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The electric and magnetic fields of a point charge moving with constant velocity outside and
parallel to a conducting wall of finite conductivity are studied within classical electrodynamics
for a nonrelativistic particle and a good conductor. Results are obtained through first order
in the particle velocity for a wall with permeability p, = 1, dielectric constant e = 1, and resjs-
tivity g. Calculations show the foll.owing: (i) There is no skin-depth behavior for the fields E
or B or for the currents X inside the conductor. (ii) The fields 5 and' E fall off with distance
as r" and r, respectively, inside the conductor. (iii) The magnetic field B and the current
density S inside the conductor are independent of the resistivity q, although the el.ectrie field
E inside the conductor is suppressed by a factor of q. (iv) In the limit of many point charges
moving so as to form a steady current outside the conductor, the magnetic field B penetrates
the conductor as though it were not present while the electric field E and current density S
vanish inside the conductor. The results obtained here are quite different from those of the
familiar calculations involving radiation fields where the penetration depth and the size of the
fields inside the conductor are governed by the resistivity. The new results run contrary to
the expectations of some physicists and contradict some earlier work in the literature. The
calculations arose in connection with the Aharonov-Bohm effect where electrons moving with
approximately constant velocity pass very close to a conducting solenoid.

I. INTRODUCTION

A. The problem and conclusion

A static magnetic field penetrates into a good
conductor without hindrance. However, a plane
electromagnetic wave incident upon a conductor
penetrates only a surface layer and is screened
out of the body of the conductor. This contrast in
behavior raises the question as to what is the
penetration of the magnetic vel. ocity field of a
charged particle into a conductor of finite con-
ductivity.

In this paper we consider the electromagnetic
fields caused by a point charge moving with a
small constant velocity outside and parallel to a
plane conducting surface of finite conductivity. %'e

conclude that the penetration of the electric and
magnetic velocity fields of a nonrelativistic parti-
cle is of a totally different character from that of
the radiation fields. The velocity fields B and E
fall off as r ' and r ', respectively, inside a good
conductor, rather than being exponentially damped
in a skin depth. The electric field inside the con-
ductor is decreased by a factor of the resistivity,
but the magnetic field and the currents inside the
conductor are independent of the conductivity of
the material.

8. Motivation for the analysis

The penetration problem for the electromagnetic
velocity fields seems rarely treated in the litera-

ture. In general the velocity fields are of no con-
cern in electromagnetic shielding questions be-
cause charged particles are located far from the
region of interest where only the radiation fields
remain relatively large. However, in the tests of
the Aharonov-Bohm effect' involving the passage
of electrons close to microsolenoids or magnetic
whiskers, the velocity fields are the relevant ones
for treating the classical electromagnetic interac-
tions between the electrons and the solenoids. The
energy changes associated with the magnetic ve-
locity fields are comparable to contributions from
terms in the Hamiltonian on which the quantum-
mechanical explanation of the effect is usually
based.

Indeed the author has suggested' that contrary
to the presently accepted views, the interactions
between a charged particle and a. solenoid leading
to the Aharonov-Bohm effect may involve classical
electromagnetic forces. This view has been re-
jected by the experimentalists at TGbingen who
have done the careful experiments' verifying the
Aharonov-Bohm interference pattern shift. The
reason given by the experimentalists for rejecting
any explanation based on classical electromagnetic
interactions involves precisely the question of the
penetration depth of magnetic velocity fields into
a conductor of finite conductivity. The experi-
mentalists refer to an (erroneous) analysis by
Kasper' who purports to show that the magnetic
velocity fields are screened out at the surface of
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a conductor. The relevance of the penetration-
depth problem to the Aharonov-Bohm effect will
be considered in detail in another publication. '
Here we restrict our attention to the purely clas-
sical electromagnetic question of the penetration
of the electric and magnetic velocity fields into a
conductor of finite conductivity.

C. Outline of the paper

The basic analysis of this paper is contained in
Sec. II. Some limiting cases are presented as
corollaries in Sec. III. In Sec. II A, we note the
velocity fields of a point charge in free space, and
introduce the coordinate system used in our cal-
culations for a moving charge and conducting
wall. Then we touch on three qualitative aspects
where the interactions of the velocity fields with

a conductor differ from the interactions of the
radiation fields. These aspects involve the rela-
tive orientation of the fields E and 8, the possibil-
ity of going to a magnetostatic situation, and the
availability of a velocity parameter for perturba-
tion theory. Although in principle the problem is
soluble exactly, the relativistic behavior may in-
volve considerable complications. Hence, next
we start the actual analysis by outlining our non-
relativistic approximations for a good conductor.
This shows that the surface charge plays a crucial
role. We go on to evaluate the surface charge,
the electric field, the currents in the conductor,
and finally the magnetic field in all space. The
results are valid through first order in the veloc-
ity with a well-defined meaning as to what con-
stitutes a good conductor.

Section III considers three limiting cases ob-
tained by combining the point-charge results of
Sec. II, We first check that our results agree
with the well-known magnetostatic limit for a
steady current. Then we treat a line charge
moving perpendicular to its axis outside a conduc-
tor. This is the form in which the penetration-
depth problem for the velocity fields was attempted
by Kasper. ' Finally, we consider the limit of a
steady current sheet outside a conducting wall.

Section IV emphasizes the restricted nature of
our analysis for the penetration of the velocity
fields, and then gives a closing summary.

II. BASIC CALCULATIONS: PENETRATION OF
THE VELOCITY FIELDS OF A POINT CHARGE

A. Statement of the problem

The velocity fields E, 8(r, t) and 8, z(r, t) of a
point charge e moving in free space with constant
velocity v =cPi and x coordinate x =cPt along the
line y = 0, z =d are well known' as

i(x-vt) +jy+ k(z-d)E x z t)=ey [y'(x-vt}'+ y'+ (z —d}']'"
s (x-vt) +jy + k(z-d)

[(x-vt}'+y'+(z-d)'] '"

8, z(x, y, z, t) =AXE, z(r, t)
A

—j(z-d)+Ay
[y'(x-vt)'+y'+ (z-d)']'"

-j(z-d)+Ay
[(x-vt)' +y'+(z-d)']'"

where j$ =Pi and in the usual notation y
= (1-p'} '~'. Suppose now that conductor of resis-
tivity g, and, for convenience, permeability p. =1,
dielectric constant e =1, filled the half-space z
~ 0. Then the presence of the conductor allows
image charges and currents which alter the elec-
tric and magnetic fields in all space. Our prob-
lem is to find the new electric and magnetic fields
when the point charge e moves with constant ve-
locity exactly as described initially in the free-
space situation.

