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Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described
in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently
screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly

considered.

I. INTRODUCTION

We are concerned here with the problem of cal-
culating the resistivity of dense conducting fluids
consisting solely of massive point ions and a neu-
tralizing gas of interacting electrons. Several
systems of physical and astrophysical interest
are included in a calculation assuming the follow-
ing: (i) The density of the system is such that the
electrons can be treated nonrelativistically. If
n, is the electron density, this restriction can be
stated as 7> 1072, where 7, is the usual linear
measure of electron density

n, =(Emriad)™t .

(ii) The electron gas is degenerate. This is an
implied restriction on the temperature, namely

T< (6x10%)/72 K .

(iii) The first Born approximation is adequate
for the calculation of electron scattering cross
sections from the ionic system. This condition
is satisfied for 7, = 1/Z (where +Ze is the charge
on the point ion) and is discussed in detail in Ap-
pendix A. At lower densities (larger 7,), the
validity of the results must be viewed with the
caution normally attribited to low-order calcula-
tions in liquid metals.

(iv) The density-density-correlation function
(static-structure factor) of the ionic system can
be approximated reasonably well by regarding the

—

1_ el d

T Q) @2m)E
with

€, =N2k'2/2m, € p=H%k}/2m
and

k%=3nn, .

|©

ions as an assembly of impenetrable spheres. In
the presence of an electron gas (and with due ac-
count for the effects of exchange, correlation, and
the adiabatic response to ionic motion), the effec-
tive ion-ion interaction is characterized at short
range by a steeply repulsive region, and at long
range by a weak oscillatory tail.! At sufficiently
high density (< 1), the interaction between ions
is expected to depart from the hard-core model
and approach the simple screened interaction fol-
lowing from Thomas-Fermi theory (as used by
Hubbard and Lampe?).

(v) The contribution to the resistivity from elec-
tron-electron collisions can be neglected. So long
as the electron system is highly degenerate, this
assumption is reasonable.

In Sec. II we outline the basis of the calculations
for the conductivity, and in subsequent sections
estimate the melting temperatures of these fully
ionized systems. The extensions to alloys are
also discussed, and insofar as they apply the re-
sults are considered in the context of the physical
properties of the deep interior of Jupiter.

II. CALCULATION

Within the adiabatic approximation we may write
the resistivity of the dense ionized fluid of N ions
in volume & as

p=m/n, e, (1)

where the transport relaxation time 7 is given by

o [ V& =K 0% 21 - costrip)o(ep—€,))) (2)

r

Equation (1) represents the ensemble average of
the resistivity calculated in Born approximation
for elastic scattering from each configuration of
the ions described by the density components

N -
=i(k=k’)*R;
Pt = e IR 3)

i=1
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where {R,} is the instantaneous set of ionic posi-
tions. The matrix element of the (self-consistent-
ly screened) electron-ion scattering potential V(r)
is defined for plane-wave levels [k) by

Q(EIVIE’)=V(E-E’):fﬂd?e-ui-i')-?V(E). (4)

If the scattering is sufficiently weak (Appendix A),
Egs. (1) and (2) reduce, as originally shown by
Ziman,® to

afi 4m3Z 1
dy y3S(y)?
o2 aokpfo y ¥ S(¥)A(y) ,

(5)

where y= |k —Kk’ | /2k;, and v(y) is the electron-
ion interaction scaled to its long-wavelength
limit (§€5). The quantity aji/e* may be viewed
as the atomic unit of resistivity and has the con-
venient practical value of 21.7 uQ2cm. S(k -k’) is
the liquid-structure factor defined by

S@) = (1/N){pyp-g?) -N&7 ;. (6)

In the Percus-Yevick model® (for hard spheres of
diameter 0), S(q) is a function of the packing frac-
tion n given by

TI=%”" 08’ nion=N/Q‘

(7

For most classical fluids near their solidification
points,*'% =0.45.

We are dealing with point ions and the accuracy
with which v(y) can be specified is limited only
by the uncertainties in the dielectric function €(y).
In the neighborhood of y ~1 [the regime dominating
the integrand of (5)], €(y) is quite well known and

ion
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we take the interpolation form suggested by Hub-
bard,® so that
v(y)==-0.1667,/[y* +0.1667, F(y)] , (8)
where
F(y)=f(y)/[1-0.1667,f(y)(2y%+g)"],
£=(1+0.0262r,)" ",
and

1+y
1-y

1 1-y?
f(y)—2+ e In

In practice, the replacement of F(y) in (8) by the
Lindhard function f(y) leads to the same resistiv-
ity (to within 2%), but the exchange and correlation
corrections contained in F(y) are important in cal-
culations of quantities involving [(1/€) - 1], such
as the effective pair interaction between ions.

