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The Dicke theory of coherent spontaneous emission is generalized by means of group-theoretical methods.
Effects of superradiation and the structure of coherent responses of an equilibrium medium to pulsed

excitation are considered. A method of calculating cooperative effects in second-order perturbation theory is

developed. The role of collective properties of a system of radiators in experiments with high power exciting
radiation is discussed. Some "anomalous" features of stimulated Raman scattering are accounted for.

f. INTRODUCTION

As is well known, when a many-particle system
undergoes spontaneous emission of radiation, the
individual atoms or molecules composing the
system do not emit independently of one another.
Rather, there are cooperative effects, due to the
common radiation field, that can amplify or sup-
press the emission above or below the intensity
of independently radiating particles. The pioneer-
ing theory of such coherent spontaneous emission
was expounded by Dicke, ' who considered a sys-
tern of two-level particles, interacting by means
of a radiation field, and showed that the system
behaves as a single coherent entity. The Dicke
theory allowed one to predict and investigate a
number of first-order radiation effects connected
with the collective behavior or particles, e.g. „
photon echo' and self-induced transparency. '

In recent years different aspects of the Dicke
problem have been studied by many authors (see,
e.g. , Refs. 4-6 and references therein), but the
treatment has rarely gone beyond the two-level
idealization and first-order perturbation theory.
The two-level idealization is a satisfactory approx-
imation to real systems only in those cases when
the interaction with the field has a strong reso-
nance character. However, it is essential to take
into account the "multilevelness" of the particles
in a number of situations of practical importance,
such as the action on a medium of several reso-
nance pulses with different frequencies, the case
of molecules with equidistant spectra, and the
description of the interaction of a. medium with
intense fluxes of radiation. Furthermore, in this,
last case it is necessary to utilize higher orders
of perturbation. theory to calculate Raman scat-
tering effects, harmonic generation, and so on.
Here, relaxation processes do not have time to
return the medium to its initial equilibrium state,
and hence, as was pointed out in Ref. 7, it is nec-

essary to consider the perturbation of the medium

by earlier scattering when calculating transition
probabilities. As a result, the molecules of the
medium act as a single cooperative system, lead-
ing to off-diagonal elements in the density matrix
of the medium (in the energy representation), in
turn giving rise to a number of peculiarities of
scattering processes. In view of these examples,
the removal of the above-mentioned limitations
of the Dicke theory is a necessity.

We shall refer to a, system of multilevel particles
interacting by means of a radiation field as the
generaLized Dicke problem. This generalized
problem has been considered by several authors.
Apanasevitch and Cruglick' have interpreted it
from the point of view of permutation groups.
Shelepin9 and Teplitsky' discussed the possibility
of direct generalization of the energy-spin method
to a system of multilevel radiators. Methods of
calculating coherent responses of matter to several
external pulses, using a matrix generalization of
the Dicke formula [Eq. (I2) in Ref. 1], have been
developed in Ref. 11. Several authors have ex-
tended the domain of applicability of the Dicke
theory, not by considering the generalized prob-
lem, but by making ad hoc additions to the basic
theory. Thus in Ref. 12, equations have been
found for the scattering intensity when a photon
beam passes through a medium. Cooperative
effects were taken into account by terms propor-
tional to the square of the density of scattering
particles, WaLls" obtained scattering probabilities
for a molecular system in the Dicke state with a
maximal cooperation number.

In the present paper, we develop the generalized
Dicke theory further with the purpose of expanding
its domain of applicabiLity. In Sec. II we describe
the system of multilevel particles, using group-
theoretical techniques. In Sec. III we then use
these techniques to calculate quantities of interest
for coherent spontaneous emission. Features of
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this emission peculiar to the multilevel descrip-
tion are considered briefly in Sec. IV. Coopera-
tive effects in second-order perturbation theory
are considered in Sections V-VII. In particular,
we find in Sec. V the probabilities of single Stokes
and anti-Stokes scattering events on pure coherent
states. In Sec. VI the scattering probabilities on
a molecular system that has been subjected be-
forehand to a short intense laser pulse are cal-
culated. The results of our theoretical considera-
tions are compared with experimental data on
stimulated Raman scattering (SRS) in Sec. VII,
where we see that a number of peculiarities of
SRS a,re accounted for by taking into consideration
cooperative effects.

