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Two-Ibman-photon tmieion in hydrogen atoms in the presence of an intense electromagnetic field has

been calculated utihxing the method of DalIyarno and Lewis. %'e give a general formulation for

(n —2)-photon absorption and two-photon emission and also give numerical results for two-photon
emission in the ls-2p transition in hydrogen atoms. It is found that the emission of two spontaneous
Rain photons could become important when the energy of the intense photon approaches the
ionization energy. Finally, in the spectrum of the emitted Raman photon, faint lines are expected
corresponding to the resonant peaks in the cross section.

I. INTRODUCTION

%ith the advent of the laser, very intense beams
of photons have been developed so that processes
involving emission or absorption of several pho-
tons can now be observed in the 4iboratory. ' '
The interaction of such intense beams with atoms
can lead to the emission of the electron from the
atom, thus leading to the ionization of the gas and
the excitation of the atom to some higher bound
level. ' " It is also possible to study Raman-like
processes in which a number of photons are ab-
sorbed and a single Raman photon is emitted.
Theoretically, however, double-Raman-photon
emission is also possible, though such an effect
will be smaller than from a single-Raman-pho-
ton process. Simultaneous emission of two pho-
tons from the metastable 2s level of hydrogen was
studied by Breit and Teller, "who also calculated
the bounds for the lifetime of the 2s state in such
a process. The two emitted photons were experi-
mentally detected by Lipels et al."in the decay
of the metastable 'S,&, state of singly ionized he-
lium, and the agreement with the theoretical re-
sult was good. In two-photon-emission processes
the excitation energy is shared between the two

photons, and therefore one gets a continuous band
instead of a sharp line. The two-photon-continuum
emission in deuterium-neon plasma has been de-
tected by Elton et al." By placing the atoms of
the active medium in a suitable resonator, any
portion of the above band can be amplified and a,

single sharp stimulated Raman line can be ob-
tained.

In higher-order perturbation calculation, where
many photon interactions are involved, there is
the problem of summing over an infinite set of
bound as well as continuum states of the unper-
turbed Hamiltonian. Some of the earber calcu-
lations have either taken dominance of one term
or utilized some sort of average to replace the

infinite summation. A technique devised by Dal-
garno and Lewis" and reformulated by Schwartz
and Tieman" allows one to perform such a sum-
mation exactly. It was utilized by Mittleman and
%'olf'4 to calculate the coherent scattering of pho-
tons by atomic hydrogen. Zernik' employed this
technique for calculating two-photon ionization
of the metastable level of hydrogen. The two-pho-
ton formulation of Zernik was generalized by
Gontier and Trahin, "who presented numerical
results for multiphoton ionization, bound-to-bound
excitation, and single-Raman-photon emission.

In Sec. II we present the analytical formulation
of our problem for tvo-Raman-photon emission
and perform a separation between the angular
variable and the radial matrix element, contain-
ing a sum over the infinite set of intermediate
states.

In Sec. III we apply the technique of Dalgarno
and Lewis, "as generalized by Gontier and
Trahin" to sum over the intermediate states.
The negative exponential present in the radial
solution of the hydrogen atom is utilized to per-
form a Fourier transformation, 1'eading to a first-
order differential equation instead of a usual
second-order one.

In Sec. IV we present the numerical results for
the cross section. The transition matrix, as mell
as the total cross section, predicts resonant peaks
whenever the energy of the emitted photon or that
of intense photon corresponds to the energy dif-
ference of the bound levels. The total cross sec-
tion increases rapidly as the energy of the intense
photon approaches the ionization potential for the
hydrogen atom, so that two-photon-emission pro-
cess is likely to be important under such condi-
tion.