Since (7, azkr)*=4(97), we may rewrite (5) [using
(8)] as

p/(r3Z)=38.4
Xfl dy y3S(y)[ ¥ +0.1667, F(y)] 2 ufem .
0

9

The utility of this expression is that the right-
hand side is, for »;=1, a weak function of 7, and
hence density. Figure 1 demonstrates this clearly.
It is worth noting that the charge Z enters in the
structure factor.”

To obtain the resistivity as a function of temper-
ature, we require 7'(n) at each density. This can
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FIG. 2. Effective ion-ion interaction energy in units
of 107%¢ .

be obtained from a variational technique,® but the
method is laborious and for the present purposes
it is sufficient to use the approximate technique
suggested by Ashcroft and Langreth.! We evaluate
the pair interaction between point ions from

822 (=  xsinsx
001201667 [ F

(10)

which gives the pair energy at separation »(r =s/
2kg) in units of €, (see Fig. 2). If ¢y, is the min-
imum value of ¢(s), then the melting temperature T
can be estimated from the relation

(2k50) = Pruin =3k Ty/€

provided 2kg0 is evaluated at n=0.45. It may be
noted that this procedure gives T, in sodium to
within 10%. The same close agreement is not
likely for fully ionized systems that have some-
what “softer” pair potentials (in reduced units)
than that appropriate for sodium.! To find dn/dT,
we evaluate the slope of ¢(s)

an _ d¢
o0 = [on/as (£ )TF]S I (11)

(where Tp=(6x10°)/7% K) and in this way obtain
T, (see Fig. 3) and the values of Tappropriate to
1< 0.45. An alternative method for obtaining 7,
exploits the Lindemann rule (see Appendix B), but
the simpler approach outlined above is no less ac-
curate and is, in fact, more fundamental.

The results of our calculation for fully ionized
H, He, and C are found summarized in Figs. 4,
5, and 6, respectively. We choose as a vertical
axis the quantity (resistivity Xdensity), since, as
noted above, this combination, near 7, is weak-

FIG. 3. Estimated melt-
ing temperatures.
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FIG. 4. Resistivity of hydrogen.
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ly density dependent. It should be emphasized
that if our estimates of 7, are incorrect, the form
of the curves presented will remain substantially
correct. We should also point out that at densities
for which the element carbon is likely to be fully
pressure ionized, the hard-sphere approximation
to the ion-ion interaction may already depart sub-
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FIG. 5. Resistivity of helium.

stantially from reality.® Moreover, kT,/€~ 0.05,
and this implies a significant nondegeneracy.
Figure 7 shows a comparison of our results with
those of Hubbard and Lampe.? The quantity com-
pared is the conductive opacity'® as tabulated in
Ref. 2. Our results are seen to be systematically
lower, and the greatest difference occurs at low
temperatures, where the crude approximation for
S(g) used in Ref. 2 is expected to be least accu-
rate. We cannot, however, eliminate the possi-
bility that the systematic discrepancy results
from a disagreement in the temperature scale.

III. EXTENSION TO ALLOYS

The extension to binary alloys is straightforward
in principle.! The result equivalent to Eq. (5) can
be written

_ P _384 f‘ yidy
@3Z% """ )y 157 +0.166 7, F(y)]?

X [%8,,(y) + 2xM2(1 = x)/28,,()

+(1=-2)8,,()] p@cm, (12)

where x is the fractional number of ions of species
2, Z* is the number of electrons per ion, and S,,,
Si2, S, are partial structure factors.!' These
structure factors not only depend on

_volume occupied by hard spheres
n= total volume
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FIG. 6. Resistivity of carbon.
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FIG. 7. Conductive opacity of hydrogen at two densi-
ties. A comparison of our results with those of Hubbard
and Lampe (Ref. 2).
but also on

a=0,/0,,

where 0, and 0, are the hard-sphere diameters of
components 1 and 2, respectively.
If =1, then Eq. (12) becomes identical to Eq.

Resistivity
(L8 cm) 4
30

25

20

(9), except, of course, that Z* is a function of x.
In this special case, the results of Fig. 1 can be
used to find the resistivity of any alloy'? at the
melting point.

