(r+z via, r+-,'+io; 1+2ia; -(1+z) ') (7.26)

and e'e"' determined by Eq. (7.23). By using the linear transformation formula"

2'(2, 2; c;2)=((-*) ' Z, c —2; —2 (; }, I'(c) I'(b —a) 1
I'b I'c-a
, I'(c) I'(a —b)+1 z F()F( —b)

Eb'c a;b —a+1
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together with the I'-function properties"

I'(z + ly) I (-,
' —iy) = K/coshvy, I'(I + iy) I'(I - iy) = wy/sinhzy,

we may express Eq. (7.25) in the simpler-appearing form

f(z) =2 oda [ F(r+-,'+io, r+ ,' -io; 1-; -z) F(r+ ,'+i-o, r+ ,' io; 1-; --z') f(z')(1+z')'"dz',
0 0

(V.27)

where the upper function in curly brackets is to be
chosen for r integral and the lower one for r half-
integral. The initial restriction on f(z) in Eq.
(V.25) or (7.2"t), obtained from the properties of
g(x) in Eq. (V.22), are that f (z) and the quantity

z(1+z)f"+[(2r+2)z +1]f'
(4r + 2) z' +4 (4r + I )z —1

16z (1 +z)

must be I,'(0, ~) with respect to the measure
(1+z)2"dz and that

f (z) = const+0(z), z —0. (7.29)

Square integrability of (7.28) at z =0 in fact re-
quires

f(z) =0(z), z -0.

By appropriate limiting procedures we can now
expand the class of functions f for which the
eigenvalue expansion (7.25) or (V.2V) is valid. In
particular, we obtain the formal "~-function de-
composition"

tanhmo5(z —z ') = 2(1+z ')'" ado F(r+-, + io, r+-, -so; 1; -z)
cothno

r integralxE(r —, i, r —, —';1; -*'),
&&

. I.r half -integral (7.30)

Solution of Eq. (4.14) subject to a given initial value of p(z, t) at time 0 is now straightforward From.
Eqs. (7.2), (7.21), and (7.27) one finds

6'(z, i) =2 ado ~'F(r+-,'+io, r+-,' io; 1;-- )ze x(p-[o' (+r+-,')'] }icothma )

x I t+z+gg t'+z -gg; 1; -8 6 8, 0 1+8 "dz
0

(7.31)

as the general solution to the initial-value problem
for those d'(z', 0) of physical interest [i.e. , those
which are 1,-(0, ~) with respect to the measure
(1+z)"dz, and which can be obtained as appropri-
ate limits of sequences of functions which are
I'(0, ~) with respect to this measure].

VIII. CONCLUSIONS

The continuous-basis representation of the co-
herent atomic states introduced by Arecchi et al.
affords a very appealing description of the super-
radiant decay in terms of a diffusion process on
the surface of the Bloch sphere. Several authors
have previously used suitable c-number represen-
tations to map the SME into a differential equa-
tion. "'"'" These attempts have resulted in non-

local differential equations (i.e., containing deriva-
tives of arbitrarily high order) which had to be
properly truncated to yield any useful information.
Our Fokker-Planck equation, on the contrary,
is exact and provides the same information as the
operator master equation. Under most conditions
of interest the solution of the Fokker-Planck equa-
tion can be readily derived in the limit of large
cooperation numbers. %hen the diffusion term
can be ignored, the noise contribution to the drift
term can also be safely ignored and the evolution
of the density function reduces to a simple drift
motion in a dispersive medium. For arbitrary
initial distributions corresponding to atomic systems
which are sufficiently removed from the state of com-
plete inversion the drift motion is accompanied by a
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general increase in the width of the initial dis-
tribution since different portions of the density
function propagate with a different drift velocity.
The mathematical specification of the initial state
of complete inversion corresponds to an initial
density function which is identically zero outside
an arbitrarily small neighborhood of the north
pole of the Bloch sphere. This type of initial con-
dition results in a very complicated evolution. %'e

have succeeded in formally solving the Fokker-
Planck equation by the method of eigenfunction
expansions, but unfortunately we have not been
able to provide a simple representation of the
final result [Eq. (7.31)] for this initial condition,
even in the limit of very large cooperation num-
bers. Although the 6-function initial condition
corresponding to the state of complete inversion
is likely to be over-restrictive for practical
physical systems, where a finite spread of the
distribution is expected even at t =0, the problem
of finding a simple representation of our Eq.
(7.31) for a 5-function initial condition is nonethe-
less an interesting challenge from a mathematical
point of view. Vfe hope to return to this problem
in a later paper.
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states defined in Eq. (4.1). We use Eqs. (4.2) and
(4.4) to get

R A(8) R' =g (cos-,'8}'"""(sin-'8P
p Q P

x [p(2r -p + I)] Ip —1&&p —1I, (Al)

or upon replacing p —1 by p

R A(8-)R'=g (2r-p)'cos'(" p "+ 2f

P=O

x (sins 8)'('"Ir, p&&r, pl (A2)

Similarly, we have

2r

A(8)R'R =Q p(2r -p +1}(cos-,'8}"'"p'

P=O

x (sin-,'8)"~r, p&(r, pI, (A3)

R'R A(8) =A(8)R'R

ln order to rewrite the SME, Eq. (4.'l), in terms
of A(8} and its derivatives, we examine the deriva-
tive of Eq. (4.4}:
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which led to the formulation of the Fokker-Planck
equation in spherical coordinates and to Professor
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= (sin-,'8cos-,'8) 'Z (cos-,'8)'""

&& (sin-,'8)'p(p —2r sin'-,'8)
I r, p&(r, pI.

