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Gravity effects on light scattering from a simple fluid near its critical point
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The eA'ect of the earth's gravity on light scattering from a simple fluid near its critical point is investigated.

It is found that, in general, gravity influences the angular distribution of the scattered irradiance in three

ways. First, the forward scattering at the critical point does not diverge. Second, the irradiance in any but

the forward direction is not greatest at the critical temperature, but slightly above it. Third,
Ornstein-Zernike-Debye plots of the inverse irradiance versus the square of the wave number are concave
downward at small scattering angles. This last feature is usually attributed to a nonvanishing of the critical
exponent q and thus indicates that the experimental evidence for this conjecture is misleading. Computations
are peformed using an approximate equation of state to exhibit these deviations from the traditional
Ornstein-Zernike theory.

I. INTRODUCTION

The divergence of the isothermal compressibility
of a simple fluid at its critical point results in a
large gravity-induced variation of density with
height when the fluid is in the critical region.
Even though this phenomenon has been well known

for many years, ' and in fact has been utilized in
the measurement of critical exponents, ' it is usu-
ally ignored in the analysis of scattering experi-
ments. To recognize that this neglect is an over-
simplification, recall that the scattered irradiance
depends on the pair-correlation length which, in
turn, is a rapidly varying function of the density.

The problem of taking into account a macroscop-
ic density variation in calculating the scattered
irradiance can be cleanly divided into two parts.
First there is the electromagnetic aspect of the
problem: owing to the change in local refractive
index accompanying the density variation, the
usual scattering Green's function for a uniform
fluid must be modified. ' Under the assumption
that the density is continuous and its variation is
small over distances comparable to both a wave-
length of the exciting radiation (assumption of
geometric optics) and the pair-correlation length,
we have found a compact expression for the scat-
tered irradiance in terms of the pair-correlation
function. ' This assumption is valid for those parts
of the supercritical region (T & T,) that are pres-
ently accessible in the laboratory. The statistical
mechanics and thermodynamics needed to find an
explicit expression for the pair-correlation func-
tion in terms of the macroscopic parameters of
the system constitute the remainder of the problem.

In this article the pair-correlation function is
evaluated at different heights in the sample by
using the classical Ornstein-Zernike (OZ) theo-

ry' ' and a local-equilibrium argument. This pro-
vides us with an expression for the scattered
irradiance in terms of the local compressibility
of the fluid. From straightforward arguments we
conclude that, in general, for any reasonable
equation of state in the critical region, the gravity-
induced inbomogeneity affects the scattering in
three ways. First, the forward scattering no
longer diverges at the critical point. Second, the
scattered irradiance in any other direction
achieves its maximum value at a temperature
higher than T„ the critical temperature. Third,
even with the QZ expression for the correlation
function, Ornstein-Zernike-Dehye (OZD) plots
of the inverse scattered irradiance versus the
square of the wave vector are not linear, but
curve towards the origin for small scattering
angles.

Unlike the first two features mentioned above,
lack of linearity at small angles has been experi-
mentally observed. ' Until now it was attributed
solely to a deviation from the classical QZ theory
near the critical point. Because gravity is re-
sponsible for similar behavior, it must be taken
into account in any analysis of experimental data
before one can infer a particular nonzero value
for the critical exponent q.' '

To illustrate these features we consider an
approximate equation for the density profiles which
has asymptotic validity and which %ilcox and Bal-
zarini' have found suitable for xenon. We obtain
analytic expressions for the forward scattering
and angular distribution of the scattered irradi-
ance for a fluid prepared such that the mean den-
sity is equal to its critical density. Using numbers

typical of xenon with a 1-cm sample height, we
give QZD plots of the inverse intensity versus the
square of the wave vector, and compare these
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with the usual homogeneous predictions. We find
marked differences in an experimentally access-
ible region of the critical point.