Equation (10) shows that if ¢(s,)=0 for the inter-
action between ions of species 1, then ¢(s,)=0 for
the ions of species 2. This suggests that a is near
unity. However, the species with higher ionic
charge is expected to have a “harder” core (for a
given value of 7). A detailed calculation!® suggests
that @ =0.75 for a hydrogen-helium mixture; that
is, the helium hard-sphere diameter is one-third
larger than the hydrogen hard-sphere diameter.

In Fig. 8, we show that this deviation from a =1
does not dramatically change the resistivity, and
accordingly a reasonable approximation sets all
hard-sphere diameters equal.

There is, however, no simple extension of our
method for obtaining dn/dT to the alloy problem.
For Z> 2, the temperature dependence of the re-
sistivity is sufficiently weak that it may be ignored
in a first approximation (for 7, <7 < 7). For a
hydrogen—helium alloy, a crude approximation
simply interpolates between the temperature
trends shown in Figs. 4 and 5.

IV. SUMMARY AND APPLICATION

In the limited temperature and density range ap-
propriate to Eq. (5) and the hard-sphere model,
we find somewhat lower resistivities than those
previously obtained? for fully ionized liquid metals.
This is attributable to the use of a more accurate

FIG. 8. Resistivity of an
H-He alloy at 7,=1.0 and
17 =0.45. The effect of dif-
erent hard-sphere diam-
eters is shown.

I I

0.2 0.4 0.6

10 Helium
Concentration

(number fraction
of ions)



electron-ion interaction and a more appropriate
structure factor. A disadvantage of the present
method is the need independently to estimate the
temperature scale.

Systems for which the present calculations seem
likely to apply include the interiors of the giant
planets, in particular Jupiter. Most recent mod-
els of the Jovian interior postulate a central re-
gion of dense fluid. Its composition is predomi-
nantly metallic hydrogen, but is augmented by a
small amount of helium (about 10% by number!*:15),
It is conceivable that the helium may not be com-
pletely ionized and if not, the electron-helium in-
teraction may be more appropriate to that expected
of neutral helium atoms.!®* We find that although
it is possible for the resistivity to be enhanced if
the helium remains un-ionized, this enhancement
is mainly a consequence of the small increase in
the value of 7, rather than any substantial change
in the scattering cross section from that expected
for fully ionized atoms.

If we choose the central temperature!” of Jupiter
to be about 16 000 K, then we find that the resis-
tivity of the fluid is expected to range from
4 1 cm at the center of Jupiter to about 8 u2cm
at the boundary between metallic and molecular
hydrogen. A conductivity characteristic of the
deep interior of Jupiter is therefore

0~2%X10' esu ,

a result somewhat larger than most previous esti-
mates.'®

Jupiter is observed to have a strong magnetic
field, and in seeking internal mechanisms for its
origin it is first of interest to decide whether the
field could be primordial. If it were, then the
quantity of central importance is the decay time
T given in seconds by

T ~4no(L/c)?,

where ¢ is the velocity of light and L is a typical
planetary dimension, which we take here as
5%X10° cm. The result

T ~2x10° years

may be seen to hinge not too seriously on the
choice of L. Even if the value chosen is viewed
as unreasonably large, the result for 7 remains
such that the possibility of primordial origin is
difficult to discount. In complete contrast to this,
it is interesting to record that the high value of ¢
is likely to be favorable for a dynamo mechanism?'®
underlying the generation of the magnetic field.

Finally, a straightforward application of the
Wiedemann-Franz relation yields thermal conduc-
tivities for the interior of Jupiter ranging from
(in erg/cmsecK) 9Xx108 at the center to 1 X108
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at the metallic boundary. Now the observed in-
ternal heat flux is very high,?° but it is apparent
that even conductivities of this magnitude are insuf-
ficient to maintain the measured flux unless we
assume a much larger central temperature, !4’ !5
In a situation such as this, the system is unstable
against convection, and the planet would rapidly
cool. It would seem to follow that all but a small
core of Jupiter must be convective. The size of
this convective region is an open question.
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APPENDIX A: VALIDITY OF THE
BORN APPROXIMATION

An elementary criterion for the validity of the
Born approximation is that?

Ze? e, < (B2/2meg)V? .

Here, the left-hand side is roughly the distance
from the ion within which the interaction energy
exceeds the Fermi energy. The right-hand side
is of the order of the electron wavelength. It fol-
lows that

€p222%e%/(h?/me®)=4Z2 Ry,

whence ¥, 1/Z.
An alternative criterion is

Oporn/4Ta2<< 1 |

where 4r1a® is the “geometric” cross section. For
a single ion

1 2hF m 2
OBorn —-z?k—z; J; k(ﬁ V(k)) dk y
where
V(k):% f:sinkrt’(r)rd'r .

