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A simple phenomenological model of the structure of an inhomogeneous quantum fluid is proposed.
As examples of the application of the model the structure of the free surface of He II and the
structure of the negative-ion bubble in He II are investigated. The free-surface structure compares well
with the results of a more elaborate microscopic calculation. Questions concerning the effect of surface
curvature and “tightening” of the bubble surface are examined.

I. INTRODUCTION

The structure of the free surface of helium has
not been measured directly, but is of theoretical
interest and is of importance in interpreting the
behavior of films and other structures such as the
electron bubble. As a tool for the quantitative in-
vestigation of such surface effects, we propose in
this paper a simple phenomenological model for
the structure of an inhomogeneous quantum fluid.
We apply the model to calculate the free surface
of He II and the structure of the electron bubble.
The results on the free surface are in good agree-
ment with the results of a recent microscopic cal-
culation® of the surface. The predicted bubble
structure is also in substantial agreement with
the experimental evidence.?~” Perhaps of greater
importance, the model is sufficiently transparent
to allow a simple physical interpretation of its
consequences. In particular, we find that the ef-
fect of curvature of the bubble surface is very
slight and that the effect of the “tightening” of the
bubble surface which has been proposed to occur®®
is small. We also find an asymmetrical healing
behavior of the density near a free surface.

II. THE MODEL

The basic method we employ is to write the
free energy of the system as a functional F(n] of
the fluid density »n(f), a procedure discussed pre-
viously by Widom for Bose fluids and by Hohen-
berg and Kohn for Fermi fluids.'® The equation
determining n will then be

6F

7 =0, 1)

where # is subject to the constraint

f n(¥)dT = (const) (2)

and to appropriate boundary conditions.

We will now attempt to guess a reasonably use-
ful and accurate form for the functional F. The
analysis will be confined to T =0..

We now write down the first term in F, which
includes the local effects of the interparticle in-
teractions and is determined by the properties of
a hypothetical homogeneous system:

F® =mc*n, f F(n/ng)dF . (3)

Here m is the mass of an atom, c is the sound
velocity, and n, is the number density of the fluid.
The function f, which is proportional to free en-
ergy per unit volume, is chosen to fit known ther-
modynamic properties of the homogeneous bulk.

Writing f = (n/n,)¥ defines a free energy per par-
ticle F. Despite the fact that we have T =0, it is not
quite all right to replace the free energy & by the
internal energy 8. This is because the entropy
per particle of the vapor phase!! is singular, like
T-!, for T~ 0. The singularity occurs because
the equilibrium density of the vapor becomes ex-
ponentially small [as exp(-€,/kT), where € is
the binding energy per particle] for T - 0. Thus,
at a nonzero (but small) temperature, F will have
the form indicated in Fig. 1 by the dotted curve.
A Maxwell construction yields the small vapor
density n, and a corresponding small pressure.
As T - 0 the dotted curve approaches more and
more closely the solid one, except at n=0, where
F(0)—~ F(1). With this understanding we can there-
fore use the solid curve, which represents the
internal energy, for &.

We chiose F in the form'?

F(x)=A+Bx* +Cx® +Dx*. (4)

We use our freedom to choose F(1)=0. The re-
quirement of zero pressure at n =, implies F'(1)
=0, and the correct compressibility at n =7, is
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guaranteed by F”(1)=1. (0) is fixed by requiring
that m c?F(0) be the experimental binding energy
per particle (7.14°K). For helium at T =0 one
finds

A=0.260, B=-1.06, C=1.08, =-0.28.

(5)

This § is plotted as the solid curve in Fig. 1.
Taking F) alone leads to a sharp boundary at

pot
a free surface:

n(E) = {no , T in liquid 6)
0, otherwise,

which is-unphysical. It is necessary to include
nonlocal terms. An obvious contribution to in-
clude is a quantum kinetic-energy term

P fﬁv’(h?)d?. o

=k
kin ~ 2m
This term is exactly right for a noninteracting
Bose system or a system with weak point inter-
actions.!® 13

Inclusion of (7) and (3) is sufficient, indeed,
to smooth the free surface, and this sort of func-
tional has been investigated previously. In partic-
ular the choice® f(x)=%(x - 1)? describes the weak-
ly interacting Bose gas (WIBG).'* The latter func-
tion is the dashed curve in Fig. 1. Unfortunately,
the WIBG leads to conceptual as well as quanti-
tative difficulties since it is, after all, a gas, and
there is no zero-pressure state and no low-density
(“vapor”) phase.