Recently Dobbs and Schmidt" have carried out
similar calculations to determine the effect of
gravity on small-angle x-ray scattering from
argon. They have performed numerical computa-
tions for a particular collimation geometry using
density profiles generated by the scaled equation
of state of Sengers etal." They have also con-
sidered the case where the mean density is not the
critical density. " Their numerical computations
indicate that the forward scattering does not di-
verge at the critical point and that the scattering
at a particular angle is a maximum at a tempera-
ture different than T, . Unlike the situation for
light scattering, they conclude that deviations
from the homogeneous assumption are not experi-
mentally apparent for the shorter wavelength x-
ray scattering, but may rapidly become so with
a few technical improvements. They have not
considered OZD plots which are usually used to
see deviations from the ordinary OZ predictions.
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functions of p and T, and the critical exponent q
is expected to be rather small: 0 «q &0.2. When

g vanishes we have the usual OZ expression. Here
we shall take g to be zero to demonstrate that
gravity influences the scattered irradiance in the
same manner as taking g c0 and ignoring gravity
altogether. From the assumption of local equi-
librium we may regard K and a as functions of the
height z through their dependence on density p.

The irradiance I of the correlated scattering in
the direction n is then given by4

II. MATHEMATICAL FORMULATION
q' =hO2/n2O sin'8+[n —(n' —y')'~']'t

C (r) (ajul+ g) s ttr- (2.1}

for large values of r. In Eq. (2.1) x and a are

In this section our aim is to find a general ex-
pression for the scattered irradiance in terms of
the local density in the fluid. %e shall draw three
general conclusions before tackling a particular
example in Sec. DI.

The idealized experimental geometry considered
here is the same as in our previous article. We
define a Cartesian coordinate system (x, y, g) in
the laboratory as follows: The origin is the cen-
troid of the scattering volume V and the earth' s
gravitational force is in the -2 direction. The in-
cident beam is a plane monochromatic wave with
incident intensity I„vacuum wave number z„di-
rection of polarization x, and direction of propaga-
tion z. The scattering volume has constant cross
section in any horizontal plane and height 2L. With-
in V the index of refraction n and the density p are
monotone decreasing functions of z. To avoid dis-
continuities in n, index matching at the upper and
lower boundaries (s =~ L) is assumed. Moreover,
p is taken to be equal to the critical density p, for
z =0.

It is generally agreed' that the pair correlation
function G(y) in a three-dimensional homogeneous
system close to its critical point may be expressed
as

n, =n(I.), cos8 =n z, y =n, sin8,

& is the distance from the origin to the detector,
and Eq. (2.2) is strictly valid only when cos8& 0
(8 is the usual scattering angle). The incoherent
scattering makes a negligible contribution in the
critical region and we have ignored it.

The quantities in the integrand of Eq. (2.2) de-
pend on z through their dependence on the density.
The functions h and q' depend on the local refrac-
tive index n which in turn depends on the density
through the Lorentz-Lorenz equation. " '4 It is
likely that a is roughly inversely proportional to
the density, whereas K' is inversely proportional
to the isothermal compressibility and hence is a
rapidly varying function of the density in the criti-
cal region. ' Now, the total change in density for
a typical macroscopic sample near the critical
point is only on the order of a few percent. While
K is very sensitive to this change through its de-
pendence on ~p -p, ~, the functions h, q', and a are
not. Thus, to good approximation, we may evalu-
ate h and q' by setting n (z) =n, =no and evaluate a
at p =p~. Optically this means that the curvature
of the light rays in the scattered field is neglected
so that the restriction cosa &0 can be dropped.
Moreover, because the compressibility is an even
function of z, the corrections to this approxima-
tion are second order. Performing the above sub-
stitutions, we have
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where

2
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(2.3}
E= dp„1+

8„=(2L/z', )Z„, Z„=l-P/(I+P).
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(2.8)

(2.9)

L

dg
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where cosg =n x.
The only difference between the above and the

homogeneous system with p =p~ is that, in the
latter case, g is replaced by

21
K2+q2 y (2 4)

fi =4' /go~ z' =z', (I +U},

g —T p —p
py =
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will be convenient. For a given temperature K' is
a minimum at the critical density so U is an in-
creasing function of ip„i. Moreover, z', vanishes
at the critical point so U is a decreasing function
of ie i and diverges when z =0, p, «0. In general,
as K'~ K'„U ~ 0. All of the angular depeadence
appears in the dimensionless quantity P. From
the compressibility equatione

8P
CK

ep

where P is the local pressure and c is essentially
constant in the critical region. Thus the local
value of K' can be expressed in terms of the density
profile, z =z I'p„), by an application of the baromet-
ric equation:

~P &z, g dz
~p citp„c dp„

where g is the acceleration of gravity.
To obtain a useful expression for8, write

1 1 q'
1

K +g K g +K

(2.5)

use Eq. (2.5) to express z' in terms of dg/dp„and
substitute the result into Eq. (2.5}. The final ex-
pression may be conveniently expressed as

8 = (c/g}a p, J, (2 5)

where K, is K evaluated at p =p~.
The remainder of the article is chiefly concerned

with the behavior of gas compared with g„. In
what follows the definitions

In the above, pz =p„(L),p z =p, (-L)„and np, =pz
—p z. g is the angular distribution of the irra-
diance normalized such that J(8 =0) = I and g„ is
simply the angular distribution so normalized for
the homogeneous fluid.

