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The Faddeev equations for the (e —, H) system have been solved numerically using separable
expansions for both screened and unscreened versions of the Coulomb ¢ matrix. By considering the
equations in uncoupled form, the convergence behavior of the binding energy and the singlet scattering
length have been examined as the number of terms in the representation of the electron-electron
potential has been increased. One to three states have been included in the e-p interaction and up to
twenty states in the e-e interaction. Although the unscreened values are reasonable in low orders of
truncation, the convergence is poor as more terms are included in the separable representations. To
improve the rate of convergence, a screened form of the Coulomb ¢ matrix based on the Sturmian
expansion of the Hulthén potential has been introduced. In the lowest trucation of the e-p system,
strong shielding of the e-e interaction is necessary and convergence of both the binding energy and the
scattering length can be achieved. In higher truncations of the e-p system, where the representation of
the e-p interaction is more realistic, shielding is not effective in improving the rate of convergence
within the practical limits of the calculations. The implications of the present calculations for the
Faddeev approach to atomic three-body problems are discussed.

I. INTRODUCTION

Chen and co-workers in a number of papers!~>
have applied the Faddeev equations to the three-
body problem with Coulomb interactions. In order
to obtain a numerically tractable set of equations,
the basic integral equations of the theory are re-
duced in dimension by utilizing the Sturmian ex-
pansion® of the two-body Coulomb ¢ matrix. Al-
though calculations of three-body observables,
such as the binding energy of the H™ ion and res-
onances in low-energy electron-hydrogen scat-
tering, appear quite promising in low orders of
truncation, the numerical results fluctuate mark-
edly as more terms are included in the separable
expansions of the two-body interactions. Indeed,
it is not clear that the approximation scheme is
in principle convergent, since, unlike the situa-
tion with short-ranged potentials, the Faddeev
equations with Coulomb potentials are singular.
Thus the feasibility of using the Faddeev equa-
tions for accurate calculations of the properties
of atomic, three-body systems is questionable.

The problem of slow convergence (or even
perhaps lack of convergence) arises from the
well-known divergence of the Coulomb ¢ matrix
for scattering in the forward direction, which is
associated with long-range tail of the Coulomb
potential. It might be expected that the resulting
logarithmic singularity of the kernel of the Faddeev
equations could be handled easily with suitable
quadrature rules on numerical integration of the
equations. But it must be emphasized that apart
from the divergence at zero-momentum transfer,
the Sturmian expansion provides a poor represen-
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tation of the Coulomb potential over an appreciable
range of small momentum transfers, converging
extremely slowly with large oscillations, both in
period and magnitude.®’

To improve the rate of convergence in three-
particle calculations, it appears necessary to
modify the Sturmian expansion in a way which
simulates the screening of the potential at large
distances. In this paper the effect of screening
on the convergence rate is investigated by con-
sidering the Sturmian expansion for the Hulthén
potential® V() =ze?a"'(e”/¢ —1)"!, which, for
distances » which are small compared with the
screening radius ¢ behaves like the Coulomb poten-
tial V() =ze?/r, and which for large » decreases
exponentially.

In Sec. I a separable expansion of the { matrix
for the Hulthén potential, which is suitable for
three-body calculations, is introduced. This ex-
pansion has three desirable properties. First,
the series of separable terms converges smoothly
in the forward direction for moderate values of
the screening radius. Second, in the limit that
the screening radius becomes infinite, the ex-
pansion reduces to the usual Sturmian expansion
of the unscreened Coulomb ¢ matrix. Finally,
as in the case of the Sturmian expansion of the
unshielded Coulomb ¢ matrix, the kernels of the
Faddeev equations can be constructed in closed
form without the need for numerical integration.
The expansion for the Hulthén potential is only
obtained explicitly for the angular-momentum zero
projection of the potential in momentum space.

In Sec. II a shielded form of the Coulomb ¢ matrix
based on the Hulthén expansion, which is easily
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applied in all partial waves, is also proposed.