(o] 0.5 1.
n/ne 0

FIG. 1. The “bulk” free-energy density F. The solid
line is the T =0 result, Egs. (4) and (5). The dotted line
is the qualitative form for 7 near 0 with an equilibrium
vapor density »,. The dashed line is f(x) for the WIBG.

There is another important, purely classical,
nonlocal contribution. Classically the surface
tension may be thought of as arising because the
surface atoms, having fewer neighbors than atoms
in the bulk, have a higher potential energy. We
therefore write a term

F& = [ wEn(E +F K@ dE (8a)

The kernel K(f) may be interpreted as the “attrac-
tive part” of the interparticle potential.

We will be considering two different geometries:
a plane interface, in which case n(f)=n(x), where
x is the rectangular coordinate perpendicular to
the interface; and a bubble, in which case n(F)
=n(r), with the origin taken at the center of the
bubble. Especially in these cases, a substantial
simplification is achieved if the following approxi-
mations, which preserve the physical content of
Eq. (8a), are made. First write K(¥')=-K,06(r’' —a),
for which we choose the parameters K, and a be-
low. Then expand n(F +¥') =n(¥) +F' - Vn(F) +3F'F":
VVn(f)+-++. The following result:

®) -2 4K N d_n zd
FOL=5ma’K A P x (8b)

for the plane geometry, where A is the plane
area, and

o 2 2

Fl‘:): =$ra’K, J; (Z—:) <l - -1-16 -i—z) y2dr (8c)
for the bubble. The leading correction to (8b) is
a term —(a?/20)(d?n/dx*)? in the integrand. Ne-
glecting it leads to no qualitative and only a mini-
mal quantitative error, since a is also the scale
of variation of n. There are two sorts of cor-
rections to (8c): higher-order derivatives, be-
ginning with the term discussed above, and curva-
ture terms, beginning with the term exhibited in
(8¢). This latter term is small because a?/72< 1
when 7 is the order of the bubble radius (215 A),
and additionally unimportant since it yields a con-
tribution to the surface energy which is nearly
independent of the bubble radius.'®

III. CALCULATIONS
A. Plane surface

We first discuss the predictions of the model
for a plane free surface. Combining (3), (7), and
(8b) we have the surface-tension functional

i * fdVn \? ® (dn \?
obuksz-m ( o >dx+§ﬂa4Kof_m(d—x) dx

+mcin, j mf(n/no)dx. (9a)
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FIG. 2. Helium density profile at a plane free surface.
Solid line is the numerical solution of Eq. (1) and the
dashed line is the approximate profile of Chang and
Cohen (Ref. 1).

The coefficient 2 7K ,a* can be estimated (recalling
our interpretation of K (¥) as something like the
attractive part of the interparticle potential) from
the Lennard-Jones parameters. One can alter-
natively use the measured value of the surface
tension’® to fit this parameter. We have done the
latter, solving the second-order differential equa-
tion resulting from 60y, /57 =0 numerically by a
standard predictor-corrector technique. We find
that (9) should be written

= /4 2
0y =0.130 f_w (E; (n/no)”z) dx+0.949

xf_m(dix (n/no)>2dx +0.592 J::f(n/no)dx,

(9b)
where oy, will be given in °K/A?, and x is mea-
sured in A. Note that the classical nonlocal term
is rather more important than the quantum non-
local term.

Estimation of the unknown coefficient as sug-
gested above leads to values close to the value
used in (9b).”

The numerical solution is plotted in Fig. 2. The
surface thickness (10%-90% density)is 5.9 A. The
healing behavior on the high- and low-density sides
is asymmetrical, the approach to zero being
more rapid on the low-density side. This is prin-
cipally a consequence of the asymmetry (with re-
spect to the transformation n/n,~ 1 —n/n,) of Fy,.
There is also a small asymmetry in f(n/n,), which
is of lesser importance.

We also performed a variational solution of
80y, /67 =0. The trial function has the form

fr1=[1+0/87] @07}, x>0

7= 0, x<0. (10)

The parameter £ determines the thickness of the
surface and y can be used to control the asym-
metry. We found that the choice y=1.7, £=3.78
Aisa good representation of the numerical solu-
tion (indistinguishable on the scale of the figure).
Even a one-parameter trial function works very
well. Thus with y=1 (an initial choice) the varia-
tional energy is only 3% higher than the numerical
value.