II. GROUP- THEORETICAL FORMULATION

I.et us consider at first a system of radiators,
each with three unequally spaced nondegenerate
energy levels. An ensemble of particles occupies
a volume with linear dimensions small compared
with the wavelengths of the radiation. Vfe shall
neglect inelastic collisions (a gas of low density).
Then, the internal and center-of-mass variables
separate. It is convenient to write the Hamiltonian
by means of the generators of the group SU, (see,
for example, Ref. 14; the notation introduced there
is used below). The internal energy operator of
the jth molecule has eigenvalues e, =--,'e, e, =-,'~,
e, and we wikk represent it as

H&&'=eI'~'+t (—
' —1')'~' j =1 2 . N. (1)

The eigenfunctions of this operator, X,"', i =1,2,
3, correspond to the eigenvalues (--,', -', ), (-,', —',),
(0, -3) of "isospin" I,'~' and "hyp .rcharge" F&"

operators and describe the molecule in its first,
second, and third levels. The functions X,

"' trans-
form according to the representation &(1,0) of the
group SU„ that is, each molecule is characterized
by its unitary spin in energy space. The unper-
turbed Hamiltonian of a system of N radiators
can be written as

tions X"' show what level each mokecule occupies,
a,nd E, is the level population. The eigenvalues
I, and -', —y are equal to —,'(iV, —N, ) and
—,'(N, +N, —2N, ), respectively.

The operator

H,„,=-8{[(e,-ie, )I, +(e, i+e, )K +(e, +ie, )i, ]

+ (Hermitian conjugate)[

describes in the dipole approximation the inter-
action of the mokecukes with the radiation field.
Here 5 is the vector potential of the field at the
point at which the system is located. The vectors
e, are connected with the dipole moment matrix
elements by the relation (ff = c =1)

~ ~ 1e, -ie, = iud-„, e, -ie, =i(e, --,e) d~,

e, - ie, = i (~, + -,
'

~ ) d„.
Thus, the transition probabilities are determined
by matrix elements of the nondiagonal generators
of the group SU, (Fig. 1). In analogy with the two-
level scheme, ' instead of using states (3) as initial
states, it is necessary to form appropriate linear
combinations so that H;„, connects a given state
with the smallest possible number of other states.
The basis (P, Q, I, I„1') of the irreducible repre-
sentation 5)(P, Q) of the group SU, is such a set of
suitable states. (For brevity, here and further,
the coordinate part of the wave function is not
written out ).

The electromagnetic transitions conserve the
quantum numbers P and Q. (The complete Hamil-
tonian is formed linearly from the group genera-
tors with which the Casimir operators commute. )
It can be shown' that for given N„N„N„ I the
numbers s = ——' (N3P+Q) an-d a =—', (H -P —2Q) take
values satisfying the system of inequalities

H =Ho(r„r„. . . , r„)+ci,+e,(—,
' —Y), (2)

where 0, describes the energy of translational
motion and intermolecular interaction, I, =Q&I',~',
—', —&=+,(—', —Y)"'. This Hamiltonian acts only on
the molecules' center-of-mass coordinates
r„r„.. . , r„The operator. s H, and H, =Q, H,"'
commute with each other. The unperturbed Hamil-
tonian eigenfunctions are

(1) (2) ~ ~ ~ (&)+g,N, g, g ='g(ry r2 ~ ~ rg) Xp Xj),
' ' '

Xg,

Here, U,(r„r„.. . , r„) is the space coordinate
part of the wave function (H, U, =8, U, ); the func-

FIG. 1. Diagram of transitions between energy levels.
The transition between each pair of levels is described
by nondiagonal generators of the group SU3.
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I~ -I «s «I~+ I, a «I~ -I, s +a «I~ -I +N~,

where

I„=,'(N,-+N, ), —,'~N, -N, ~-I ,'(N, —+N,).

The treatment given above allows one, in princi-
ple, to calculate the transition probabilities to
any order of perturbation theory.

III. COHERENT SPONTANEOUS EMISSION

IN A SYSTEM OF MULTILEVEL PARTKLES

The intensities of spontaneous emission from the
state ~s, a, I, I„F), calculated to first order, are
equal to

I = I-, =-,'N„a=0, O~s &min(N„N, ).