In Secs. III and IV calculations of the binding
energy and singlet scattering length of the (e~, H)
system using both screened and unscreened forms
of the Coulomb potential are described. These
calculations are not intended to compete in ac-
curacy with the standard variational calculations,
but provide a test of the practicality of the Faddeev
method using shielded interactions. Our aim is
to study the rate of convergence as the number of
terms in the representations of the two-body inter-
actions is increased. If the same number of terms
is included in all three pair interactions, the prob-
lem of numerical solution rapidly gets out of hand.
However, if the exchange symmetry of the two
electrons is taken into account, the Faddeev equa-
tions may be uncoupled. In uncoupled form it is
possible to include a large number of terms in
the repulsive electron-electron interactions with-
out increasing the dimension of the numerical in-
version problem. Hence a fixed number of terms
is taken in the electron-proton system and the
convergence of the three-body binding energy and
scattering length is examined as the number of
terms in the electron-electron interaction is
increased. (It is perhaps worth noting that for
values of the three-body energy close to the two-
body bound-state poles, the first few terms make
the major contribution to the Sturmian expansion
for the attractive e-p ¢t matrix, whereas there is
no such pole dominance for the repulsive e-e
interaction.)

In Sec. IV the results of the calculations are
presented. One to three terms have been included
in the e-p interactions and up to twenty terms in
the e-e interaction. The only practical limitation
on the number of terms included in the e-¢ inter-
action arises from the difficulty of computing the
matrix elements of the kernel with sufficient nu-
merical accuracy. The calculations show that the
convergence rate may be significantly improved
by introducing screening, but that a screening
radius which is sufficiently small to produce rapid
convergence generates large over-all shifts in the
binding energy. Nevertheless, convergence to the
true binding energy can be achieved by taking an
appropriate value of the screening radius. In a
scattering problem the screening radius might be
regarded as an arbitrary parameter, which is
fixed in each truncation of the e-p system by re-
quiring that the correct binding energy be pre-
dicted. As a test of this approach, the singlet
scattering length has also been calculated for a
range of shielding radii. It is found that although
the screened { matrix produces acceptable values
for both the binding energy and the scattering
length in the lowest truncation of the e¢-p system,

|©

the introduction of screening is not effective in
obtaining satisfactory results within the practical
limits of the calculation in higher truncations of
the e-p system.

Our conclusions and the general implications
of our results for the Faddeev approach to atomic
problems are discussed in Sec. V.

II. SCREENED COULOMB ¢ MATRIX

In terms of the eigenvectors ¢, and eigenvalues
¥, of the kernel of the Lippmann-Schwinger equa-
tion,

VGo(E)py(E) =7, (E)d,(E), (2.1)
the two-body ¢ matrix at energy E,
HE) =V +VGy(E(E) (2.2)

may be expressed in separable form® as

HE) =Y oHE), (E)1 -7, (E)]?, (2.3)
X

where V is the potential and G,(E) =(E - p?/2u)"?
is the free propagator, with u the reduced mass
of the two-body system. The eigenvectors ¢,
satisfy the orthonormality condition

(@2, Go drr) =85y (2.4)

For the case of the Coulomb potential in momen-

tum space,
Vi, b1 -2 ot ) (2.5)
1\ ppl 1 zppl ) ¢

the partial-wave form of the integral equation
(2.1) for orbital angular momentum ! may be solved
exactly. The eigenvectors ¢,, are then the well-
known Sturmian functions?'®

w> v 11s@1+3)/2

(p)x(p: S)=( [.l()\+l)!

P! 2 _ g2
PR+t C’{-‘,-l(%a? »  (2.6)
where s*=-2uE and C{*_, are Gegenbauer poly-
nomials.® (As far as possible the notation and

normalization conventions of Ref. 3 are followed.)
The associated eigenvalues are

Y= —As/ze’u, 2.7

and the partial-wave Coulomb ¢ matrix in separable
form becomes

t, (b, b5 8) = Z (1 =72()] 05,0, )5 @7, 5) .

by
(2.8)

In the limit s~ «, f, approaches V,, and we obtain
a separable expansion for the potential,
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V0, p) == D v51(8)95, (0, $)95, (07, 8) . (2.9)
b

This series at best converges conditionally, since
the terms approach zero like A~! (A is a positive
integer) multiplied by functions of oscillating sign.’
When p =p’, the associated Legendre function of
the potential [Eq. (2.5)] has a logarithmic singu-
larity and the series (2.9) diverges. Furthermore,
numerical calculations show that when p is close
to p’, the series converges very slowly with large
oscillations in both period and magnitude. An
example of this behavior is shown in Fig. 1. Fur-
ther examples may be found in the work of Chen
and Ishihara.® Their extensive calculations also
show that the remainder of the expansion for ¢,
i.e.,

L, 075 8) = Vi, 0')= 2 AL =¥ i)y ()}
X

X¢M(p, S)(f)) l(ply S) ]
(2.10)

is well behaved and converges reasonably smooth-
ly. Thus the major problem with the expansion
(2.8) for practical three-body calculations results
from the poor behavior of the Born term (2.9) in
the neighborhood of the logarithmic singularity

of the potential at p =p’.

