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Modified moments provide coefficients in expansions for time-autocorrelation functions
(TAF’s) and for their spectral densities. The expansions for TAF’s are very generally con-
vergent; the expansions for their spectral densities converge when these densities satisfy
sufficient continuity or smoothness conditions. Whenever a partial sum to the density is non-
negative, the corresponding partial sum to the TAF necessarily lies between the rigorous
bounds recently obtained by Platz and Gordon. The accuracy of these expansions is illustrated
by an application to the harmonic solid model considered by Platz and Gordon. The expansion
for the TAF is consistently one or two orders of magnitude more accurate than the bounds ob-
tained from the same number of moments and accurately represents the TAF to substantially

longer times than do the bounds.

Recently Platz and Gordon! have shown how to
obtain rigorous bounds for the real part of the
time -autocorvelation function (TAF), C(t), of a
dynamical quantity @:

C(t) = (Q(1)Q(0)), 1

from initial time derivatives of the real part of

the TAF. These time derivatives are simply re-
lated to even power moments ., of a spectral den-
sity I(w) which in many cases can be shown to be
non-negative:

Re{c()} =fm cos(wt)(w) dw, (2)
dzk

7% Re{ CHe 2= (-1)* ®)
“”:J.m w?I(w)dw (see Ref. 2). (4)

Such correlation functions arise in a wide variety
of problems in physics and chemistry, including
the behavior of solids,® liquids,* and magnetic sys-
tems.® Hence, it is of considerable interest to be
able to make efficient use of information about the
spectral density in the evaluation of these correla-
tion functions.

Platz and Gordon’s bounds for the TAF are ob-
tained by replacing the true spectral density by a
point spectrum which reproduces the known mo-
ments correctly. These bounds are thus the best
possible if only the moments are known.

It is often the case that the spectral density is
known, from general considerations, to obey cer-
tain continuity or smoothness conditions, even
though its detailed form is unknown. For example,
it may be known to be bounded, of bounded varia-
tion, continuous or even differentiable. It also
frequently happens that the spectrum is known to

be nonzero only on a finite interval, or that its
asymptotic behavior is known for large values of
its argument. In these cases it is natural to try

to find approximations to the spectral density and
its correlation function which reflect this addition-
al information as well as that contained in the
known moments.

In this paper we observe that appropriately cho-
sen modified moments of the spectral density pro-
vide a natural and useful way of doing this, and
that the approximate TAF’s obtained by this meth-
od may be substantially more accurate than the
bounds, and provide useful information about the
true TAF to substantially longer times than the
bounds, when the spectral density is well behaved.
Modified moments®~*° of the spectral density pos-
sess distinct advantages over the power moments.
They can always be calculated from power mo-
ments when these are available,® and can some-
times be obtained more easily than the power mo-
ments by direct computation.® They stably deter-
mine quadrature formulas®™® (used in the bound-
ing procedure) whereas the determination of quad-
rature formulas from the power moments is known
to be exponentially ill conditioned.” This is partic-
ularly important for correlation functions, as the
time out to which the bounds accurately determine
the TAF is roughly proportional to the number of
moments which can be used.!* In addition, modi-
fied moments are coefficients in convergent ex-
pansions for TAF’s and for their spectral densi-
ties when these densities are sufficiently well be-
haved. We show this below, and illustrate it by an
application to the harmonic solid model considered
by Platz and Gordon.

Because the cosine Fourier transform is sensi-
tive only to the even part of I(w), it will be con-
venient to use the alternative representation:
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F(t) = fmG(x) cos(x%1)dx, (5)
0

where

F(t) - Belcl)]

Re{C(0)} ’

x=(w/wy,)? T=wnt, (6)

[Hw) +I(~w))dw

Glx)dx= f"’I(w) dw

and where w, is any convenient constant which sets
the scale on which G(x) varies. In the case where
G(x) is nonzero only on a finite interval, w, will
be taken to be the maximum frequency.

Let H(x) be a non-negative density defined on the
same interval as the unknown density G(x) and hav-
ing orthonormal polynomials p*(x),"

(P15 = | HDPrpE() dx=0,,. @

The averages of these polynomials over G(x) are
modified moments:

v =g =f° " Gaprx) dx. ®)

The spectral density can be formally represented
by an expansion in these orthonormal polynomials
with coefficients which are just the modified mo-
ments:

GO ~H() 3 vip(). 0

The convergence of such an expansion generally
depends upon the nature of H and the smoothness
properties of G, but can be established for a wide
variety of problems of interest. It is desirable
that H(x) be nonzero on the same interval as G(x)
and be as similar to G(x) as possible, particularly
at the ends of the interval. This not only aids con-
vergence, but makes it likely that the partial sums
to Eq. (9) will themselves be non-negative densi-
ties, a point of importance below.

Equation (9) may be integrated term by term to
obtain a formal expansion for the TAF:

F(t)~ Z v, (1),
n=0

(10)
£ (™) =fm1~l(x)p,’,"(x) cos(x?1)dx.
(1]

This series can be shown'® to converge to F(t) un-
der much more general conditions than those re-
quired for the convergence of Eq. (9), and can
often be shown, as in the example considered be-

low, to converge for any non-negative G(x). When
G and H are restricted to the unit interval, f,(r)
can generally be shown, at any fixed 7, to vanish
at least as rapidly as [(37)%"/(2n)! ], while v} can
typically be bounded by |v*|< Bn® with B and ¢
positive and independent of n. When G(x) satisfies
boundedness, continuity or differentiability condi-
tions, the v} can often be bounded by a negative
power of n. In these cases, the series expansion
(10) for F(t) may be expected to converge substan-
tially more rapidly than do the more general
bounds.