By means of (6) one gets

f'~~ = 9",~0'(L +L~)(L —L, +1), f'~ = f'~0' N~, f'2, = 0,

where

L=-,'(N, +N, ) s, -~L,
~

L ,'(N,—+N,),

L, =-(N —N, ).
If s =0, then f;, = 9,"N' (the superradiant Dicke
state). ln Ref. 6 we give a detailed discussion of
formulas (6). Let us dwell here on the most in-
teresting case of superradiance through all fre-
quencies. When I =I„ it follows from (6) that

a =0, 0 ~s ~ min(N, +N„N, ).

f'„=v'!,"f,„(s,a, I, .I„F), (6) If s =0, then

where f,'," are the spontaneous-emission intensi-
ties of an isolated molecule for the transition
I - k. The functions f„are defined by matrix
elements of the nondiagonal generators, e

f„=(I+I,)(I I, +1), f-=y, (I+I, +1)+y,(I -I,),

f„=y,(I -I +1)+y (I +I ),

where

y, =(I„+I—s+1)(l„+I—a+2)

x (I„-I—s —a +N, ) [(2I +1)(2I + 2)]-',

y, = (I -I„+s)(I„-I—a+1)
x (I„+I—s —a+N, +1)[2I(2I+1)]-'.

Thus, the intensities depend upon three quantum
numbers, s, a, and I, one of which (I) changes in
the transitions 3-1 and 3-2. These numbers are
cooperative characteristics of the system of mole-
eules, determining its radiation decay rates. In
the particular cases when the number of particles
at one of the levels is zero, the correlation be-
tween the two other levels is described in the
same way as in the case of the two-level scheme
with a corresponding isospin (I,K, or L) The.
emission through other channels is proportional
to the number of particles at the level, the transi-
tion from which is under consideration. . For ex-
ample, if N, =0, one has from (5),

f',
~

= V",~0' N, (N~ +1).

In particular, when the populations are equal, the
emission intensity through all channels is propor-
tional to the square of the total number of mole-
cules. This case corresponds to the totally sym-
metric wave function, transforming by means of
the representation $(N, 0).

One can excite such states by starting with the
gas in its ground state, for which I =-I,=-,'N,
s =a =0. After the action of two pulses with fre-
quencies ~» and &», the gas goes to the super-
radiant state because with absorption of the first
pulse the number I does not change, whereas with
absorption of the second pulse it remains maxi-
mal. ' The system in the state, thus attained,
radiates with intensities calculated according to
(10). For a system initially in a state of thermo-
dynamic equilibrium, superradianee will also be
observed after the two-pulse excitation [ see for-
mulas (14) with I'(%„,k') = &(k», k"')
=1 (k„-E„,k"}=1] .

In the optical range the linear dimensions of the
system, as a rule, exceed the wavelengths of
spontaneous emission. In this case the molecules
can be correlated in such a manner that coherent
emission is observed at different frequencies in
directions connected by certain geometric rela-
tions. The Hamiltonian of the molecules' inter-
action with the field can be written in a form

II,„, =-Z a-„)e-„g [(e, e, )fl, (k-)+(e, +le, )K (k)+(e, +ie,)L (k)]

+ (Hermitian conjugate),

where a T, &, ag q are, respectively, the photon creation and annihilation operators. The operators
appearing in (11)are defined by formulas
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(kr) p f(i) e((k'r)

K (R")= Q K"' e"""')

(grrr} g L(J) er (k' 'ry

(12)

IV. PULSE-INDUCED COHERENT RADIATION

I,et us calculate the intensities of coherent
responses to the action of pulses with frequencies
(r)» (wave vector R») and ~» (wave vector k») on
a medium in equilibrium. It follows from formulas
(6) that for mixed states,

and under the condition

(13)

satisfy the commutation relat:ions of the I.ie alge-
bra SU, . The wave functions of the system of
molecules can be chosen simultaneously to be
eigenfunctions of the unperturbed Hamiltonian (2}
and the Casimir operators E'(1(',k", 1( ),
G'(K', k", k"), constructed from (12) if the condi-
tion (13) is fulfilled. Under these circumstances
the Casimir operators do not commute with opera-
tors of type (12), having wave-vector indices
different from the one already chosen. In analogy
with the considerations leading to (6), one dis-
covers that the constructed wave functions are
states of a system for which the radiation, emitted
in the directions k', K",1('" (k'+%" =k"') at fre-
quencies &», (d», », is coherent. Spontaneous-
emission intensities in these directions are given
by formulas (6), where &2(, 00(); y'~, f'~(0); f'„, W(0)

are now to'be interpreted as the photon emission
rates per unit solid angle in the directions k', k",
k"', respectively. The emission in 1(', R", k
directions does not change the quantum numbers
s and a, while the emission in other directions
leads to their change and to the destruction of
coherence with respect to k', k", k"'.