Consider now the expansion (2.3) for the Hulthén
potential®® V() =ze%¢ (s —1)~!, which may be
regarded as a screened form of the Coulomb poten-
tial V(r) =ze?/» with screening radius ¢. Our dis-
cussion is limited to s waves, so that we drop
the angular-momentum suffix /. Defining

0,(r,s)=rV7(r)p,(r, s), (2.11)

Via.u)

|
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FIG. 1. Convergence behavior of the Sturmian expan-
sion of the Coulomb potential V(p,p’). The broken lines
indicate the exact values of V; for equal arguments the
expansion diverges. Note that the value of the series for
V has been plotted after every fifth term, and that the
choice s =1 has been made in Eq. (2.9).

we see from Eq. (2.1) that ©, satisfies a Schrod-
inger equation,

(—51—2— - s? —y;‘(s)V(r)>6) (r,s)=0,

e (2.12)

where the energy is fixed and the potential strength
allowed to vary. With a suitable change of vari-
ables Eq. (2.12) can be transformed to the hyper-
geometric equation with normalized solutions which
vanish at » =0 given by

O, (r,s)=(1 —ee)e s P :25)2er/a 1) | (2.13)

where P{:2**) are Jacobi polynomials.® The as-
sociated eigenvalues are

y$==(\*+2xsa)/2uze’a. (2.14)

The functions ¢§(p, s) normalized according to
Eq. (2.4) are then found by Fourier transforma-
tion of Eq. (2.11),

3 (p, s) =N}p“f sin(pr) er/all+sa) pll.2sa) (95=7/a _ 1) gy |
0

(2.15)
with
_{ 2(A +2as)*(A +as) }‘/2
N, = 3 .
pna
After using the explicit expression for the Jacobi
polynomials,® the integral may be evaluated to

obtain ¢§ in a form which is suitable for insertion
in the Faddeev equations,

X
O3, $)=N, 3 b} [p* +(s+ja )|,

=1

(2.16)

with
x=<)"1> T(2as +x +7)(=1)7**
i \j=-1/TQas+j)x-1)1(2as +1)’

In the Appendix it is shown that in the limit of in-
finite screening radius,

3/2 2 _ o2
o5 (b, S)"ﬂ—l/z 2s) 3 Cl)~1<p x );

(2.17)

rs Py (2.18)
which is equal to ¢,,(p, s) of Eq. (2.6). Also in
this limit the eigenvalues (2.14) reduce to the
eigenvalues (2.7) and the usual Sturmian expansion
of the unscreened Coulomb / matrix is recovered.
Numerical calculations comparing the Sturmian
expansions of V and ¢ for the Hulthén and Coulomb
potentials have been performed for a wide range
of momenta energy and screening radii. As shown
in Fig. 2, the screened form is finite for p=p’.
As expected, the rate and smoothness of conver-
gence are improved as the range of the potential
is decreased. Of course, when the screening is
made stronger, the potential is effectively weak-
ened and the screened values are shifted further
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from the unscreened values. Several examples
are shown in Fig. 3.

Let us now return to the problem of introducing
screening into the Coulomb ¢ matrix. Since the
poor convergence of the Sturmian expansion arises
from the Born term (2.9), we split off the tail of
the potential in the following way:

L=V +VGol +V = V°

=+ V= VO. (2.19)

The separable expansions for V* and VG,¢ and
hence 2 are well behaved. We also note that ¢°
has the same set of poles as the full { matrix; only
the singularity at p =p’ has been smoothed. Conse-
quently for the attractive potential, the bound-state
poles and their residues, i.e., the two-body bind-
ing energies and bound states, are not altered.
Hopefully, in three-particle calculations which are
not sensitive to the tail of the Coulomb potential,
the difference between the Coulomb potential v
and the Hulthén potential V* may be treated as a
perturbation.