RMULATION OF THE PROBLEM

The Hamiltonian of the hydrogen atom in the
presence of a radiation field can be broken as
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usual into two parts —the unperturbed Hamiltonian

H, and the interaction HamiltonianH. The total
Hamiltonian

H =H +HI,

where

H, = —(e/mc)A p+ (e'/2mc')A',

and e is the electronic charge, m the mass of the
electron, p, its momentum, and c is the velocity
of light. A is the vector potential of the external
electromagnetic field. The term quadratic in A
does not contribute to Raman-like processes, as
has been shown by Cohen and Hameka, 25 and there-
fore in future consideration we shall always ne-
glect it. The total cross section for the absorp-
tion of (N-2) photons and emission of two Raman
photons on the basis of Nth-order perturbation
theory is given by

~m A(s)

0

where the average, av, is made over the direction
of propagation and sum over polarization vectors
of the two emitted photons, independently. In the
right-hand side of the above expression, E~ is the
energy of the intense photon while E, and E,' are
the energies of the two Raman photons. I stands
for the flux of the incident radiationbeam in W/cm'
while I, =1.4088x10"W/cm'; r, is the classical
electron radius and n is the fine-structure con-
stant. The energies of the photons and the matrix
element g have been expressed in atomic units.
As the conservation of energy holds, the energies
of the emitted photons are related in the following
way;

(N-2)E -E -E'=E -E .

The maximum energy of one of the photons is

E =(X-2)E, -(E,-E, },
EI and E, being the energies of the final and
ground state, respectively. The Nth-order tran-
sition matrix is given by

~( g (f I-,„.-I, ) ( .I p ) ( . p .& ...(, pie&, (~, 1) t„
(4)

containing all the permutations of Z' and &" . In
the above equation Z is the polarization vector of
the incident electromagnetic wave; 7' and 7" are
the polarization vectors of the spontaneously emit-
ted Raman photons, and we have used the notation

E», =E, -E, . There are PP such terms, since
p and e" p can occur anywhere in the above

expression. To simplify the notations of the ex-
pressions in the matrix element, we put

in the expression for the matrix element and the
fatter two indices give the positions of 7' p and
7'"p. %'ith these notations the matrix element
is expressed as a sum of components M„„such
that

u&" & = PM t'~

and

=(6 p)+5 (t"p-Z ~ p)+5 (e" p-e p)

(5a}
~j..~ ~ ~ Ns

&f ldN, « „lag, &

0;„,.=O (5c}

The first index denotes the position of the elements

Q« «„=Q„, «.„-5««(E,. +Eq)-5~ „(E,'+E~) +Eg,

(5b)

with

(5)
~

+~+ ~, ~, v E»~~ + ~~

To simplify M„„ further, we take the direction
of the incident electromagnetic polarization vec-
tor to be along the z direction so that 7 p =p, .
The polarization vector of the emitted photons
can be taken outside and we get

&

&sg I p. ls, & (s.IPIs. , & (s. , lpls. ,&

P, v 3 , ..., I+ ~ Ef, N ~+Q«-1;«, " Et, «+Q«:«, » Et + ~+Q«-I;

& s„lpl ~„,& & e. , lpis. .& &s, Ip, ig)
E +Ave v E» +Qv 1 ~ „» +Q~P „
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The summation over complete sets of states is made of angular as well as radial parts. The summation
over the angular variables can be performed if we take help of the following relations:

&,[R„,(r) Y, (e, y)]=[A, 1'„, (e, q)q'+a, 1'„, (8, y)q ]R-„,(r),

(&„+l'q, }[R„,(r)1', (8, (I()] =[C, 1'„",(8, p)q'+D, 1',"", (8, p}q ]R„,(r),

(V„—fV, )[R„,(r)Ãp(8 p)]=[E, 1', -'(8 p)q' F, -'(8, p)q-]R, (r).