&2((k') = &(0)(k') Trl (R') pE, (k'),
f' (k")=C"'(k")TrK (k")pK (k")

(arrl) f (0)(kill) T L (kiri) L (k rr)r

where p is the density matrix of a system of mole-
cules after the action of the pulses.

The action of a pulse on a molecule is described
by a unitary transformation on the molecules'
energy space." In the case under consideration
one has

e-( lt Tp T-le(Hlt

where p, is the initial density matrix, T = T$3 TJ2y

r„=exp(i-,'8, [~f (k„)+~*I,(k„)]},
T)3

= exp (i 2 8k [ pL (k(~) + p*L, (k) 3}}),

(I~I =IPI =1)

Here the parameters 8, and 6}, are proportional to
the product of the amplitude and duration of the
first and the second pulses, respectively, sin'-,'6},
and sin'-,' 6), are the excitation probabilities of the
molecules by the first and the second pulses to
the second and the third level, respectively. The
calculations give

f'„(k') = 9'k()0)(k )N(('c, sin'-,'8, +o, cos'-,'8k)+ &(o, —c,}'sin'8, cos'-,' 8, [N I'(k», %') - I]j,
t('„(k )= d"'or) (k'")N(c, cos'-,'- 8, + sin'-,' 8, (()) cos'-,' 8, + (), sin'-,' 8,)

+-,' sin'8, ((r, —(r, cos'-,'8, —(r, sin'-,'8, )'[N I'(}(»,1("')-1]},
&~(k")= 1~"(k"}N(o,cos' ,'8, +sin'--,'8, ((), cos'-,'8, +c, sin'-,'8, }

+-,' sin'8, sin'-,'8, (o) —c,)' [N I'(t(» —k», t("}—1]},

where o, =N(/N, N( is the equilibrium population
of the ith level; I'(p»p, ) =~(exp [i(p, -p, ) ~ r]}(',
and the symbol () signifies the average over all
the molecules. For systems of large extent,
(exp[i(p, -p, ) r]}=6~,- . From here it follows
that superradiation wilI be observed in the direc-
tions %,2 (frequency (r)»), k„-t(» (frequency (r)»),
and t(„(frequency ru»). A single pulse induces an
intense response in the same direction. Here,
however, the radiation at other frequencies is
not coherent.

So far, relaxation processes have been excluded
from consideration. Therefore the intensities
obtained have not depended on time and have
determined immediate coherent responses of the
system to the exciting pulses. In order to analyze
the time development of these responses, it is
necessary to include the effect of inhomogeneous
broadening, caused by differences in the reso-
nance frequencies of individual radiators as a
result of the inhomogeneity of the field within the
sample under investigation (see also Ref. 11). For
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instance, calculations analogous to those in Ref.
2 show that when two pulses of frequencies (d»
and (d» act on the medium, there arises an echo
signal of frequency ~~ at time f+ (~»~~~)~, in
addition to the coherent responses at frequencies
&„and &» immediately after the pulses at times
t and t+w. The time 7 is much less than that for
the irreversible relaxation of the system. The
intensities of the signals as before are determined
by formulas (14). The time delay of the response
at frequency ~» is present only if ((o,'f'/(o~~')
= (const. ) (j =1, 2, . . . , N) and is absent in the case
of an arbitrary two-dimensional Gaussian distribu-
tion of the molecules about the frequencies w»
and &», when their correlation coefficient is dif-
ferent from unity.