In the s wave the screened form of ¢ used in
the calculations of Sec. III is then

t5b, p’'s 8) = Z {20l =¥20)] ' prolbs $)P20l0", )
A

-8 o0, 9930, )},
(2.20)

where v,,, ¢, Y3, and ¢§ are defined by Egs.
(2.7), (2.6), (2.14), and (2.16), respectively.

The form of the expansion for the Hulthén poten-
tial also suggests a simple way of smoothing the
logarithmic singularity in the Coulomb ¢ matrix
in all partial waves: The eigenvalues (2.7) in the
Born term are replaced by the eigenvalues (2.14),

-
0 0.5 1.0 1.5 2.0 2.5 3.0
pla u)

FIG. 2. Comparison of the half-off-shell ¢ matrix
t%(p,p' ,s) for the Hulthén potential as a function of the
off-shell momentum p for shielding radii ¢ =1, 5,and 10,
with the Coulomb ¢ matrix (@ =«). The variables p and
s have fixed values p=1.0 and s=1.0.

Y2 =73, = =(\* +2xsa)/2pze’a, (2.21)

yielding
130,05 9) = 2 Al (=7, ) = (8 )7
by

X¢H(p’ S)¢M(P', s)}- (2.22)

This method of screening has also been tested
in the calculations of Sec. III.

Ill. THREE-BODY CALCULATIONS

In Sec. IV we wish to compare results of calcu-
lations of the binding energy and singlet scattering
length for the (¢”, H) system, using unscreened
[Eq. (2.8)] and screened versions [Eqgs. (2.20) and
(2.22)] of the Coulomb ¢ matrix in the Faddeev
equations.

The integral equations solved in the present
work are essentially Eqs. (4.17) of Ref. 2; they are
not repeated in detail here. In this section we
outline a brief derivation which shows clearly that
the indistinguishability of the electrons allows a
large number of terms to be included in the sepa-
rable expansion of the repulsive e-e interaction.

The Faddeev equations for the bound state y
of energy E, of the (¢”, H) system may be written
as

U = L(E)Go(Eo) D oy (4,7=1,2,3). (3.1)

i=i

Here ¢, and ¢, are the ¢t matrices for the attractive
Coulomb interactions between electrons 1 and 2
and the proton, while ¢, is the Coulomb ¢ matrix
for the repulsive e-¢ interaction. The orbitals

y; are defined by y, = V,y, V, being the Coulomb
potentials, and G,=(E -H,)™! is the resolvent

va(a.u)

L a=1

1 1 I 1
1 5 10 15 20 25
NUMBER OF TERMS

FIG. 3. Convergence of the Sturmian expansion for the
Hulthén potential V%(p,p) with p=0.5 for various screen-
ing radii.
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operator for the kinetic energy of the three parti-
cles.

Let P be the operator that exchanges the spatial
coordinates of the electrons, then in the singlet
state y, = Py,, since y is symmetric in the space
observables. Thus Eq. (3.1) reduces to the follow-
ing pair of equations:

h =6,Go(Ph, +s) (3.2)
¥s =G0, + Pyy) ,

which may be uncoupled to obtain
(1 = £,GoP = t,Got3Go = t,GotsGoP), =0 . (3.3)

If a separable expansion of the form (2.3) is as-
sumed for the e-p interaction, the operator £,
acting in the three-particle space, becomes

| m(E—-Z’ff,;)} K,

(=g ) ((2 -a)

dk,.

(3.4)

When the integral is approximated by a numerical
quadrature rule, the momentum variable k, of
electron 2 takes a discrete set of values and ¢,

is replaced by a matrix operator, which we write
symbolically as

HE) =Y [ ENTLENP(E)] . (3.5)

o

With the help of Eq. (3.5), Eq. (3.3) becomes a set
of linear equations and the binding energy is
determined by the determinantal equation

det[0, 5 —Aqs(E)TH(E)]=0, (3.6)
with
Aqp(E) =(pu|GoP = Gots(1 +P)Go | $ ) -

Hence a tractable numerical problem is achieved
without specific assumptions about the e-e inter-
action.

In order to study the effect of screening on the
convergence of the Sturmian expansion, a sepa-
rable expansion for ¢, is also assumed. The matrix
A then has the form

Ags=Ki2g+2 ) KD K3p. (3.7
Y

After angular momentum analysis, it may be shown
that the matrices K are the matrix representatives
of the kernels of Eqs. (4.17) of Ref. 2 and that the
basic equation (3.3) is just the uncoupled form of
these equations.