We calculate 0y, approximately using Thomas-
Fermi screening, i.e.,

V(r)=(Ze? /r)e™ s,

so
47 Ze? 4nZe? 1
k - =
V(b= +q2  x2+0.1667, (2kp)°
where
x=k/2kg .
Thus,
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o 1 <4IIZ>2 1 1 xdx
Borm =9 7kZ, (2k,)2.£ (% +0.1667,)% *

But,

a~1/q,=0.647}"%a
and thus it follows that

Oporn/4ma?= (0.27r22%)/(1 +0.1667,) .
Finally,

Ugorm /4Ma?<< 1 implies 7, < 1/Z (as before).

However, the Born cross section per ion in the
condensed state is clearly different from that of
a single isolated ion. We can calculate the “ap-
parent” cross section, per ion, in the liquid by
using the identity

noWET=1,

where T is the “collision time” for an electron
and 7 is the ion number density.
Since p=m/n,e?T, we have, from Eq. (5),

_4ntZ2 ,
0= foyvzmsmdy,

=Z(p(uQ cm)/21.7)(r,/1.92)a},

whence
Tw 10°
0,
k) HYDROGEN
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| 10 102 103
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FIG. 9. The melting temperatures of metallic hydro-
gen and helium according to Lindemann’s rule.

0./4ma% =~ 0.1Z2(p(LS2¢cm)/21.7) ,

where p is calculated from the first Born approx-
imation. (Note that this formula is valid for any
simple liquid metal.)

For hydrogen at ,=1.6, T=T,, we have 0,/
471>~ 0.06, and for helium at 7,=1.2, T=T,, we
have 0,/41a®= 0.25.

This suggests (but does not prove) that the Born
approximation may be much better satisfied in the
condensed state than for a single ion. Thus, our
criterion 7, < 1/Z may be too stringent. It is clear
and expected, however, that the Born approxima-
tion is increasingly well satisfied as 7, becomes
smaller.

APPENDIX B: MELTING CRITERION

A commonly used criterion is Lindemann’s rule.
This can be written as?!

SOV b LEL ®1)

M o . R2 °
Njon W )\R

where y is the mean-square amplitude of the ions
just below the melting point and is found, almost
universally, to be about & . M is the ion mass,
R, the interatomic spacing, w,) a phonon frequen-
cy of wave vector # and polarization A, and n,, is
the Bose-Einstein occupation factor.

For the high-density systems considered,
Abrikosov? has shown that it is important to dis-
tinguish between the longitudinal and transverse
modes, since the former are primarily deter-
mined by the bulk compressibility of the electron
gas, whereas the latter are primarily determined
by the Coulomb forces between ions.

We make a Debye approximation, but allow for
the longitudinal and transverse “Debye” tempera-
tures to be different. Using the method outlined
by Trubitsyn,?® we obtain (in K)

25002“6(221 3.66 7.1722/3)1/2

O, —_—— -
AR ry T 3 73

©,= 8000(Z/Ar3)!/? ;

The correlation energy of the electron gas is
small and can be ignored. Equation (B1) can then
be written

2 e,/r
k.,e; 1+4(T f ! xdx}
MS? e, ), -1
/T xdx
250, ~
. 52[1 4( ) _1] 0.47, (B2)

where S;, S, are the appropriate sound velocities.
We anticipate 7}, < ©,, ©, and so approximate ©,/7,




©, /T by «in the integrals. It is easy to show that
this is valid provided

(©/T)e™®T<i1® for ©=6, and 6, ,

0.22
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AY2Z5/802 1/r %) = (3.66 /7 3) - (1.1122/3 /r 3)]1 /2¢ 2

and is solved to obtain T, (note that for r, <1,
only the {ransverse modes are important in deter-
mining 7). The results, shown in Fig. 9, give
melting temperatures which differ by as much as

a factor of 2 from those in Fig. 3. Similar re-
sults have been obtained by Pollack and Hansen.?*
The problem with Lindemann’s rule is that an er-
ror in y(=fy in the above calculation) propagates
alarmingly through to the final calculation of T,
inthe case 7,< ©,,0,. Typically, a 10%erroriny
willgivea 50% error in T, Moreover, our estimates
of ©;, ©, areonly approximate. (Our formula for 6, is,
however, in excellent agreement with the ©, cal-
culated by Neece, Rogers, and Hoover.?%) Note