From Eq. (A5) we easily establish the identity

(A5)

2y
(cos-,' 8)"'"-"(sin-,' 8)"p I r, p &(r,p I

P=O P g

= sin-,' 8 cos~ 8 + 2r sin'-,' 8A(8). (A8)
sA(8)

We wish to expand the quantities R A (8)R',
A(8)R R', and R'R A(8) in terms of the Dicke

On differentiating Eq. (A6) with respect to 8 and
rearranging terms, we have

2r

(cocle)"" "(s(olep'p'Icp&&cp(l =s(c-,'ecos-,'e (s(clecos-,'e '
P=O

+2r sin-'8cos-,' 8 sin'~ 8A(8)
88

+S'sin228 sin-,'8cos28 +2rsin2-,'8A 8

APPENDIX 8
%'e examine the surface terms I;, I;, and I;

which arise from the integration by parts of Eq.
(4.8}. We have

I; =[(2r+I)+2r cos8] A(8)q(8, t}1 +cos8

(Bl)
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I; = (1 —cos 8)Q (8, t)
&A(e) '

8 n

r, =A(e), (1 —cose)q(e, t)

(B2)

(as)

For Eq. (B2) we have, using Eq. (AS),

2rI;=P(8, t) sin8(1 —cos&)g (cos-,'8)""" '
p=p . P

&& (sin-,'8)'~ '[p —2r sin'-,'8] ~r, p)(r, p~

We assume in what follows that P(8, t) is no more
singular than a 6 function at the end points. From
Eq. (4.4) one observes that Thus,

(B6)

and

A(v) =
~
r, 2r&(r, 2r[

A(O) = ~r, O&&r, O~.

So, Eq. (Bl}becomes

I; =~r, 2r&(r, 2r~P(n, t) lim

= -2~ r, 2r&&r, 2r~P(v, t),

sin'e
1 + cos6I

(B4)

(as)

(B6)

(B9)

Now, combining Eqs. (B6), (BV), and (B9) in Eq.
(4.10), the algebraic sum of the surface terms
in the latter equation are readily seen to vanish.

APPENDIX C

The coupled equations of motion for the sealed
moments dt„„defined by Eq. (6.4) can be derived
as follows. From the definition

where we have used Eq. (4.9). Similarly, Eq. (B3)
becomes 6I» „(t)= d&Q(8, t)(sine)" (-cos8)",

0

r, =-21., 2.&&r, 2rlP(. , t). (B7) we have

—ttt» „(t)= d8(sin8)" (-cos&)" [r sine@(&, t)]+ I Q(8, t)2l, n
, 80 ae 2 1+cose

+,([-,'(I -cose}]q(e, t)) (C2)

We consider only the first contribution on the right-hand side of Eq. (C2); the other terms are treated in

the same way. Integrating by parts we have

de(sine)" (-cose)" [reine@(8, t)] =r(sin&}2'"(-case)"Q(8, t) —
~~ dersin&Q [(sin&)"(-cos&)]J

a ~ 2l +I n ~

ee 0 40 Be

der sine&[-2t(sine)" '(-cos &)""+n(sine)"'(-cose)" '] .I ~ ~ ~ ~ ~ ~ n ~ ~ I ~ ~ ~~ ~ ~ n ~ 2 I

According to Eq. (6.4) we finally arrive at

de(sin8)" (-cose)" [reine@(8, t)] =r216t„„„-rn6t„„„,.~ ~ t ~ ~

~r ~

~

I ) ~~
~ ~ I n ~ a

~
2 t ~ 2 ~ n ~ I ~

0
(C4)

Although we do not use the complete moment equation in view of the fact that the contribution (C4) is the
dominant one for the initial distribution functions of interest, it might be useful to reproduce the final re-
sult of our calculation:

(csa)

1. I
Ql-2, n+1 2l-2, n+2 ~ 2lIn-1 ~ 2l n

+l(2/-1)$„, „+,—l(n+1)$2, „-~n(2t+1)$. ,

+ 2n(n —1)$,(„„,+ t(2/ - 1)$.„2„„-l(n + l)$„„„
——,'n(2t + I)6t„„„+-,'n(n —I)8„+I„,.

(csb)
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Equation (C5) has been separated into three parts:
Equation (C5b) derives from the noise contribu-
tion to the drift term of the Fokker-Planck equa-
tion and Eq. (C5c) is obtained from the diffusion
term.

Using Haake and Glauber's time variable z
=2re '"' we can write Eq. (6.9) of Ref. 29 in the
form

where we have set q =y -z. Our moment equation
[Eq. (6.7)j in terms of the time variable z becomes

(D2)

Substituting Eq. (Dl) in (D2) we can verify that
the scaled moments 6t„„(z)are indeed solutions
of the moment equation. The same result follows
for values of vtO, where v is defined in Ref. 29
as the degree of departure from an initial state
of complete inversion.
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