8. Failure of the traditional skin4epth analysis

When considering a problem of changing electro-
magnetic fields falling on a conductor, one thinks
first of the traditional text-book analysis' for the
penetration of a plane electromagnetic wave of
frequency u into a conductor of finite resistivity
characterized by a permeability p, a dielectric
constant e, and a resistivity g. In this case, the
component of the electric field normal to the con-
ducting surface ends on surface charge, penetrat-
ing a negligible distance. The remaining electric
and magnetic fields are exponentially damped in-
side the conductor with a characteristic skin depth
6 given by

C
1/2

(~) (d [ 1 +(4'/(deT/) ] —1

becoming

5~ c(q/2mg v) 'i'

for a good conductor when

4'/(de YJ && 1.

Now our problem concerns the appropriate anal-
ysis not for a plane electromagnetic wave but for
the velocity fields of a charged particle outside a
conducting surface. It has been argued by Kasper'
that the plane-wave analysis can be applied to this
latter case where ~ ' is taken as the time required
for the charged particle to traverse some charac-
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teristic distance-such as the distance d from the
particle to the conducting mall. However, this
suggestion seems totally misdirected. Here we
will give three qualitative distinctions between the
penetration behavior of the electromagnetic radia-
tion fields and of the velocity fields. %e believe
that the third distinction involving the passage to
a magnetostatic limit provides an irrefutable
argument against the applicability of the same
penetration-depth analysis to both sets of fields.

The contrast in the physical behavior for the
radiation as compared to the velocity fields can be
noted immediately in the relative orientations of
the electric and magnetic fields. For a plane wave
incident normally on a conducting surface, the
electric field causes an oscillating current flow.
This current in turn generates electric and magnet-
ic fields which inside the conductor tend to cancel
the fields of the incident wave and which outside
the conductor provide the reflected wave. In the
case of non-normal incidence, this basic situation
still holds. However, for a charged particle mov-
ing with constant velocity outside and parallel to
a conducting surface, the orientation of the (undis-
torted) electric field is such that it has no tendency
to cause a current cancelling the magnetic field
inside the conductor. The fields required to can-
cel the penetration of the magnetic field into the
conductor can be found immediately by considering
the I orentz transformation of the electrostatic
situation of a point charge at rest relative to a
conductor. In the transformed situation involving
a moving charge, the fields E and 8 still vanish
inside the (moving) conductor. We see that what
is required is a surface current corresponding to
the motion of the electrostatic surface charge with
the particle velocity v. However, our problem in-
volves the conductor at rest with respect to the
observer while the point charge is moving. If the
conductor obeys Ohm's law, then no surface cur-
rents are possible unless the resistivity g -0 or
the electric field E -~ at the surface. Moreover
the orientation of the free-particle electric field
is such that it does not even tend to produce the
required currents near the surface.

Next we note that the velocity of a point charge
plays a role in the electromagnetic velocity fields
which has no counterpoint for a plane wave. The
radiation fields necessarily travel at the speed of
light in the medium, and the electric and magnetic
fields are comparable in size. Qn the other hand,
a point charge may travel at any velocity with
(P ( (1. Thus P forms a continuous parameter
available in the description of the system, and it
seems natural to expect that physical situations
which differ by small changes in P will have only
slightly different physical interactions. In parti-

cular, it seems appropriate that for low particle
velocities P « I, the physical situation can be re-
garded as a perturbation of the electrostatic situa-
tion P =0.

Finally, we wish to consider a limit which
seems to indicate conclusively that the electro-
m~etic velocity fields cannot be exponentially
damped inside a conductor as are the radiation
fields. The results involving a point charge mov-
ing with uniform speed outside and parallel to a
conducting surface can be combined so as to give
the description for a series of point charges
all moving with constant velocity so as to form a
constant current. This magnetostatic situation
forms a natural limit involving the velocity fiel.ds,
but there is no nonvanishing static limit involving
the radiation fields. Also, the behavior of the
fields in this magnetostatic limit is well known so
that it can be used as a rough test for the validity
of the results obtained in the single-particle situa-
tion. In particular, for a steady current, the mag-
netic field penetrates into a conductor with p = 1
just as if the conductor were not present. %'e

note, however, that if the fields of a single point
charge were indeed exponentially damped within
the conductor, then no linear superposition of
point charges to form a steady current would re-
move this exponential damping.

These qualitative considerations contrasting the
behavior of the electromagnetic velocity and ra-
diation fields emphasize the need for a separate
analysis of the penetration of the velocity fields
of a charged particle into a conducting surface of
finite conductivity. In the work to follow, we will
make use of the velocity parameter P to work
from the electrostatic situation as the unperturbed
limit. In Sec. III A, we will show that our new re-
sults indeed go over to the appropriate solution in
the magnetostatic limit. The earlier and erro-
neous results of Kasper' do not.

C. Constant velocity pattern

The charged particle in our problem moves with
constant velocity parallel to the conducting sur-
face z =0. Hence whatever the combination of
currents, charges, and fields associated with the
particle and conducting wall, we expect the entire
pattern to move at constant velocity with the par-
ticle. In particular, all partial time derivatives
of a quantity f can be related to a partial space
derivative in the direction of motion

An example of this functional behavior is seen in
Eqs. (1) and (2).
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D. Perturbation calculation in particle velocity

Although the solution to the complete penetration
problem posed here may be complicated, we will
concern ourselves with only an approximate solu-
tion holding at nonrelativistic particle velocities
for a good conductor. This mill be sufficient to
indicate that the penetration problem for the ve-
locity fields is totally different from the skin-depth
considerations involving plane waves. It will also
indicate the erroneous character of the one pene-
tration-depth calculation in the literature' of which
the present author is aware.