Plotted on the same graph (dashed curve) is the
density profile calculated recently by Chang and
Cohen,' who did a quasivariational microscopic
calculation of the surface structure. The agree-
ment is good, including the finding of an asym-
metrical healing behavior. Earlier calculations
by Brout and Nauenberg, Fitts, and Shih and Woo!®
give surface thicknesses ranging from half to
nearly double our value. All these calculations
suffer from the necessity of making an ad hoc
guess about the two-particle correlations near
the surface. We make guesses too, of course,
but they are pegged to estimates based on experi-
mental data.

B. Electron bubble

The structure of the negative ion in liquid helium
has been the subject of much study, and it is now
well accepted that the electron resides in a rela-
tively large bubble whose radius is determined
principally by a competition between the localiza-
tion energy of the electron and the surface energy
of the bubble.

The detailed structure of the bubble has been
investigated using models of varying complexity.
In most versions the energy of the bubble is writ-
ten as

E,=E, +4m0 a3 +% nPd} , (11)

where o is the surface tension, a, is the bubble
radius, and P is the external pressure. The elec-
tronic energy E, may be estimated by E, ~#%n®
X(2m,a?)™!, the energy of an electron in an in-
finite square well of radius a,. Using the bulk
surface tension and taking P =0, one finds for
T<1 K that a,~19 A. A more elaborate model,
taking into account the polarization energy (which
has only a very minor effect) and using a Wigner-
Seitz calculation for E,, yields q,~17.5 A under
the same conditions.?*® There exist a number of
experimental determinations. The simplest to
interpret are the mobility measurements of
Schwarz and co-workers.?'3 The mobility results
were analyzed classically using hydrodynamics
and yield values ranging from 15 to 19 A. Partly
because the theoretical values seem to be con-
sistently a little high, it has been suggested that
o may be modified from its bulk value because
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of the presence of the electron and/or the curva-
ture of the surface.?® ° In the Wigner-Seitz cal-
culation referred to above, a surface tension
0 =1.T04,, is required® in order to fit a=15 A.
Other experiments, such as the trapping of ions
on vortex lines and their subsequent escape,*
yield larger radii (16 to 18 A), but the theoretical
interpretation® of the experiments is more diffi-
cult. Photoejection experiments’ yield a radius
of about 153 A.

In order to analyze the bubble problem, we have
to include in F contributions from the electron.
We write

F=Fe +Fsurf ’ (12)
where
ﬁZ 0 d\I’ 2 © )
_ ave 2 v, |2mrtd
F, 4n<2me J; ol I dr+Vj; | ¥, |2nridr
(13a)
and

’iz m<d\fn_>2 2 . .
F‘“”‘M[zmﬁ 0 rdr+2mcnol

w n\ o, 2 4 w éﬁ 2 }
X-[of<7lu)r dr+3‘rraK0J; (dr)rzdr .

(13b)
The interaction of the electron with the He atoms
is described by a point-interaction pseudopotential
determined by the electron-He-atom scattering
length'®; this treatment is formally equivalent to
the Wigner-Seitz approach described above. The
factor K,a* was chosen to be the same as in (9b).

Encouraged by the success of the variational

approximation for the free surface, we attempted
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FIG. 3. Variational solution for the electron wave
function and helium density for the electron bubble.

a variational solution of the bubble problem. We
chose for ¥, the trial function

Al (sinkr) /7], r<a,

Ble ~*"/r), r>a, 14)

¥, (r)= %
which has the form of the ground-state function
for a square well of radius a,. For n(r) we took

n(r)= 0, r<ay,

- n0{1- [1+<’;"ﬂf~> le

x exp[-(ﬂh) 7:'}, r>ay,
(15)

with y=1.7, in analogy with the one-dimensional
solution. We treated ay,., a,, £ and k as varia-
tional parameters, while A, B, and Kk were deter-
mined so ¥, would be smooth and correctly nor-
malized.

The result of the variational calculation was

@4, =12.6+0.2 A, £=3.41:0.05 A,
a,=15.8+0.2 A, £=0.167+0.002 A~!, (16)
F=2138 K.