If » and m are the number of terms included in
the series for the e-p and e-e interactions, re-
spectively, and n, is the number of quadrature
points included in the integration over & in Eq.
(3.4), A and K'? are N XN square matrices and
K'® is an N xM rectangular matrix with N =n xn,
and M =m Xn,.

Although not an essential restriction, for sim-
plicity we have only considered angular momentum
zero states in the various separable expansions.
One to three terms have been included in the e-p
system and up to twenty terms in the e-e inter-
action. Gaussian quadratures with n,=12, 16,
and 24 were used to obtain the matrix (3.7).

IV. RESULTS FOR THE (¢".H) SYSTEM

We first consider the results for the Coulomb
t matrix without shielding. In the simplest ap-
proximation, only the 1s state is retained in the
e-p interaction, and the e-e interaction is ignored
entirely. We refer to this as the (1s,0s) trunca-
tion. The calculated three-body energy of the H™
ion is —1.644 Ry, corresponding to a binding ener-
gy of 0.644 Ry. Of course, if the e-e interaction
is omitted, the three-body system is exactly solu-
ble (the static approximation in which the mass
of the proton is infinite is assumed here), and the
ground-state energy is -2.0 Ry, which is just the
sum of the energies of the two electrons. All the
remaining terms in the Sturmian expansion for the
e-p system contribute only 0.356 Ry.

When the 1s state for the repulsive e-e inter-
action is included, the energy of the H™ ion be-
comes -1.0510 Ry, which is remarkably close
to the accurate value of -1.0555 Ry obtained by
Pekeris.!' If further terms are added to the e-¢
potential, the (¢”, H) system no longer binds. This
is not surprising, as the attractive e-p interaction
has been weakened by truncation to the 1s state.
More seriously, the determinant on the left-hand
side of Eq. (3.6) does not appear to approach a
limiting value, even after twenty terms have been
included in the representation of the e-¢ interac-
tion.

The very poor convergence of the standard
Sturmian expansion is made more apparent when
the singlet scattering length is calculated from the
inhomogeneous form of Eq. (3.3). In the (1s,1s)
truncation the singlet scattering length obtained
in the present calculation is 6.304 a.u.. This re-
sult is in reasonable agreement with the value
6.337 a.u. obtained in a similar calculation by
Chen, Chung, and Kramer,? and the accurate
variational value of 5.965 a.u.'> However, as
shown in Fig. 4, the scattering length increases
rapidly as more terms are added to the e-e inter-



642 L. R. DODD 9

action, and is still increasing in the (1s, 20s)
truncation.

The inclusion of further terms in the e-p inter-
action improves the result for the binding energy,
but has little effect on the scattering length. In
the (3s,0s) truncation, the three-body energy is
-1.989 Ry, which is very close to the exact value
of =2.0 Ry. In the (3s,3s) truncation, the binding
energy is 0.0565 Ry. On the addition of further
terms, the binding energy remains nearly con-
stant, decreasing slightly to the value 0.0536 Ry
in the (3s, 20s) truncation. On the other hand the
scattering length moves further from the correct
value increasing from 6.47 a.u. in the (3s, 3s)
truncation to 15.1 a.u. in the (3s, 20s) truncation.

We now consider the effect of replacing the
Sturmian expansion (2.8) by the screened repre-
sentation (2.20). Here convergence in the limit
of large A is expected since the potential has fi-
nite range. In Table I the binding energy is listed
for various screening radii in the (1s,ns) trunca-
tion. As expected, the convergence rate is im-
proved by using small shielding radii. At the
same time the binding energy is very sensitive
to the choice of shielding radius. Whereas in the
unscreened case the H™ ion was not bound in high-
er orders of truncation, by taking a screening
radius of 3.77 a.u., convergence to the correct
binding energy can be achieved. In Fig. 4 the scat-
tering length is plotted for various orders of trun-
cation of the e-e { matrix and various screening
radii. Again, convergence is improved by taking
sufficiently small shielding radii. With a screen-
ing radius of ¢ =3.77 a.u., the scattering length
is 5.51 a.u., which is not unreasonable, in view
of the severe truncation of the e-p system.