(Ba)

(Bb)

(Bc)

d l+1
q (l, r) =—+

dr r (10)

Since the angular momentum of the two states in
the matrix element &(I(&„ I

'q'I
I (I(, & differ by + 1 a

convenient expression for it is

&~.i —&~+ i +q(i&, r) = "'
2

' q'(1&, r)

9+1
q (l r)

-l +1

g m) &, m~ g m) ) m) ~) ifts &g fft

are functions of the quantum number / and m and
are tabulated in Ref. 26. The operators q' are
given by

d lq'(l, r) =—--,
dr

&0(.il~. —lw. l()( &=Q (i)+1, 1))

x&R,,ilqlR(, &,

where we have put

Q'(l, +1, l)) =A, . , 5(l,„,l, +1)

+B, 5(l„„l
q
-1),

Q'(lq„, lq) =C, „6(1),lq+1}

Q (lq„, lq)=Eg 5(l„„l, +1)

Using E(is. (12) and (13) we can write M„„as

(12c)

(13a)

(13c)

If we denote the hydrogenic-atom wave functions
by g„, =-R, K, &, where R, is the radial part,ly
we then get

Here 6„„contains all the angular contributions
and T contains the radial part and is given by (the
subscripts p, v on T is dropped)

&f lq I sv, &

x (R, ~~lq I R() ),

(6,+il &.+ f'), I(I((, & =Q'(l, +1, l, )

x(R, „lqlR„),

(12a)

(12b)

„&sN, I q luv .& & c, I q Ig &

~+pf ~ ~, ~ E+ ~+@

The angular part is given by

x(Q'(1 „, l „,)Q'(l „„l „,)+-'[Q'(l „, l „,)Q (l „„l „)+Q (l „ l „)Q'(l „ l „)]}
xQ'(l „„l „,) ~ (Q'(1„, l, ,)Q'(l, „l„,)+ ~[Q'(1„, l, ,)Q-(l„„l„,)+Q (l„,l„,)Q'(l„,„ l„,)])

(16)

Further

Summing over the polarizations and averaging over directions of the emitted photons, we have

2 2 2

I(( („=(~~ QGq „((„m,;l„ln, ; . . ; jg)(L'(I„ I„.. . , L(Z, E,Z',),
p, v

III. SUMMATION TECHNIQUE

We now discuss how to perform the intermediate-states summation occurring in E(1. (15). To perform
the summation over the complete set of radial states, we define function P, which is closely related to the
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T matrix. For example, we define

r(», „.. . , IIZ„Z, , Z,')=f dry'&&„, ( &q(», Vl&„)„.. . , LI,Z(l, , Z,,'). (16)

The It„, (r) are the radial wave functions of the hydrogen ground state, and V is given by

V(t„ l„.. . , Li y, E„,z„z, ) = P /I, ( )
&"" ~ q~" }

ffyI ~ ~ ~ ~ +g j S, ff g;P, l/ S,Ã 1 Ã 1'P /j

The sequence of the V's of different order satisfies

V(t, , /„„.. , L.j y, Z„Z„Z,')=+I/„, (r, ) d, r, 'It„ l, (r, )
1

xq(t, +l, r, ) V(t„„t„„... , I, [y, z„z„z,'}V(I. [y, Z, ) =It„, , (r).
(20}

Since R„, ,
&

(r) is a solution of the radial equation
for the hydrogen atom, it must satisfy

1 d 1 d 1 l, (l, +1)

y(l, , /, „,. . . , L)P) = — dr e ~"
dp o

x V(t i, l
q „,. . . , L/y, Ei, E,E,' )

= -E„,Z„, t, (r) . (21}

Equation (21) can be used further to simplify Eq.
(20), and we get

(E +Q~. „„+D,) V(t), t) „.. . , I) r, E„,E, , E,')

x V(/) & /, ~„.. . ,L) r, zq, E, , E,') .
(24)

By using Eq. (24), Eq. (23) reduces to the following
first-order differential equation:

dr) rg r rR„) g) r)
qy, lg

(P'-ng') —+2[(/g, i)P -1) y(/), t~„, " LIP)~ ~

x q(t, +1, y) V(t„„l„„.. . , L [ r, E„Z„Z,') .