Here me consider the dependence of the electric
and magnetic fields upon the velocity of the moving
point charge. We expect that the fields E, 8(r, t)
and B, z(r, t) at the field point r due to the charged
particle moving with constant velocity and located
instantaneously at the source point g can be ex-
pressed as a power series in the velocity ratio p
= v/c. Thus when the charged particle is sta-
tionary at $, the fields E,(r; g) and B,(r; g) are
known from the electrostatic solutions. When the
particle is moving with a small velocity, we ex-
pect changes in E, z(r, t} and B, 8(r, t) which are
proportional to P.

In the lom-velocity limit, the Coulomb gauge is
particularly convenient. In this ease the scalar
potential 4(r, t) is given by the instantaneous posi-
tion of the charges as

and, to lomest order, me expect the same veloc-
ity dependence for the currents J inside the con-
ductor. Then from Eqs. (5) and (6), we see that,

A is first order in P = v/c. Hence from (8), the
magnetic field B is first order in P, and from (9),
the correction to the electric field E beyond the
electrostatic field is second order in P. Hence
we conclude that if me can obtain the charge dis-
tribution correct through order P, then a calcula-
tion using (4) treating the sources as static will
give the electric field E correct through order P.
If me can obtain all currents J through order p,
then to lowest order in P we may drop the retarda-
tion in (5) and so derive A and hence B through
order p as if they were due to steady currents.
This approximation procedure is followed in the
remainder of our analysis.

7 =(1/q}E, (10)

where q is the resistivity of the conductor. It
follows from this, coupled with Maxwell's equation
and the continuity equation for charge,

ap0= —+V J

E. Physical assumptions: currents and surface

charges

Our first physical assumption is the natural one
that currents inside the conductor are given by
Ohm' s law

(4)

while the vector potential involves the retarded
time and transverse current,

ap 1 ~ ap 47I'
0= —+V' —E = —+ —p=

at q
=

at (12)

J,(r, t) = —Vx V& ', d'r'.X(r', t), ,
4m r- r' (6)

This last differential equation requires that any
charge density inside the conductor decreases
exponentially with time. Hence we will assume
that the only charges involved in our problem are
surface charges on the surface of the conductor.

B(r, t) = VxA(r, t).

Furthermore, for the situation considered here,
the time derivative may be converted into a space
derivative as in (3) giving

E(r, t) = —V4+P —A(r, t) (9)

Now the current density for a point charge at g(t)
ls

J(r, t) = ev6'( r —g(t}),

contributing to first order in the particle velocity,

The fields are then derived from the potentials as

18»
E (r, t) = —V4(r, t) -- —A(r, t),

F. Surface charge distribution through order P

Combining several aspects of the argument
above, me see that if we can determine the surface
charge distribution through order P, then by an
electrostatic calculation we ean find E through
order P, from this find Z as in (10}, and then by a
magnetostatic calculation determine B through
order P. Accordingly, me first consider the sur-
face charge distribution.

%e expect that at sufficiently low velocity, the
surface charge present on the conductor differs by
only a small correction from that present in the
electrostatic situation when p = 0. However, the
small correction to the electrostatic surface
charge determines the magnitude of the electric
field inside the conductor, and this field in turn
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determines the rate of change of the surface
charge through Eqs. (10) and (11). It turns out that
this interconnection between the change in the sur-
face charge and the electric field causing a change
in the surface charge uniquely determines the sur-
face charge through first order in P. The surface
charge will lead to a discontinuity in the normal
component of the electric field. Integrating Max-
well' s equation

V E =4mp

over a flat box with surfaces just inside and out-
side the surface of the metal at z = 0,

F. —E„=4m', (14}

where E„.and E refer to the fields just inside
and outside the conducting surface. As the charge
particle moves along parallel to the conducting
surface, the surface charge distribution must
move along with it. However, it is a crucial ob-
servation that since the currents in the conductor
are given by Ohm's law and the tangential electric
field is finite at the surface, there can be no sur-
face currents. The surface charges cannot move
as a whole at velocity v. Bather the currents in-
side the conductor must bring up to the surface of
the conductor the correct amount of charge to keep
the distribution of surface charge moving at veloc-
ity v along with the passing particle. Integrating
the continuity equation (11) over a flat box with
sides just inside and outside the conducting sur-
face, we require

But then from Eq. (16), we have Ei&' in first order

gg(0)
cqP(1)

8x

Since the surface charge is confined to a plane
surface, symmetry requires that the electrostatic
fields due to the surface charge be symmetric on
opposite sides of the plane. The first-order elec-
tric fields are due solely to the charge on the wall
and thus are related as

«o «i ' (20}

The first-order terms from Eq. (14) give accord-
ingly,

&(1} g(Z } p
1, cq 90"}

2m
" 2n ex

' (21)

(xi "z(x, y, z, i) = —p —c,(r;$)
&g 8

cd 8 —ed
~* 2~fl — t)*+y*+d*l"*) tn)

But this gives us just what is wanted. Now the
first-order correction to the surface charge is
known in terms of the zero-order electrostatic
surface charge distribution. The full charge dis-
tribution through first order is

—ed
o (x z t)=

2w [(x ut}'+y'+-d'] ' "
cd 3e(x —vt )d
2 2m[( — t)' y' d*]' )

(23)

or

~cr
0 = —cP ———E«(,Bx n

(16}

E(o) g(o} 4gg(o}

The zero-order surface charge o, z(r, f) for our
problem is just the electrostatic surface charge'
&,(r; g) on the plane z =0 due to a point charge e
located at g, where here („=vt, $, = 0, $, =d,

o~" (x, y, z, t) = c,(r; g )

where the current 4, &
and field E,&

are evaluated
just inside the conducting surface.

The Eqs. (14) and (16) hold to all orders in P.
However, we can now analyze these expressions
as power series in p. To zero order in p, the sur-
face charge o } is known from the electrostatic
situation where

c'qP/d «1. (24)

This gives us the requirement for a good con-
ductor; the resistivity q must be sufficiently
small that this condition (23) holds.

The requirements of nonrelativistic particle
velocities P «1 is implied throughout our analysis.
Ho~ever, for fixed resistivity q, our perturbation
solution is the low-velocity result. If P is made
small enough, the condition (24) can always be
satisfied for fixed g and d.