At this point in the analysis it is immediately
apparent that the scattering in the forward direc-
tion does not diverge at the critical point, but
rather is proportional to the (bounded) change in

density across the fluid. Clearly it is a maximum
at the critical temperature. To observe that the
scattered irradiance is a maximum for some
g & 0 if q' «0, we consider Eqs. (2.3}and (2.5}. In
particular consider the behavior of dp„/dz as a
function of z for fixed height. Atz =0, dp, /dz di-
verges as c approaches zero from above. But
dp„/dg & 0 at all points in the sample and dp„ is
bounded as c vanishes. Thus, for any z IO, there
exists an z, such that dp„/dg decreases when g

decreases below e, . Conversely we can define a
z, such that when iz[& iz, i, dp„/dg increases with
increasing z, whereas for iz i& iz, i, dp„/dz de-
creases with increasing c. Now, for c sufficiently
small that iz, (

& L, the integral in Eq. (2.3) can be
decomposed into two parts. For [z i

& [z, i the con-
tribution increases. But as e approaches zero so
does g, . Hence, for q'e0, there is an & & 0 for
which 8 is a maximum. For the case q' =0 the
singularity in the integrand of Eq. (2.3}at ~ =0,
g =0 negates the argument and ensures that the
forward scattering is a maximum at e =0.

The quantity labeled E distinguishes J from J'„.
Because 0 & E ~ 1 it is apparent that J„&J & 1. Like
J„ it is a simple matter to show that J is a mono-
tone decreasing function of P, and hence of q'.
Qualitatively the angular distribution J is less
peaked in the forward direction than J„. In the
limit of large z, U vanishes and J approaches J~.
In fact U vanishes whenever there is a linear rela-
tionship between p„and g because linearity implies
that sj&/sp, and hence z' is independent of density.
Thus gravity effects should not be regarded as due
simply to changes in p„with height, but rather to
changes in dz/dp„.

To demonstrate that OZD plots of 8 ' vs q' are
concave downwards for sma11 scattering angles,
we simply differentiate J"' twice with respect to
P and evaluate the derivatives at P =0. The results
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dimensionless variables u and v,

8/go q
v p~/po q

where

AC" Ct

0.8

0.7

ln terms of these quantities Eq. (3.4) is simply

0.6

0,5

u =v(1+ ivy' '). (3.5)
0.4

In view of the preceding discussion we expect good
agreement with experiment for small and large
~v ( and only approximate agreement when (v( is
on the order of unity. Now, the range of z over
which u and v are linearly related is proportional
to ~& & '). In this region K' is indistinguishable
from Ko which goes as E . Thus the contribution
of the range of linear approximation to the forward
scattering vanishes slowly as e&~~ "when T ap-
proaches T, . Outside of ihis range, l/z' does
not diverge, confirming our earlier conclusion
that the forward scattering is finite at the critical
temperature.

To compute the angular distribution we need the
functions U and E of Sec. II. For these profiles

(3.6)

where

0.3

0.2

0 ———I

7 Cg Ci

FIG. 4. Temperature corresponding to maximum scat-
tered irradiance as a function of scattering angle.

beta function. The behavior of F is roughly the
same when 6 is in this range (see Fig. l).

Unfortunately, v~ and P are not the actual experi-
mental variables. Rather, in a particular experi-
ment, I. is fixed and q' and e are varied. Note
that

and we use us and v~ to indicate f/z, and p~/p„
respectively. Nearly all experiments on simple
fluids yield 4 «5 «5.' %hen 5 is an integer, F
can be expressed in terms of simple functions by
the method of integration using partial fractions
(see Appendix A) while, for nonintegral values of
5, F can be expressed in terms of the incomplete
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CCI2 C] = 5

5 6 7 8 Ag" c&

FIG. 3. Inverse forward scattering vs temperature.
FIG. 5. Scattered irradiance as a function of tempera-

ture for fixed values of the scattering angle.
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where

c, =[&(g&)' ']1/5, u, &' "~' =Ae1'/c, .

