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Inversion -symmetry -changing atom-atom collisions
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Slow collisions of different isotopes of the same species are considered. The adiabatic
representation of wave functions is used. There is no restriction to inversion-symmetry-
conserving collisions because of the isotopic difference. Such parity-changing collisions
are considered and, since levels of different parity can cross, it is shown that the cross
sections may be large. The "switching functions, " previously used, are shown to play an
important role in this reaction and their interpretation is discussed.
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Here W, ~
=8', —8'& and

where 4M is the difference in masses of the tmo
atoms and Mz is their sum.

The functions f&
=f(x„R) are "switching func-

tions'* which mere introduced by Russek and
Schneiderman' and used by Thorson' and co-work-
ers. Here x& is the coordinate of the ith electron
relative to the internuclear midpoint and R is the
internuclear coordinate. The switching function

In a recent paper' it mas shown that a careful
treatment of m/p, (m is the electron mass, and
p. the reduced mass of the atoms) effects leads
to corrections to the scattering potentials of or-
der m/1L. It was also shown that the coupling op-
erator between different adiabatic channels is
modified in lowest order (p, '). This arises be-
cause the coupling operator comes from the nu-
clear kinetic energy, which is formally of order
p, ', whereas the electron kinetic energy is of
order m '. Therefore m/y. corrections to T„can
enter the coupling terms in lowest order.

The example of scattering by different isotopes
of the same atom was treated, and the equations
describing the coupling between two different
adiabatic states was obtained. If we drop m/y,
corrections wherever possible, these equations
are

—T —@'0)+0—Bol ' ++1 = 0

(F. —T —W, )F, —B,o v Fo = 0,

where F. is the total energy, T is the kinetic ener-
gy operator of the colliding atoms, W, (ft) are the
usual adiabatic interatomic potentials, and the
coupling operators between adiabatic states of
opposite (g, p. ) inversion symmetry are given by

is introduced in order to project an electron onto
one or the other atom when the atoms are infinite-
ly separated. The essential part of their definition
is the boundary condition

mhere the local momenta are given by

P, (R) =(2~[E —II,(R)l)", (8)

lim+f (x, R) =+I; )x ——,'R~ finite
g~ oO

= -I; )x+-,'R) finite.

The remaining freedom in the function may be
used to optimize some property of the scattering
problem. The f, are usefully taken to be odd in
both x and R. The part of B,~ given in Eq. (2)
therefore couples states of opposite symmetry.
Note that in the limit 0 =0 {when the atoms are no
longer different) this coupling va.nishes as it
should. Vfe also note that in the limit 8- ~ within
the matrix element in B,~ (half of the electrons are
on each atom) so that the coupling operator van-
ishes in this limit.

The coupling operator is small (-p, ') and may
frequently be treated in lowest order, in which
case the transition matrix from state 1 to state 0
ls

T„= -(p, /2v)&y' B„Vy", &,

mhere g, satisfies

(Z - T - W, )y&'1=O,

with a unit amplitude plane wave at infinity, and
the (a) signifies the usual boundary conditions.
Chen and %watson' have treated a similar matrix
element under conditions mhere an eikonal approx-
imation for the scattering states is possible.
These conditions are clearly delineated by them
and will not be discussed here.

The eikonal form of P& is

0'"=[P&(")/I' (It))' 'c"' ' ' (7)
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and the eikonals are given by

~(")(R)=P (")R+ ds EP (R) —P (")]

S', )(R)=p, (") R — ds EP, (R) —P,(")]

By substitution of E(ls. (2), ('l), and (9) into %e
transition matrix with the replacement

(y(-)B .g(((+)) ~f{y()R,. [P (R)+P (R}]q(+))

we obtain

In the vicinity of R, we define a unit vector n

along the path so that near R,

W,.=(2) ) 'EP.(R)+P,(R)ln Ep.(R)-.-,{.}],
=(2) ) '[P,(R)+P,(R)]n ~ VC . (14)

Then integrating by parts, the T matrix becomes

-Xm
d'R(n VQ) e'~)

32m p.

where

i)(m " „, P,(~)P,(~)
16m i Po(R)P, (R)

x R [P,(R)+P,(R)]W„(R)(l I g f(IO) e'

Q = R'[Po(R) +P,(R)] [Po(R) +P,{R)]

Po{~)P,(~)" P-'(R}P'(R)
0

(16)

where

4 = - ~P R "d-' P.(R)-P.(-)

+ ds p, -Z ( )

(10)
In (15) the sum over I is a sum over the different
points R„, at which the stationary phase condition
is satisfied. The exponential in (15) is a rapidly
varying function so that n V Ql „may be removed

0
from the integral. If we drop terms of order
()'W/p')„ then

and

&P = P,(")—P.(")
n VQl =4[P( }P ( )] ~

xP(R.)nn:~(R(ll g f, l 0) ), . (IV)
The line integrals in (9) and (ll) are along the

classical paths which are defined as follows.
Classical equations of motion are defined by

ap = -vw, ("},aT

aR 1
p

BT P.

(12)

They are integrated for i = 0 from the precollision
region up to the point R with initial conditions
specified by P,(~) and some impact parameter.
The equations for i = 1 are integrated backwards
in time (r) from the postcollision region back
to the point R with starting conditions specified
by P, (~) and whatever impact parameter is neces-
sary for the path to intersect H.