H. Electric field inside and outside the conductor

G. Condition for a good conductor

The validity of our perturbation-theory analysis
requires that the first-order correction a('} to
the surface charge 0 should be small compared to
the zero-order term o". From Eq. (23), we see
that this holds provided

2w [(x vt)'+ y'+d ']'~- (18)
As indicated in Sec. II 0, the electric field inside

the conductor, and also outside, can be obtained
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through order P by integrating over the instanta-
neous surface charge density and adding the elec-
trostatic field E,(r; $ ) due to the passing charged
particle at g, =vt, $„=0, $, =d, o,"',(r, t)= —'2 —o (r $). (29)

Since c,(r; g) is a function of x-(„ this may be
rewritten as

&& [c~'lz(r', t) +o,"lz(r', t)].
Now the electrostatic field due to the zero-order
surface charge is familiar from the use of image
charges in elementary electrostatics. It looks
exactly like that due to a point charge -e located
at the position f of the charged particle or at its
position reflected through the plane g, (Rg), = vt,
(R))„=0, (Rg), =-d,

, (r-r')o, (r', $)
jr-r'

However, then we can pull the derivative with
respect to $, outside the integral:

—E,(r; g), z &0cd 8
2n' 8E„

}E,(r;t), z 0

E,(r;Rg), z &0. (25)

Thus inside the conductor z & 0, the total zero-
order electric fields cancel

E,'"z(r, t) = E,(r; f) +E,(r; g)= 0, for z & 0, (26)

whereas outside the conductor, we find the famil-
iar electrostatic image charge solution

E, ~q(r, t) = E,(r; g) +E,(r; Rg), for z &0. (2V)

The first-order contribution to the electric field
is also easy to evaluate from the form of the
charge distribution o,"z(r, t) in Eq. (21),

2m 9E„

—E (r; Rg), z & 0. (30)

The derivatives clearly give dipole electric fields
as if due to point electric dipoles of moment
cqPe/2v, oriented along the x axis and located at
the position g of the passing point charge or of its
mirror image Rg through the conducting-plane
boundary.

The total electric field in space through first
order in P is thus

i(x-vt) +jy+0(z-d) i( xt)v+jy+-k( dz)+

[(x vt)'+y'+-(z-d) ]'~' [(x-vt)'+y'+(z+d)']' '

cgPe i 3(x-vt)[i(x-vt) +jy+k(z+4)]
2z [(x-vt)'+y' + (z +d)'] '~ [(x-vt)'+y'+ (z +d)'] '" (3l)

i 3(x vt) [z"(x vt) +jy +-k(z-d)]-
2m [(x-vt)'+y'+(z-d)'j'~ [(x vt)'+y'+(z--d)'] '" (32)

I. Procedure for obtaining the magnetic field

Once we have obtained the electric field through
first order in P, we can find the currents in all
of space to this same order in P. Thus the charged
particle contributes a current

Z,(r, i) =ec$5'(r-g), jf =Pi

while the currents inside the conductor are given
by Ohm's law and the result in (30) and (32),

cP 8-
= ——E (r f) for z &0.

2m Bx
(34)

The magnetic field through first order in P follows
as the integral in the Biot-Savart law:l, , J(r', t)x(r-r')

Substituting the total currents above in (33) and (34),
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B, z(r, t) = j$ x E,(r, g)

p I'd, , [(s/sx')E~(r'; ~)]x(r-r')

Although sophisticated vector manipulations may
indeed allow a simple evaluation of this last in-
tegral, the author has not discovered them and
hence has proceeded to the solution on a more
round-about route. Our treatment works first
with the equation giving curlB in terms of current
densities and the time derivative of the electric
field. The source contribution can be recognized
in terms of familiar patterns due to moving
charges. Once we obtain 8 due to these familiar
sources, we then check all of Maxwell's equations.
We discover a further correction is needed to meet
the boundary conditions on B at the surface of the
conductor. We then add the required correction
terms obtaining fields satisfying all of Maxwell's
equations and the boundary conditions through first
order in the velocity of the passing charged parti-
cle.

J. Contributions appearing in the curl equation for
the magnetic fieM

In order to obtain the magnetic field through first
order in the velocity of the passing charged parti-
cle, we turn to Maxwell's equations. The equation

1 ~BpxE = —— (37}c et

Now in the situation we are considering of a parti-
cle and a conductor, the same basic form of field
reappears. Thus outside the conductor, the cur-
rent density J becomes simply that due to the pass-
ing charged particle, and the electric field is
needed only to zero order so that from (27),

Vx B= 4ve)6'(r-g)

-P —,'„[E.(-.;a.E .(-.;~ ~)]. (43)

This looks just like the fields due to point charges
e at $ and —e at Rg, both moving with velocity
cP. Hence outside the conductor

B. ,(r, f) =t)xE.(r;7) PxE .(r;~3)- V4,

for z &0.

The unknown term —~Q has been included to meet
the boundary conditions; it does not contribute in
Vx B since Vx V/=0. Inside the conductor, the
electric field vanishes to zero order in P and hence
only the current density contributes to Maxwell's
equation in first order. From Eq. (34),

cP 8
Z(r f)= ——E (r Q2' Bx

where as usual g stands for 5, = &&,

t}=pi, and E,(r; g) is the electrostatic field of the
charged particle located at g. To first order, the
magnetic field B has the familiary form

B,8(r' 7) = t) x E (r; f)

which for our special case becomes exactly

88pxE =p —y

Sx
(38)

cP 8=-——E,(r;$),
2m 8x

Vx B = —P —[2I,(r; $)].

(45)

(46)

is not useful here. Since 8 is already first order
in P, the right-hand side is second order in P, tell-
ing us what we remarked upon before, that up
through first order, E behaves like an electro-
static field B, ~(r, t) =)x 2E,(r; $) —VP, for z & 0, (47)

This corresponds to a particle of charge 2e moving
with velocity cP at the position g. Thus inside the
conductor to first order

VxE =0.

However, the equation

(39)

(40)

again including the possibility of a gradient term
not contributing to the curl equation for B.

K. Correction to satisfy boundary conditions on

the magnetic fieM

V x B= 4m ej$0'(r-$) —p —E, (r; $), (41)

will allow us to determine curlB in terms of the
known electric fields. Throughout this work, we
are assuming for convenience that p =1, & =1 in-
side the conductor.