The partial sums,

Golx) =H(x) ) vipi(x), (11)

k=0

provide a sequence of approximations to the spec-
tral density which give the first » +1 moments cor-
rectly. If G,(x) is non-negative on the interval of
definition of G, then the nth partial sum to F(¢)
will necessarily lie between the vigovous bounds
obtained from » +1 moments for all time t.

We illustrate this approach by an application to
the cubic-close-packed (ccp) harmonic solid model
used as an example by Platz and Gordon. For this
system, the spectrum is known to be nonzero only
on a finite interval so we may take 0 <x<1. For
harmonic solids in three dimensions, a particu-
larly suitable choice for H(x) is®® H(x) =(8/7)

x[ %(1 - x)]2 with (monic) orthogonal polynomials
b, satisfying the recursion relation,

P10 =(x = 3)D,(%) = 55 £ 1 (2) - (12)

These are shifted Chebyshev polynomials of the
second kind. The normalized polynomials p*(x)
=(-4)"p,(x) can be reexpressed in the form:

sin(z +1)6

Sing (sin®36=x). (13)

pr(x) =
Under this transformation the orthogonal polyno-
mial expansion for G becomes a Fourier series:

G(sin?10) =% Z v¥sinn+1)6 (O<os<m. (14)
n30
Typical harmonic solid models in three dimen-
sions satisfy sufficient boundedness and continu-
ity conditions?® that convergence of the Fourier
series can be established.

For the nearest-neighbor ccp solid model, 40
exact modified moments have been obtained by
direct computation.® In Fig. 1 we show the ap-
proximate spectral density obtained from these
40 modified moments. It is non-negative and ac-
curately depicts the general features of the spec-
trum.

The Fourier series may be integrated term by
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term to obtain a convergent expansion in Bessel
functions for F(¢):

FO =Y 02 Jand) = Jars o] (15)

n=0

This series converges to F(t) for any normalized
non-negative G(x) on [0, 1], even a point spectrum.
The asymptotic behavior of J,,(r) for large » at
any fixed 7 is J,,(1) ~ (4mm)~V*(er /4n)*", while Eq.
(13) shows that v* is bounded in magnitude by

(n +1) for any non-negative weight function. Thus
the Bessel-function expansion converges to F(¢t)
extremely rapidly at any fixed T once n>; er. For
typical model solids the bound on v} can be con-
siderably strengthened. For example, if G(x) pos-
sesses only the required Van Hove!* singularities,
the |v¥| will decrease as n~%2. Since the maxi-
mum value of J,,(1) = Jy,, «(7) (T =0) is itself a de-
creasing function of », it is to be expected that the
partial sums remain reliable out to times larger
than 4n/e.

Using a method!! similar to that of Ref. 1 we
have verified that the partial sums F,(t) to Eq. (15)
do indeed lie between the bounds obtained from the
same number of moments. In addition, they ap-
proximate the TAF much more accurately than do
the bounds obtained from the same number of mo-
ments. The error made by the partial sum is con-
sistently one or two orders of magnitude less than
the difference between the rigorous bounds. Fur-
thermore, the partial sums give an accurate pic-
ture of the TAF out to a time equal to about three
times the number of moments used, whereas the
rigorous bounds separate and become of little val-
ue in determining the TAF at times slightly less
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FIG. 1. Approximate spectral density for model har-
monic solid from 40 modified moments. The density is
positive, possesses the correct first 40 moments, and
reproduces the qualitative features of the true spectrum
with reasonable accuracy.

than twice the number of moments used. The dif-
ference between successive partial sums provides
a fairly reliable measure of the accuracy with
which F,(t) approximates F(t).

In Fig. 2 we see the approximate classical mo-
mentum TAF for the harmonic solid model obtained
from 30 modified moments superimposed upon the
approximate TAF obtained from 40 modified mo-
ments. The two curves are indistinguishable on the
scale shown for 7less than 90, and they remain in
phase for the entire range of the graph. The partial
sums using 10 and 20 modified moments are essen-
tially identical to this curve out to 7 =30 and 60, re-
spectively, after which they drift out of phase with
the exact curve and decay more rapidly with in-
creasing time. The dashed curves indicate where
the rigorous bounds from 20, 30, and 40 moments
separate. Note that the interesting “ringing back”
of the TAF at 7= 75 is clearly shown by the Bessel-
function expansion with only 30 terms, whereas it
cannot be seen from the bounds, even with 40 mo-
ments. This ringing of the TAF is a general fea-
ture of spectral densities with Van Hove singulari-
ties. !

In summary, when the spectral density is known
to be continuous or to satisfy some smoothness cri-
terion, modified moments can be used to obtain
approximate spectral densities and convergent ex-
pansions to time-autocorrelation functions which
determine the TAF’s more accurately and to lon-
ger times than do rigorous bounds from moments
alone. The rigorous bounds have the advantage
that, where they do determine the TAF precisely,
there can be no question about the error involved.
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FIG. 2. Time-autocorrelation function for the model
harmonic solid. The solid line is the superposition of
the Bessel-function-series approximations from 30 and
40 modified moments. The pairs of dashed lines indi-
cate where the rigorous bounds using 20, 30, and 40
modified moments separate.
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It seems likely that these methods will often be
complementary, the bounds being used to test the

j©

expansion which can then be reliably used to ex-
tend the results in time and precision.
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