When 6 is specified, v~ and hence I can be ex-
pressed in terms of ux by inverting Eq. (3.5) (see
Appendix A). Thus the natural angular dependent
variable is cq3/c, and the natural temperature-
dependent variable is Ae&/c, .

It is convenient for computational purposes to
normalize the irradiance so that it is unity at
8 =0, c =0. Treating g„in the same manner we
find

even with g w0 still predicts a divergent forward
scattering at the critical point and a straight line
in Fig. 3. Thus, in principle, gravity effects can
be experimentally distinguished from a nonvanish-
lng g.

As indicated earlier, the irradiance in a particu-
lar direction achieves its maximum value at a
temperature above T, . The only exception is the
forward direction. A somewhat lengthy but
straightforward calculation shows that the value
of c for which the irradiance is a maximum can
be computed from

I =vlQI J,-«/ 6 (3.7) P = [F(o)(o3 '+1) —1] '.5 —1

I = {Q-«)/bJ
h I h (3 B)

for the irradiance so normalized. In Fig. 2 we
have constructed OZD plots of 1/I and 1/I„vs
cq3/c, for different values of Ae "/c, . Here, and
in the remaining computations, we have taken
5 =4. The range of cq3/c, is taken as 0.5 corre-
sponding to light scattering from xenon with a
sample height of 1.0 cm (see Appendix B). For
large values of c there is a linear relation between
density and height in the fluid and the results are
very close to the homogeneous predictions. But
as c decreases, the curves calculated from Eq.
(3.7) start to bend downwards for small scattering
angles and the slope of the approximately straight
part changes. Notice that, as expected, for some
scattering angles the irradiance increases with
temperature. We shall return to this point shortly.
In Fig. 3 the inverse forward scattering is plotted
versus Ae~/c, . For small e the values slowly
approach unity as anticipated. The dotted curve in
Fig. 3 is the corresponding homogeneous result.

It is useful to compare the results illustrated in
Figs. 2 and 3 with the experimental results. As
stated by Fisher, ' experimental results diverge in
two ways from the prediction of the homogeneous
treatment. First there is a tendency in OZD plots
for the curves taken near T, to be slightly curved
and to dip downwards for the smallest accessible
values of q'. Second the intercepts obtained by
extrapolating the best straight-line fits to the data
do not approach zero as c vanishes, but rather
are concave upward when plotted versus c along
the critical isochore and extrapolate to a nonzero
value for ~ =0. As can be seen in Fig. 2, both of
these effects also result from taking gravity into
account with g =0. It is suggestive that the curves
calculated from Eq. (3.7} yield 3) =0.1 when fitted
to the homogeneous theory with g e0. This is about
the value usually expected for g. Thus, if q is not
zero, gravity effects disguise its experimental
manifestation. Of course, the homogeneous theory

This curve is plotted in Fig. 4, and Fig. 5 demon-
strates the temperature dependence of the irradi-
ance for different scattering angles.

APPENDIX A

The indefinite integral

1
dx )

can be evaluated by the method of partial fractions.
For 5=4 we obtain

2 «1 1+X
WS"' "

&1
* *' '"" 3-* *I'~*)

and for 5 =5,

ln, ~ +2arctan[(v 2)x+1]
1 x'+ (v 2)x+1

+ 2 a,rctan [ (v 2)x —1]

For 5 =4, Eq. (3.5) can be inverted as follows.
Let

&d=S+ +8

where

S =p + [1 + (Q Q)3]1 3}1 3

Then the desired root of Eq. (3.5) is

V=-'(-1d' 3+{4[33+$1d}']' ' —1dP~3)

APPENDIX 8

Wilcox and Balzarini have measured the depen-
dence of the refractive index of xenon on height in
the critical region. Using the Lorentz-Lorenz
relation they determined that the density profiles
were in reasonable agreement with Eq. (3.4) with
5 = 4, A = 8.7 x 10' cm3/sec3, and 8 = 1.9x 103
cm'/sec'.
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The classical OZ theory gives'

c = PksT/10m,

where m is the atomic mass, ks is Boltzmann's
constant, and / is on the order of the range of the

interatomic force. For light scattering experi-
ments we choose f/A. =10 ', where A. is the vacuum
light wavelength, to find

sup (cq'/c, ) = 0.5.
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