The variationally determined functions are shown
in Fig. 3.

The total energy is quite flat in the vicinity of
the minimum and the accuracy attainable was
limited by the accuracy of the numerical evalua-
tion of the quadratures. The probable errors
given in (16) also include an estimate of the in-
accuracy of the variational wave function. (The
values of the variational parameters are highly
correlated, however, and an arbitrary choice of
values consistent with the quoted errors will lead
only rarely to the minimum energy.)

Questions as to the effect of curvature and sur-
face “tightening” were also investigated. As re-
marked above, there is a negligible term of order
(a/ay,.f, which has already been dropped in Eq.
(13b) for the surface energy. Additionally there
are correction terms to the bulk value of order
¢/ay. and (£/ay,)?, which arise from the »?
weighting factor. By defining an appropriate ef-
fective surface at @y, =17.2 A, the linear terms
can be made to vanish, leaving only small (&/ay. )
terms. (At ay, the density is 0.42z,.)

Defining a surface tension by

o=F,./(4may. ), 17

we find that the surface tension is nearly identical
to the bulk value. Comparison of (16) with the
result for the plane free surface £=3.78 A indi-
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cates that the surface is tightened only about 10%;
our variational calculations would lead us to ex-
pect this to make a difference of less than 1%

in the surface energy, consistent with the finding
above. One reason that the surface is not very
much tightened is that the electron density decays
much more slowly than the variation in n. In
contrast, a sharp hard-wall interaction with the
helium would produce (because of the quantum
kinetic-energy term) a slightly higher surface
tension than for a free surface.

We conclude that the curvature and surface-
tightening effects are probably not important in
determining the bubble structure.

The bubble radius of about 17.2 A (a,,) that we
have found, is somewhat larger than the 15 A im-
plied by the viscosity-limited (7 =2 °K) mobility
measurements,? although consistent with the less
precise phonon-limited mobility results,® and with
other measurements.*~® These determinations
treat the diffuse surface crudely at best. Consid-
ering the substantial surface thickness that we find
and the probability that classical hydrodynamics
fails on a scale of Angstroms, one does not expect
the experimental determinations to be more accu-
rate than 1 or 2 A, so the agreement between ex-
periment and experiment and experiment and theo-
ry is actually quite satisfactory.

A further experimental consequence of the dif-
fuse surface is that different experiments will
measure different radii. For example, the elec-
tronic radius a,~15.8 A is almost 14 A smaller
than @y., and in agreement with the photoejection
measurement of Zipfel and Sanders.” The effective
mass is a hydrodynamic induced mass arising
from the kinetic energy of the velocity field around
the sphere. The velocity field is determined clas-
sically by the vanishing of the normal velocity
component at a surface, and quantum mechanically
by the vanishing of the density. The latter condi-
tion can be shown,2° however, to reduce to the
former at a well-defined surface. The density
profile of the bubble is very close to what one
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would obtain if a spherical surface were intro-
duced at » ~ay,. One would expect, then, that

the effective mass measures a rather small radius
(aye =12.6 A). Indeed, using the results of Pad-
more and Fetter,? we estimate that the effective
mass would be that appropriate to a sphere of
radius slightly more than 14 A. The effective-
mass radius measured in a recent somewhat sur-
prising experiment?' was 11.4 A. Our result may
provide part of the explanation.

IV. CONCLUSIONS

We have developed a convenient and, hopefully,
fairly realistic model for the structure of an in-
homogeneous quantum fluid and applied it to cal-
culate the structure of the free surface and the
electron bubble in helium. The surface shape
compares well with the results of a more elabo-
rate calculation and the bubble parameters are
consistent with experiment. The model is es-
pecially easy to treat variationally, and such an
approach seems to yield very accurate repre-
sentations of the exact solutions.

It will be interesting to apply the model to other
situations of physical interest, such as He films
on solid surfaces [in which case a term [n(F)
XV (F)dT, where V() is an external “wall po-
tential,” should be added to F] and He in other
restricted geometries (pores, powders, channels).
Problems with potential flow can be treated with
the addition of a term [n(F)(V¢(F))*dF to F. An
extension to finite temperatures is possible via
a study of the periodic solutions of the equations
resulting from small perturbations of the equilib-
rium solutions. These solutions describe the low-
lying excitations of the system. The study of the
different surface excitations that result will be
of considerable interest.
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