For a free particle moving with uniform velocity
in free space, Eq. (40} becomes to first order

The remaining condition which must be imposed
upon the magnetic field is that given by Maxwell's
equation:

V'B =0. (48

The form of the magnetic field in (44) and (47) in
terms of the familiar magnetic fields of moving
point charges immediately allows verification of
this equation for z & 0 and z &0 provided the addi-
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tional scalar function Q satisfies Laplace's equa-
tion:

V'$=0 for z &0 and z &0. (49)

At the surface boundary z =0, the usual volume
integral of V 8 over a box with flat sides just in-
side and outside the conductor provides the bound-

ary condition

(50)

This does not hold for Eqs. (44) and (47) when Q
= 0, Rather this boundary condition implies

+ k [Px 2E,(r g)], = -~ . (51)
Bz g+0

The physical conditions also require that Q should
fall to zero at spatial infinity at least as fast as

1

The requirements on Q given in Eqs. (49} and

(51) make it natural to view the problem of deter-
mining Q as analogous to one in electrostatics in-
volving the potential Q due to a surface charge
density e

g = (1//4w) k.[t(x 2E,(r; g) ], (52)

1 2eyP
4w (x'+y'+d')'" (53)

where here we have chosen the position $ of the
particle on the z axis, $, =$,=0, $, =d. The solu-
tion is, of course

E(x, y, z) = - 9'4

4z (x"+y" +d')'/'

[E(x-x') +j(y —y') + kz]
[(x-x')'+ (y-y')'+ z']'~ (54)

It may be perfectly feasible to carry out this
integral by direct integration. Ho~ever, again we
have decided to approach the problem indirectly in
order to avoid an apparently difficult integral.
What we will do is to find a charge distribution in
the region z &0 which would induce the surface
charge density (53} on a perfectly conducting sur-
face in the xy plane. Then we know that in the
region z &0, the field due to the surface charge is
exactly equal in magnitude and opposite in sign
from that due to the charge distribution located at
z & 0. We will find it easier to evaluate the elec-
trostatic field for z & 0 by integrating over the

L. Electrostatic analog problem

What we need is the evaluation of the electro-
static potential tt), or rather the electrostatic field
-VQ, due to the surface charge density in the xy
plane given by Eq. (52),

charge sources suggested at z &0.
First of all, a point charge q located at x' =y'

= 0, z' will induce a surface charge distribution on
a perfectly conducting surface in the xy plane:

qo,(x, y, 0; 0, 0, z') = —. . . , „)»~

47T (X +J +Z
(55)

Then it follows that a line charge of cha.rge X per
unit length along the negative z axis from — to
z' = —d induces a surface charge

(Xdz') + 2z'
o (x O. -d)=X( l yi i 4 (

2 2 p2)3/2

2
4p (x2 +y2 +z I2)1/2

4w (x'+y'+d')'/' (56)

Further, a line of dipoles of moment Pj per unit
length along the negative z axis from — to z' = -d
induces a surface charge

A. 2
4w [x'+(y+ay)'+d']'~

AAy 8 2

4m By (x' ~ y'+d')'")

-P 2p
otj (xi yi 09 d)

47f (y + 2 +d2)3/2

(57)

(58)

This surface charge density agrees with that re-
quired by Eq. (53), provided we identify the dipole
moment per unit length P with -eP

P =-eP. (59)

[x +p +(z-z

A line charge ~ per unit length along the negative

As we remarked above, the electric field due to
the surface charge on the xy plane may be evalu-
ated as the negative of that due to the suggested
charges on the other side of the plane. Thus here
we can obtain the require electric field E in (54)
as the field of a line of dipoles along the z axis
magnitude eI3 per unit length located on the opposite
side of the xy plane from the field point.

When the field point is in the region z &0, the
line of dipoles stretches along the negative z axis
from -~ to z' = -d. The electric field will be eval-
uated in stages analogous to those used in analyz-
ing the surface charge. A point charge q at x' = J'
= 0, z' gives a field



z axis from -~ to z'=-d causes an electrostatic field

s'= -d

E „(x,y, z; -d) = &. dz') i x+jy+k(z-z')
[x'+y'+ (z —z')'] '"

(i x+ jy}(z' —z}
(x +y')[x'+y'+ (z' -z}']'+ [x'+y'+(z' -z}']'~'

(f-x+ jy)(z +d) + k(x'+y') i x+ jy
(x'+ y') [x'+y'+ (z +d)'] '~' x'+ y'

A line of dipoles along the negative z axis with dipole moment ePj per unit length and stretching from - to
z' = -4 gives an electrostatic field

E&,8&(x, y, z; -d)-:E„(x,y, z; -d) +E „(x,y + ay, z; -d)

1= —(X6y)—-E~(x, y, z; -d}
~y A.

Identifying the dipole moment per unit length ~&y = eP, the electrostatic field for z &0 is

8 -(i x+jy)(z +d) + k(x'+ y') i x+jy
sy (x'+y')[x'+y'+(z+d)']' ' x +y'

(63)

By symmetry, the electrostatic field due to the surface charge is found for z &0 by the substitutions z-
—z, k- —k.

M. Result for the magnetic field

Having completed the calculation for the electrostatic analogy, we substitute from (63) into —&P required
in Eqs. (44) and (4V) to obtain the magnetic field due to a particle of charge e moving with velocity v =cPi
parallel to the surface of a conductor in the half-plane z & 0. Through first order in the velocity,

-j(z -d)+ky j(z +d)
[(x-vt)'+y'+(z-d}']'~' [(x-vt)'+y'+(z+d)']'~

i(x-vt)y[3(x-vt)'+Sy'+2(z+d)'](z+d) 2i (x-vf)y
[(x-vt}2+y'] [(x-vt)'+y'+ (z +d)'] '" [(x-vt)'+ y'] '

j [-(x vt)'+y'] (z-+d) jy'(z +d)
[(x-vt)'+y']'[(x vt)'+y'-+(z+d)']'~' [(x-vt)'+y'][( vxt)'+y'+( +dz)']'~'

j [(x —vf)'-y']
[(x-vt)'+ ']' (64)

—j2(z -d)+by i (x vt)y[3(x vt}'-+Sy'+2(z--d)'](z-d) 2i(x-vt)y
[(x-vt)'+y'+(z-d)']'" [(x vt)'+y']'[(x-vt)-'+y'+(z-d)']'~ [(x-vt)'+y']'

j [-(x—vf)'+y'] (z-d) jy'(z —d)
+ [(x-vt)'+y']'[(x-vt)'+y'+(z-d)']'~ [(x-vt)'+y'][(x-vt)'+y'+(z-d)']'"

j[(x—vt)'-y']
for z + 0. (65)

We can check this result for the magnetic field
through first order in P by explicit calculation in
Maxwell's equations and boundary conditions at
z =0.