Watson' has shown that the regions which give
the principle contributions are around points
R =R, , which are points of stationary phase,
where

Po(RO) —P, (RO) = 0.

This requires that the mornenturn be continuous
in both magnitude and direction, which is just the
condition for a classica. l path. We note that

W, (R }= (2) ) '[P'(R )]- (2)) ) 'EP ,(R )]

=(2) ) '[P.(R)+P,{R)1 EP.{R)—P,(R}]

If the states (1 and l0) are Z states, then the
factor ( 1

l Pf, 0) will be dependant only on the
magnitude of R and not on its direction. Then if
there is only one point at which the energy levels
of the states cross, that is if W,o(R) =0 has only
the solution R„ then the factor ( Ilg, f, lO)l„
will be independant of the index / in (15).

We may now write (15) as

T„= -"~

xP[nn V{R(11+f, IO))l, 'i d'R e' &, (l6)

where P =Po(RO, ) =P, (RO, )—.
Chen and Watson' have dealt with this type of

integral by expanding 4, around the point R~ .
They show that it can be reduced to a, one-dimen-
sional integral along the classical path passing
through Rp, ,

where A, depends upon the principal radii of cur-
vature of the surfa, ces of constant eikonal at the
point R~ and Q, (s) is defined by (11) and evaluated
on the path passing through Rpf with s measuring
the distance away from R„along this path.

A further expansion of Q, in s can now be per-
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formed with the result

&}))(s)=@+(N) 2-(p(& - P, )g 6
s'+ ~ ~ ~, (20)

mhere the P, are defined by the expansion

w, {R)=w{R„)+P„{ft-ff,)+ ~ ~ ~,

which results in a linear crossing of the states

II'0(ff ) —& {R)= (P —P ) (R -ft ) + ' ' '

=p (a-a )+~"

We emphasize that this real crossing is possible
since the states are assumed to have different
parity. The resulting integral is

r ds e' ~' = e'~t"&»'[2wP/( p,„(SA/Ss) ~, ] ' '

4 I/ol j f p )Q
8'

01 g~
X

e' " if P —&O.
8R

01 g~

Substitution back into (18}yields

posite parity can cross. Therefore, the cross
section may be much larger than that in the
Landau-Zener case. The factor X = 4M jMT' will
usually be small, but it is energy independent.

The straight-line impact-parameter treatment
of E(ls. (1) is much less general but much simpler
than the treatment presented above. The equa-
tions are'

, 8
sV ——8 A =2K BA

aj

fV ——W 2 =iK'8
~Z

(24)

(25)

where the A.
&

are the amplitudes of the two states
which are functions of the impact parameter b and
where V is the relative velocity of the collision
and K =mV. Again assuming B» is small, we ob-
tain

-A, nt s /2

T = [P (~}P (~)]' '—10 ag~ 0 1

x P:v)(&(II 7, !o))v'""x,
1

(23)

dz —z Oj f)1
0

x cos
0

(26)

which with the aid of (2) and an integration by parts
can be written as

If we assume that there is only one Ro (only a
single crossing of levels}, I will take on two values
and p01 mill be independent of /. The factor
(sR/Bs), will, however, change signs for the two
different values of l, since it mill be negative on
the inward going portion of the curve and positive
on the outward. The sign in the factor (e""~'),
mill therefore change as l changes, so that this
factor mill contribute a relative phase of a ~m

(depending on the sign of P»} between the terms.
There will be an additional phase due to the fac-
tor e'~'"0i&.

Further evaluation of (23) requires a solution of
the classical-path equations to determine n, ,
@(80) ), and A, at each of the cros sings. Vfe may,
however, contrast this result with the I andau-
Zener result without further calculation. The
primary difference (other than the details of the
matrix elements) is that curves can cross here
and not in the Landau-Zener case. This noncross-
ing results in a factor e '~" in the Landau-Zener
case. where v is the relative velocity of the nu-
clei at the crossing point. This velocity is fre-
quently small, so that the energy dependence of
the T matrix is dominated by this factor. Equa-
tion (22) has no such factor, since levels of op-

We have used the fact that ( 0[+;f, ~ 1) is an even
function of z. In the limit of low collision velocity
the last factor in (26) oscillates rapidly, so that
the principle contribution comes from the point of
stationary phase. The result is then

xmv vv),*o')v*)"-
x—O(' - o')'&*( ol g f I ()) R, &b

=O, R,&b.

Note that for small V the cross section given by

o= j d'ga, (h)[' (28)

is proportional to F'~' rather than the more rapid
dependence in the avoided crossing case.

The remaining novel feature of this result is the
over-all factor ( 1(g,f &~ 0) ~ „ in the T matrix. The
cross section for this process therefore provides
a direct measurement of an integral containing the
switching function. The function is arbitrary ex-
cept for its boundary condition [E&I. (4)]. This may
be viewed in tmo mays: It can either be thought of
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as a flaw in the theory in that the cross section is
arbitrary to the extent that the switching function
is arbitrary, or the function can be thought of as
an additional freedom in a trial wave function.
This additional freedom may be exploited to opti-
mized some scattering property. This latter was
the attitude taken in Ref. 1. In either case, the
switching function seems to be a necessary ingre-

dient in arriving at equations such as (1}; that is,
I know of no technique for a many-electron prob-
lem which exploits the adiabatic representation,
treats the Pauli principle correctly, treats the
boundary conditions correctly, and arrives at
coupled channel equations which does not introduce
something akin to the switching functions.
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