T
z 4
©
4
9] -
-
© 4
=z
o -4
[F5)
=
=
< 4
O
&
_ .
ad
5 _
D
z
Ui —
-4 il L 1 att
1 5 10 15 20

NUMBER OF TERMS

FIG. 4. Singlet scattering length of the (e~,H) system
in the (1s,ns) truncation for various screening radii.
The screened form Eq. (2.20) of the Coulomb ¢ matrix
was used in this calculation.

When the 2s and 3s terms are added to the e-p
interaction, it is no longer possible to obtain
satisfactory values for the scattering length and
the binding energy, even with an arbitrary choice
of screening radius. For example, to obtain the
right magnitude for the scattering length, a
screening radius of about 5.4 a.u. must be used.
With this strong shielding, the binding energy is
shifted by about 0,18 Ry from the correct value. On
the other hand, a screening radius of the order
of 300 a.u. produces the correct binding energy in
the (3s,20s) truncation, but this weak screening
makes little difference to the rate of convergence
of the scattering length.

It appears that as the representation of the e-p
interaction is made more realistic, the e-e ¢
matrix requires less screening, and consequently
the number of terms in the separable expansion
required to produce convergence exceeds the prac-
tical limits of the calculation.'®

V. SUMMARY AND CONCLUSIONS

The Faddeev equations for the (¢, H) system
have been solved using separable expansions for
both screened and unscreened versions of the
Coulomb ¢ matrix. Although in low orders of trun-
cation the unscreened values for the binding energy
and singlet scattering length are in good agreement
with the results of variational calculations, there
is no indication that convergence has been obtained
with the number of terms used in the present cal-
culations.

To improve this rate of convergence, a screened
form of the Coulomb ¢ matrix, which smooths the
logarithmic singularities in the kernel of the
Faddeev equations, has been introduced. In the
lowest truncation of the ¢-p system, strong shield-
ing of the e-e interaction is necessary, and satis-
factory convergence of both the binding energy
and the scattering length can be achieved with a
few terms of the e-e interaction. When further
terms are included in the e-p interaction, the
weak screening of the e-e interaction, which is

TABLE I. Energy of the H™ ion in the (1s,ns) trunca-
tion (in Ry).

Screening radius (a.u.)

n a=w a=10 a=7 a=5 a=3.7T a=2 a=1

1 1,051 1,118 1.144 1,178 1.212 1.316 1.465
2 e 1.006 1.039 1.079 1.204 1.388
3 vee 1.021 1.059 1.182 1.365
4 e 1.017 1.056 1,178 1.359
5 .- 1.016 1,055 1,177 1.358
6 1.016 1,055 1,177 1.358
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necessary to produce the correct value for the
binding energy, is not effective in improving the
rate of convergence.

The present calculations seem to indicate that
the chief difficulty in applying the Faddeev equa-
tions to atomic problems lies not in the Coulomb
potential per se, but in the poor convergence
properties of the Sturmian expansions used to
simplify the equations’; even when the logarithmic
singularity is removed by modifying the 1/» de-
pendence of the potential at large distances, the
convergence of the separable expansion of the
resulting finite-range potential is still too slow
for calculations of satisfactory accuracy.

In view of the fundamental nature of the Faddeev
equations for the (¢”, H) system, accurate solu-
tions with which the standard close-coupling ap-
proximations'* could be compared, would be of
great interest. In the author’s opinion, alterna-
tive methods of solution of the Faddeev equations
which do not employ separable expansions of the
! matrix's should be investigated for the Coulomb
problem.

APPENDIX

In this Appendix we prove the relation (2.18),
which implies that the separable expansion for
the Hulthén potential reduces to the usual Sturmian

expansion for the Coulomb potential in the limit of
infinite screening. In the limit ¢ - «, Eq. (2.15)
becomes

¢;°=u“/2(23)3/"’f sin(pr)e= s LY(2sr) dr .

0

With the help of the generating function for the
associated Laguerre polynomials®

(1-2)2 exp( ) 2 Ly

we have

“1/2(23)3/2 Z zx¢;
x=0

=(1-2)"2 Imfnexp[ipr -sr
0

+2rsz/(z =1)]dr

~ ((zz+1)—22i =3 )

2
T s? +p Zz ¢ <p +sz>’

since the expression in large parentheses is the
generating function for the Gegenbauer polynomi-
als.® The result (2.18) follows.
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