N. Comment on the electromagnetic fields

The results (31), (32), (64) and (65) for the elec-
tric and magnetic fields E, 8(r, f) and 8, z(r, t) in-

side the conductor show that the character of the
penetration is totally different from the skin-depth
behavior familiar for a plane electromagnetic
wave inside a good conductor. For nonrelativistic
charges, there is no exponential damping of the
velocity fields of a charged particle. Rather the
electric and magnetic fields are modified by the
presence of the conducting wall but fall off as r '
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and r ' inside the conductor. Moreover from Eqs.
(64) and (65) we see that the modification of the
magnetic velocity fields both inside and outside
the conductor through first order in the velocity
is independent of the resistivity of the conductor.
Provided the conductor is a good conductor as in
(24) so that the new surface charge is a small
perturbation on the electrostatic surface charge,
the resistivity is immaterial. Indeed the electric
field inside the conductor is smaller if the con-
ductivity is large, but the electric currents in-
side the conductor and hence the magnetic fields
in all space are independent of the resistivity. In
the limit that a conductor of finite conductivity be-
comes a perfect conductor, the magnetic velocity
fields still penetrate into the conductor.

O. Energy loss for a charged particle passing a

conductor

c'qe'P'
&exe= Fext'v =

2 (2d)x
(67)

We expect this work to be expended in Joule heat-
ing inside the conducting wall.

Now the presence of currents the Ohmic conduc-
tor leads to energy loss due to Joule heating at a
rate

PJO&@ — d g J E- d'r E', 8(—r, t)
(p

negative of the retarding force,

i cqe'P
2v(2d)'

Moreover, since the particle moves at velocity
v =cP, this external force must do work at the rate

It is interesting to look at our results from the
view of energy conservation. We have assumed
that the point charge moves with constant velocity,
and clearly external forces are needed to hold the
particle on the straight line path. The electric
field back at the point charge is from Eq. (31),

C2 2 2

4m2CP

9 i x'+ jy'+k(z'-1}
(x le +y

I x + (&
4 1)x)x l2 (66)

e -. cgePE, 8(vt, 0, d, t) =-}t
(2d)x

—i
2 (2d)x'

and the force on the charge is just

F~ = eE.

The force in the -k direction represents the elec-
trostatic attraction of the charge towards its image
charge in the conductor. However, the second
term in the -i direction is a retarding force.

In order to maintain the charge moving at con-
stant velocity against this retarding force, an
external force is required which is equal to the

c2q2e2P 2

PJo~r =
16m'

(69)

and through lowest order in P there is agreement
between the power expended by the external force
and the power lost in Joule heating.

Here we have used Eq. (32) for the electric field
inside the conductor through first order in P, and
then have changed variable of integration so as to
separate off a dimensionless integral. The in-
tegral can be evaluated directly by successive in-
tegrations in x, y, and ~. It has the value —,'m.

Thus indeed

III. VELOCITY FIELDS IN SOME LIMITING CONFIGURATIONS

A. Limit of a steady current

The results in Sec. II for the penetration of the electric and magnetic velocity fields of a point charge are
the basic part of our analysis. Here in Sec. III we wish to carry out various integrals of the point-charge
results so as to obtain the penetration into a conductor for the velocity fields in various limiting configura-
tions.

A crude but convenient test of the point-charge results consists in superimposing the fields for a se-
quence of point charges all moving with constant velocity so as to form a steady current. In this limit of
a steady current passing a conductor of finite conductivity with p. =1, e = 1, the penetration of the velocity
fields is quite familiar. The magnetic field is not screened but penetrates the conductor as though the
conductor were not present. On the other hand, the electric field is completely excluded from the conduc-
tor corresponding to an electrostatic field situation.

The arrangement corresponding to a steady current along the line y =0, z =d is obtained by displacing the
point-charge situation repeatedly in x. Thus in Eqs. (23), (31), (32), (64), and (65), we replace the source
point vt by x', replace the charge e by Xdx', and integrate from -™to ~. All of the integrands vanish at
least as fast as (x'} ' so that there are no difficulties involved in evaluating the integrals at ~ ~. Here and
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throughout Sec. III, the integrals required can be found as indefinite integrals in standard elementary lists.
The surface charge density from (23), through first order in P, is

zx cd 8 d
o x, y 0 t)= Xdx')

y [(x-x')' y'+d']'" yz x Zz[(x-x')'+y'+d']'x)

-2'
2«(y'+d')

with the entire contribution coming from the zero-order charge density and none from the first-order
term. The surface charge corresponds to that from a static line charge ~ along y =0, z =d.

The electric field behaves similarly. From Eq. (31),

2(x-x')+ jy+ k(z-d) 2(x-x') +jy+ k(z +d)
[(x- ')'+y'+ (z-d}']2~ [( -x')'+y'+ (z +d)'] '~

cd & i(x-x') +jy+k(z-d)
Rz Z* [(x-x')* y' ~ (z-d)')'")

jy+ k(z —d) jy+ k(z +d)
y'+ (z -d)' y'+ (z+ d)'

an(i from Eq. (32)

c)}P S 2(x-x') +jy+ k(z —d)
Ez [](x,y, z, f)= (Xdx') — —„„2 2, )2]2~ =0 for z &0.

277 8x [(x-x ) +p + [,8-cf

(70)

(72)

Thus inside the conductor, the electric field vanishes, while outside it corresponds to the line charge A, at
~ =d and an image charge -A. at ~ = -cf.

