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The time-displaced self-correlation function for a one-dimensional hard-core fluid with
independent stochastic forces acting on each core is solved exactly and concisely. At long
time, the distribution has a spread given by éx(¢)= [R(¢t)/n1t/2, where R(t) is the absolute
dispersion in position of a noninteracting particle and » the free-volume reduced density.
The diffusional behavior without stochastic background, and non-Fickian diffusion of Levitt

with Brownian background, are reproduced.

There are, understandably, very few classical
many -body systems whose macroscopic time de-
velopment can be followed exactly. A trivial ex-
ample is that of free particles, but this is ren-
dered nontrivial by the observation of a one-to-one
correspondence with the dynamics of point hard
cores in one-dimensional space,' and indeed with
that of finite-diameter hard cores as well.? In-
terestingly enough, many of the transport prop-
erties of real, e.g. three-dimensional, systems
are mimicked by the one-dimensional hard cores.
However, more detailed correspondence with the
space-time pair-correlation structure of a real
system is achieved only by special choice of the
initial hard-core velocity distribution,® which is
clearly invariant under collision in one dimension
and hence constant in time.

Levitt* has made the interesting observation
that if a Brownian mechanism is introducted to
allow for the relaxation of the hard-core velocity
distribution to a Maxwell-Boltzmann distribution,
an abnormal diffusion results. Thus, there is an
intrinsic distinction between most physical real-
izations of one-dimensional hard-core statistical
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dynamics and anticipated fluid dynamics (see also
Ref. 5). It is the purpose of this communication
to present the matter in a somewhat more general
context.

We consider a set of N point hard cores x,, ...
xy—Wwith possibly stochastic background—on the
line - 3L < x< 3L. Assume now a state of homo-
geneous current-free equilibrium with density
n=N/L [to be replaced by the free-volume re-
duced density n/(1 —na) for hard cores of finite
diameter a| and velocity probability distribution
g(v). Then the time-displaced one-body self-dis-
tribution function for a particle initially at posi-
tion-velocity (0,v’) to end up at a time ¢ later
at (x, v) is defined by
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now normalized to N. If the X; are the particle
positions without velocity interchange on collision,
i.e., behaving as noninteracting particles, Eq.

(1) may be rewritten® as
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where 0., is the Kronecker 6 function and € the unit step function.

Straightforward algebraic manipulation in the thermodynamic limit L -«, n=const can now be carried
out in the fashion of Ref. 2, Appendix A. The result is that if z(xvt|v’) denotes the time-displaced one-
body self-probability (normalized to unity) in the absence of direct or indirect two-body interactions, and
the partially integrated time-displaced probabilities are defined by

h(xvt)s_[h(xvtlv')g(v’)dv’,
h(xt)Efh(xvt)dv=fh(xtlv’)g(v') av’,

then

h(xtlv')sfh(xvt]v')dv,
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f,(xvtlv’)=nh(xvtlv')f§§ exp{ -n[ixsin6+R(xt) (1 - cosh)]}

+n"’f§§ fe“ee"‘x’h(XtIv')dee‘ef"“)h(th)dY exp{-n[ixsiné +R(xt) (1 —cos6)]} .

Here

R(xt)th(Xt)ix—xldx 5

is the absolute dispersion of an excursion about

x in time interval ¢ for a noninteracting particle.
The 6 integrations in (4) are easy enough to do.

It is more useful to look directly at some limiting

cases. For x>0 on the tail of the underlying dis-

tribution z(xt), we have as well R(xt)=x, and (4)

reduces to

fs(xvt|v')~ne " *h(xvt|v’), (6)

essentially the probability of a gap in the particle
distribution between the origin and x.

On the other hand, in the body of the distribu-
tion, we can perform a time-asymptotic evaluation
in the sense of the small expansion parameter
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[Note that for even h(xt), R(xt)~|x| decreases
monotonically from R(0¢) to 0.] To leading order
in A, the replacement e'® = [R(xt) +x/R(xt) — x|/
Xe!® in (4), followed by second-order expansion
about #=0 yields at once

fo(xot|v) =~ n{2m [R(xt ) = 2]/} /2
xexp(-n{R(xt) - [R(xt)? - ¥*]1?})
x[h(xvt|v') +ng(v)], (8)
or except for a portion of vanishing integral at
long time,
fs Gevt|v') = [n/27R ()]} 2 [ h (xvt|v’)
+ng(v)] e-nxz/zR(t) ,

where

4)

R(¢) sR(Ot)=lelh(Xt)dx. (9)

In particular, the breadth of the distribution is
given by

[6x(¢)F =(x*(¢)) =n~'R(¢) . (10)

If the particles suffer only collisional inter-
action, then for an initial velocity distribution
g(v), we clearly have h(Xt)=t “g(X/t), so that

R(t)=tflV|g(V)dV. (11)

Thus 6x ¢ /2 evinces the canonical diffusive be-
havior. This is the situation originally analyzed,!?
which indicated that the model was not entirely
alien to real three-dimensional physics.

However, it is now seen that in the presence of
any mechanism—aside from interparticle col-
lision—which independently interrupts the recti-
linear propagation of the particles, the ensuing
reduction of R(¢) will destroy the ¢/2 dependence
of 8x. For example, for a Brownian background—
without specifying the precise realization of the
one-dimensional geometry which makes this rele-
vant—R (¢) starts at small time at the value (11),
but after a transition time depending upon the
parameters involved achieves its asymptotic form

R(t)=yt"?, (12)
so that 6x <t Y4, There are two complementary
consequences. First, the diffusion constant van-
ishes:

D=1im =0.

t>w
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But the velocity autocorrelation

<v(0)v(z)>=%r_iﬂ;f_a(tﬁ
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becomes
(v(0)u(t)) = = (v/8n)t =2, (13)

with a very-long-range negative tail in time. Both

qualitative consequences are seen from (10) to be
evoked by the coupling of an intrinsic velocity dis-
tribution relaxation mechanism with collisional
transfer, and are not special to the Brownian na-
ture of the background.
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