789

which is satisfied reasonably well for the cases
studied. Equation (B2) can be written in numeri-
cal form, for low temperatures, as

2m /T \2 0.13 22 /T 2W~
[1+ 3 (e_x) :1-4-14—"7-'_‘7‘_'7‘x 227/571 2[1+—'§-(§‘-> J—0.47

—

that at sufficiently high densities, the zero-point
motion alone will cause the lattice to melt. Linde-
mann’s rule gives an estimate of the value of r;/ 2
at which 7, 0. Since density varies as (r1/2)7¢,
the density at which T, =0 cannot be calculated

to better than an order of magnitude using Linde-
mann’s rule. (The pressure at which 7, -0 may
be incorrect by almost two orders of magnitude.)
As Abrikosov!S observes, only hydrogen and heli-
um will melt at absolute zero and sufficiently high
densities. This is because the densities required
for heavier elements are such that the sizes of
the nuclei become important.

*Supported in part by NASA under Contract No. NGR-33-
010-188, and by the National Science Foundation under
Contract No. GH-364517.

fPermanent address: Laboratory of Atomic and Solid
State Physics, Cornell University, Ithaca, N.Y.

14850.

IN. W. Ashcroft and D. C. Langreth, Phys. Rev. 159,
500 (1967).

2W. B. Hubbard and M. Lampe, Astrophys. J. Suppl. 18,
297 (1969).

3J. M. Ziman, Philos. Mag. 6, 1013 (1961).

N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83
(1966).

5T. Wainwright and B. Alder, Nuovo Cimento Suppl. 9,
116 (1968).

6J. Hubbard, Proc. R. Soc. A 243, 336 (1957).

'S is a function only of the combination go. Since ¢ =2kgpy,
it follows from (7) that go=2y(1872Zn)!/3 and the va-
lence and packing fraction therefore enter in the com-
bination (Z 77)1/3.

8D. Stroud and N. W. Ashcroft, Phys. Rev. B 5, 371
(1972).

%It is worth noting, however, that “softness” in the short-
range interaction does not substantially alter the form
of S(k) [see D. Schiff and J. P. Hansen, in Proceedings
of the Second International Conference on the Properties
of Liquid Metals (Taylor and Francis, London, 1973),
p. 57.

10This follows from a simplistic application of the Wiede-
mann-Franz relation. The conductive opacity is pro-
portional to the resistivity.

1N, W. Asheroft and D. C. Langreth, Phys. Rev. 156,

685 (1967).

2provided all spheres have the same diameters, we

need not restrict ourselves to binary alloys.

BFollowing the methods of Ref. (8), the free energy of
the alloy was minimized with respect to o and 7, and
the value of a obtained is consistent with a direct esti-
mate from the form of the ion-ion interactions.

14w, B. Hubbard, Astrophys. J. 162, 687 (1970) (and
other references given therein).

15y, P. Trubitsyn, Astron. Zh. 49, 420 (1972) [Sov.
Astron.-AJ 16, 342 (1972)].

16Screening must be included [as in Eq. (4)]. For the un-
screened interaction see, for example, J. E. Purcell,
R. A. Berg, and A. E. S. Green, Phys. Rev. A 2, 107
(1970).

1"This estimate of the temperature results from the use
of an adiabatic model in which we equate the surface
entropy (Ref. 18) to that appropriate to the planetary
center: The latter can be found by calculating the free
energy of a hydrogen-helium liquid alloy using an ex-
tension of the method of Ref. (8).

®w. B. Hubbard, Astrophys. J. 152, 745 (1968).

1R, Hide, in Magnetism and the Cosmos, edited by W. R.
Hindmarsh, F. J. Lowes, P. H. Roberts and S. K. Run-
corn (American Elsevier, New York, 1965), p. 378.

20H, H. Aumann, C, M. Gillespie, Jr., F. J. Lowes,
Astrophys. J. 157, L69 (1969).

Ap, Pines, Elementary Excitations in Solids (Benjamin,
New York, 1963), p. 19.

ZA. A. Abrikosov, Zh. Eksp. Teor. Fiz. 39, 1797 (1960)
[Sov. Phys.—JETP 12, 1254 (1961)]. ]

%V, Trubitsyn, Fiz. Tverd. Tela 8, 862 (1966) [Sov.
Phys.-Solid State 8, 688 (1966)].

ME. L. Pollock, J. P. Hansen (unpublished); J. P. Han-
sen, Physics Lett. A 41, 213 (1972).

%G. Neece, F. Rogers, and W, Hoover, J. Comput.
Phys. 7, 621 (1971).