The magnetic field contribution foBows from Eqs. (64) and (65). Here outside the conductor, the integral

-j(z-d}+kya (x y z f = (]].dx'!p + j(z+d)
[(*-*')'+y'+(z d)']' [(x x')' y' ~ ( d)']'")

2(x-x')y [3(x-x')' + 3y' + 2(z+d)'] (z+d) 2z(x —x')y
[(«-x')'+y'] '[(x-x')'+y'+ (z +d)'] 2~ [(x-x')'+y'] '

j[-(x-x')'+y'](z+d) jy'
[(x-x')'+y']'[(x-x')'+y'+(z+d)']'~ [(x-x')'+y'][(x-x')'+y'+(z+d}']'"

j [ix x')'-y']-
[(x-x')' +y'] '

The variable of integration can be changed from x' to
vanish by symmetry. Then still denoting the variable

[ —j(z-d)+ky) x'
x, 8( ' yy y [y2+(z d)2] [x)2 +y2+ (z d)2] &A

j(z +d)x'
(x"+y')[x" +y'+ (z+d)'] '"

=2', , - for s &0.
—j(z-d) +ky
y~+ z -d

(73)

x' -x, and the component along the x axis is seen to
of integration by x',

j(z +d)x'
[y"(*yd)*][x"+y*~ (*+d)'[")

[y2 + {z+d)2] [«z2 +y2 + (z +d)2] 1/2 + «)2 + y2

(74)

Inside the conductor for z &0,"{, —j2(z-d)+ ky i(x-x')y[3(x-x')'+3y'+2(z-d)'] (z-d)B x, y z t)= (Xdx')P [(x-x')2+y'+ (z~)'] ~ [(x-x')2+ v']'[(x-x')2+y2+ (z-d)2] ' 2+

2i (x —x')y j[-(x-x')'+y'] (z -d)
[(x-x')'+y']' [(x-x'}'+y']' [(x-x')'+y'+(z-d)'] '~

j y'(z —d) j [(x-x')'+y']
[(x-x')'+y'][(x-x')2+y2+(z-d)2]2~ [(x-x')'+y']' (75)
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Again it is convenient to take x' -x as the variable of integration, and again the x components vanish. Now

[y'+ (z-d)'] [x"+y'+ (z-d}'] '" (x"+y') [x"+y'+ (z-d)'] '~

j(z-d)x'
[y'+ (z-d)'] [x"+y'+ (z-d)'] '~'

= 2Ap
-j (z-d)+ky for z &0.
y +z-d

g oo2x
+y

(76)

The results inside and outside the conductor yield the same expression for the magnetic field. The field
pattern corresponds to that from a line charge ) moving along its length with constant velocity P giving a
steady current I=Q. The conducting wall has no effect on the magnetic field. The steady-current limit
derived from our point-charge results of Sec. II is in precise agreement with the expected behavior.

B. Line charge moving perpendicular to its axis

In 1966 Kasper' attempted to treat the penetration of the electromagnetic velocity fields into a conductor
of finite conductivity. This is the only such attempt which has come to the author's attention. Kasper con-
sidered a line charge rather than a point charge so as to reduce the number of spatial dimensions in the
problem. The line charge moved with constant velocity perpendicular to its length outside and parallel to
a conducting surface. Kasper assumed that the penetration of the fields would show a skin-depth behavior,
and introduced approximations on the size of derivatives of the fields which would be appropriate for such
a situation. However, our results for a point charge in Sec. II show that there is no skin-depth behavior
for the velocity fields, and hence that Kasper s approximations are in error. Here we provide the solution
to Kasper's problem through first order in the velocity of the line charge. The results are completely
different from those found by Kasper.

In order to treat a line charge of charge A per unit length oriented parallel to the y axis and moving with
constant velocity v =cPi in the plane z =d, we imagine displacing the point-charge situation of Sec. II along
the y axis. Thus in Eqs. (23},(31), (32), (64), and (65), we replace the field coordinate y by the displace-
ment y —y' of the field point from the source point, replace the charge e by Ady', and integrate from —~
to ™.

The charge density follows from Eq. (23) through first order,

-d c)}P 8 -d
,dt[(d-td)*+(y-t')'+d']'" 2 ttd tt[(*- t)* (y-y')* d']'d)

—Ad cd 8 -Ad
t[(d- t)' d*] dt td t[(d- t)'+d*]j

The electric field through first order in P is obtained from Eqs. (31}and (32),

i(x-vt) +j (y-y') + k(z —d) i(x-vt ) +j(y-y') + k(z +d)
[(x-vt)'+ (y-y')'+ (z-d)'] '~ [(x-vt)'+ (y-y')'+ (z +d)'] '~

c]}P S i (x-vt)+j(y-y')+k(z+d)
2)[ Sx [(x-vt)'+(y-y')'+(z+d)']'~

t'(x vt) + k(z--d) i(x vt) + k(z+-d) c )}p 8 2A[i(x-vt) + k(z +d)]
(x vt)'+ (z--d)' (x-vt)'+ (z +d)' 2v sx (x-vt)'+ (z +d)'

(76)

Z„ (*, t)t= ft (ttdt') (- d" (
i(x-vt) +j (y-y') + k(z-d)

[(x-vt)'+ (y-y')'+ (z-d)'] '~

c)}p 8 2A[i(x vt)+k(z-d)]-
2m Sx (x-vt)*+(z -d)'

The current inside the conductor again follows from Ohm's law. The magnetic field through first order in
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P follows from Eqs. (64) and (65). However, since the integration is in the y direction, it is worthwhile
noting the y derivative arising in Eq. (63). Thus outside the conductor

j—(z-d) + k(y-y') j(z+d}—k(y-y')
A, S( l l l ( }

[( f)Q ( i)2 ( d)2]3/0 [( f)2 ( g)2 ( d)2]3/2

-[i (x-vt) +j(y-y')] (z+d) + k[(x-vt)'+(y-y'}'] E(x-vt) +j(y-y')
&y [(x-vt)'+ (y-y'}2] [(x-vt)'+ (y-y')'+ (z+d)'] '" (x vt)'-+ (y-y' )'

=2~tj,(' },+ ", f 0.(x-vl)'+ (z-d)' (x vt)'-+ (z+d)'

Inside the conductor,

—j2(z-d) + k2(y-y')
HA, B(xi yl zi t) (A '4 )6

[(x vt)2+ ( l)R + ( d)2]3/8

e [i(x -vt) +j-(y-y')] (z-d) —k[(x-vt}2+ (y-y')'] f(x vt) +j-(y-y')
sy [(x-vt}'+ (y—y'}'] [(x-vt)'+ (y-y')'+ (z-d)']'~ (x-vt)'+ (y-y')'

-2(2 —d)
(81)

The expressions for the magnetic fields correspond to simple physical situations. Outside the conductor,
the magnetic field is that due to the moving line charge A plus an image line charge -A inside the conduc-
tor also moving with velocity eP. Inside the conductor, the magnetic field is that due to a line charge of
strength 2A moving at the position and with the velocity of the actual line charge A.