(22)

The sequence of the V's are therefore related by
the following second-order differential equation:

where

6(/„„ l, —1) 2p, +(4l, +2)—

+6(/g „l, +1)2p y(/g, i, . . . , L~)p) (25)

(E +Qg, „„+D,q) V(l, , . . . , Li) y, E,E, ,E,')

=q(l, +1,y)V(/„„. . . , L ~r, E„E„E,') . (23)

Let us now define a function y(l „.. . , L
~ p} by the

following:

o(', = —2(E, +A~.„„).
Equation (25) can be used successively to obtain
all the functions y. For example, from the initial
given function y(L[p) we get for y(/„„ I

~ p) the
following relations:

d' d
6(L, l„,—1) 2p„—2+(4/„~+2) —+5(L, /„, +1)2p y(L~p) (26}

dp'

d
y(I ~p) =d ~, dr//„ l, (r}e ~'.

Thus, in principle, one can obtain the cross sec-
tion if one is able to solve successively all the

first-order differential, equations given by Eq.
(25). We have solved the above equations by a
Taylor-series expansion method, which has been
discussed thoroughly by Zernik and Klopfenstein
in Ref. 9. For the transition from the ground state
the transition matrix T(t, /„. . . , L)y, E)„E,, E,'}
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is related to y(l„ l„.. . , 1.(p) in the following way:

z(r, r„,r Iz rrz rz„)=,'z z(r, r, ~ z)(r z, z— +z(z, zz,)r
—z(z„.. . , z( ll(d

(27)

Equations (1) and (17) can now be used in con-
junction with Eq. (27) to obtain two-photon-emis-
sion cross section.

Using the above result, we have calculated the
two-photon-emission cross section in the transi-
tion 1.s-2P by a numerical procedure. In the lowest
order, the electron absorbs one intense photon
in the ground state and is thereby excited. It then
goes to the 2p state with the simultaneous emis-
sion of two Raman photons. In our case of one-
intense-photon absorption and two-Raman-photon
emission, we have to solve two sets of coupled
first-order differential equations. Our numerical
results are present in Figs. 1 and 2. Recently a
number of workers" have found the amplification
by the stimulated emission of radiation at photon
energies above 10 eV, so that the experiment in
the ground state of hydrogen could be performed
in the near future.

IV. DISCUSSION

The matrix element K~"~ as a function of the
energy of one of the emitted photons shows reso-
nant peaks whenever its energy becomes equal
to the difference between the two bound levels
(Fig. 1). These resonant peaks could manifest
themselves as faint lines in the emission spectra.
Another interesting property is that (if we average-
out the resonant peaks) the matrix element de-

creases both for high and low values of the emitted
photon energy, i.e., the two photons tend to have
nearly equal energies. A similar result has been
derived, by Elton eI; a/. ,"for two-photon emis-
sion from the excited state of helium and has been
experimentally verified by Spitzer and Greenstein"
in helium-neon. The numerical value for the cross
section has been plotted against the energy of the
intense photon in Fig. 2. The cross section ex-
hibits the usual resonant character whenever the
energy of the intense photon corresponds to the
energy difference of the bound levels of hydrogen.
An important feature of the curve is the increase
in the cross section by several orders as the in-
tense photon energy increases, making it a domi-
nant process in the vicinity of ionization. The
result is similar to one found by Mohan and
Thareja" that two-photon-induced emission is
enhanced over one-photon emission. In fact, for
the values of the intensity of laser beam of the
order of 10' W/cm', two-photon emission could
exceed ionization. This is not surprising, as in
similar conditions the cross section for a bound-
to-bound transition with single-Raman-photon
emission also exceeds the ionization cross section
(Gontier and Trahin, " 1971). Therefore, in con-
clusion, we can say that the emission of two spon-
taneous Raman photons is likely to become impor-
tant for the energy of the intense photon approach-
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FIG. 1. Transition matrix as a function of the energy
of one of the emitted Raman photons.

FIG. 2. Cross section as a function of the energy of
the intense photon.
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ing the ionization energy. Also, in the spectrum
of the emitted Raman photon me may expect faint

lines corresponding to the resonant peaks in the
cross section and transition matrix.
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