The results for the fields, charges, and currents through first order in P found in Eqs. (VV)-(81) can be
checked by direct substitution into Maavell's equations with attention to the appropriate boundary condi-
tions. The verification calculations for the line charge are somewhat easier than for the point-charge
situation of Sec. II.

C. Limit Of a current sheet

A further simple limiting case involves a sheet of steady current running parallel to a conducting wall.
Such a current sheet can be formed by combining the point-charge situation in various ways. Here we will
consider two alternatives-forming the current sheet first by adding together the steady line currents of
Sec. IIIA, and second by adding the moving line charges of Sec. III B. The magnetic fields for the two
limiting situations are different. This example reminds one of the delicate nature of physical situations
involving charges and currents placed at spatial infinity.

The limit of a steady current sheet in the plane z =d may be obtained from the familiar constant-line-
current results of Eqs. (VO), (Vl), (V2), (V4), and (V6). We replace the field point y by the displacement y-y'
of the field point from the source point, replace A by Zdy', and integrate from -~ to ~. The calculations
are elementary. The surface charge density is

o„q(x, y, 0, f) = (Zdy') „„,,]
=-Z;

the electric field for z &0 is

(82)

E r 8(x, y, z, f) = 2

while for z &0

Er 8(x, y, z, t)=0,

j(y-y') + k(z-d) j(y-y') + k(z+d)
(y-y')'+ (z- d)' (y-y')'+ (z+d)'

'-4mZk„g &d

0, z&d, (83}

(84)

and for all z the magnetic field is
Jh,

(z d) +k(y y ) 27fZPj
z. s»y~zif = Z y

( I)2 ( d)a
. 2mZPj, (86)
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These results are as expected. The sheet of moving charge causes a magnetic field spreading through all
space. The image charge on the surface of the conductor is not moving; it leads to a cancellation of the
electric field inside the conductor, but does not contribute to any magnetic field.

%e may also arrive at a constant current sheet by adding line charges moving perpendicular to their
axes. Here we turn to Eqs. (t'7)-(81), replace the line charge position Ut by x', replace the charge per
unit length A by Zdx', and integrate from -~ to ~. The surface charge becomes

(tz 8(x, y, 0, t) =

The electric field for z &0 is

z[(x-x')'+d'] 2z Sx z[(x-x')'+d'] „

i (x-x') + k(z-d) i (x-x') + k(z +d) c))P S i (x-x') + k(z +d)
(x-x')'+ (z-d)' (x-x')'+ (z +d)' 2z Sx (x-x') + (z +d)'

and for z &0

I-4)tZk, z &d

0, (8't)

-c))P 8 i (x-x') + k(z-d)E, ,(x, y, z, t)=2 (Zdx') — . . . =0. (88)

The magnetic field for z &0 is

-j (z-d) j (z+d)
( — ')*+(*-&)* (*- ')* ~ (*+d)*)

0, z&d

]4xZPj, z &d,

while inside the conductor z &0

-2j(z-d)Br 6( x y z t) 2P (Zdx )
( ) ( )

4wZPj

(89)

(90)

The results here for the surface charge and electric field agree between the two procedures; however,
the magnetic fields are different. Both results are valid solutions of Maxwell's equations satisfying the
boundary conditions at z =0 and z =d. The two solutions differ in the boundary conditions on the currents
at spatial infinity.

IV. CONCLUSION

A. Further developments

Although this paper has analyzed part of the
penetration problem for the electromagnetic ve-
locity fields, there is clearly much unfinished
work. Even for the simple situation treated here
of a point charge moving parallel to a conducting
plane with g = 1 and e = 1, the solutions are ob-
tained only through first order in the particle ve-
locity. The full calculation to all orders remains
to be done. Moreover, the analysis assumed that
the conductor filled a half-plane. The form of the
electric and magnetic fields on the far side of a
conducting wall of finite thickness is untreated,
and clearly this latter situation is the realistic one
allowing experimental measurement of the pene-
tration. Finally the calculations for other geom-

etries of conductors and charged-particle motions
remain untouched.

B. Closing summary

Although the skin-depth calculations for the
penetration of plane-wave radiation into a conduc-
tor of finite conductivity are reproduced univer-
sally in the textbook literature and are the results
of principal interests in electromagnetic screen-
ing, there is a remaining problem in the penetra-
tion of the electric and magnetic velocity fields.
Indeed in recent years the question of the penetra-
tion of the velocity fields has been of interest in
connection with experiments on the Aharonov-
Bohm effect. Kasper attacked the problem in 1966
but introduced approximations which invalidate his
calculations.

In this paper, we have treated a problem whose
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simplicity of statement makes it seem appropriate
for a student home-work exercise. Nevertheless,
the solution seems unexpected, contradicting
Kasper's earlier work and also the suggestions of
some researchers on the Aharonov-Bohm effect.
%e consider a point charge moving with uniform
velocity outside and parallel to a conducting plane.
The conductor occupies a half-space and is char-
acterized by resistivity q, permeability p =1, and
dielectric constant e =1. For this simple situation,
what are the electric and magnetic fields in all
space ~

Our calculations are valid only in the nonrela-
tivistic low-velocity domain for a good conductor.
They indicate that there is no skin-depth pheno-
menon for the velocity fields, but rather these
fields fall off as r ' or r ' inside the conductor.

Moreover the magnetic fields in space and inside
the conductor are independent of the conductivity
of the wall. These results stand in striking con-
trast with the more familiar penetration charac-
teristics of electromagnetic radiation fields. For
the radiation fields, the conductivity determines
the depth of penetration and the size of the electro-
magnetic fields inside the conductor. The pene-
tration-depth problem for the electromagnetic ve-
locity fields is merely begun in this paper; the
first results indicate some of the surprising va-
riety to be found in classical electromagnetism.
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