Analysis of the case n =3 allows one to exhibit
the main peculiarities of the multilevel problem.
The states of a system of molecules with n levels
are classified according to the irreducible rep-
resentations K)(p„p„.. . ,p„,) of the group SU„.
Indices of the irreducible representations serve
as cooperative labels of the system. Representa-
tions u(X, 0, . . . , 0) correspond to the superradiant
states; wave functions of such states are totally
symmetric. If the system is in the superradiant
state, the intensities of emission at all frequencies
are proportional to N'. The superradiant states
can be excited by pulsed action on the medium.
If wavelengths are less than the dimensions of the
system, the intensities of responses are easily
found by means of the generalization of the above
formalism. Thus, reducing the n-level problem
with respect to the subgroup SU, of SU„, we easily
find the angular distribution of the coherent re-

sponses from the geometric relations between the
wave vectors. In Table I we present the angular
distributions of superradiant responses to pulsed
excitation for the four-level unequidistant radia-
tors. (1n the table instead of wave vectors we
indicate only their indices. For example, the
notation 12+14 means k»+k„.) Those cases in
which the angular distribution does not depend
upon the succession of pulses are considered here.
Other aspects of the multilevel Dicke problem
(the classical limit, oscillatory systems) are con-
sidered by the authors in Refs. 6 and 15.

V. CALCULATION OF COOPERATIVE
SCATTERING EFFECTS

The generalization of the Dicke technique to the
case of multilevel particles allows one to consider
the influence of the collective properties of a
system of molecules on processes, described by
higher orders of perturbation theory. The influ-
ence of this collective behavior on the Haman
scattering of light (RS) is calculated below.

It is usually considered that the scattering of
radiation on individual particles (atoms and mole-
cules) takes place independently. Such processes
are studied sufficiently well within the framework
of quantum electrodynamics. Meanwhile, physical
conditions are possible (e.g. , the case of such
intense incident radiation, that one may neglect
relaxation processes), under which the phase
correlation among individual radiators becomes
substantial. In this case it is necessary to consider
for scattering calculations the electromagnetic
field interaction with the whole ensemble of par-

TABLE I. Angular distributions of superradiant responses to pulsed excitation for the four-level unequidistant radi-
ators. (Instead of wave vectors, we indicate only their indices. For example, the notation 12+14 meMs k&2+k&4. )

Exciting pulses
Frequenc le 8 &g2 M 23 M

Superradiant responses
~)3 ~&4

I
II
IQ
IV
V
UI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI

]2 ~ ~ 4 13 ]4
12 23 . 14
]2 ~ ~ ~ 0 ~ 1 14 s ~ ~ 34

23 ~ ~ ~ e ~ ~

~ 1 + ]3 ~ I ~

~ ~ ~ 13 ~ ~ ~

23 ' ' l4
23 ~ ' l4
23 13
23 ]3 e ~ ~

23 13 14
o s ~

~ ~ ~ 13 ~ o ~

~ ~ ~ o ~ o ]4

24 34
~ ~ ~

~ ~ ~ 34
24 ~ ~ 0

~ i ~

~ ~ e

~ ~ ~

~ ~

~ ~ ~

24 34
24 34

12 23 ~ ~ ~ ~ . ~ . 34

12
12
12
12
12
12
12
12

14 —23 —34
14 —24
13 -23
13 -23
13 —23
14 —24

13 +34 —24
14 -24

13 —12
23

14 -34 -12
23

24 -34
23

13 —12
13 —12

23
23
23
23
23

13+24-14
24 -34
24 -34

13
23 +12
14-34
12 +23

12 +24 -34
12 +23

13
13

14 -34
23 +14 —24

13
13
13
13
13
14

14
14
]4

12 +23 +34
24 +12
12 +24
13+34
12+24

]4
14

13 +34
13 +24 —23

14
14

13 +34
14

14 —12
14 —12
14 —12
34+23

24
24

34+13 +12
24

23 +34
24

23 +34
24

23 +14 —13
24

24

14 —13
14-12-23

34
34
34

24+23
34

24 —13 +12
34

24 —23
34

24 —23
14 —13
14 —13

34
34
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ticles as a single entity.
Let us consider at first the problem of calculat-

ing transition probabilities for coherent RS pro-
cesses in the case when the wavelengths of the
initial and final photons are large compared with
the linear dimensions of the scattering system.
An adequate formalism to describe coherent inter-
actions of a medium with light to higher orders of
perturbation theory is the one developed in Sec. II,
according to which, the eigenstates and operators
for n-level molecules are classified by means of
the group SU„. With the cooperative effects taken
into account, the molecules behave as a single
quantum-mechanical system characterized by
the cooperation numbers introduced above. To
make a connection between the generalized Dicke
method, describing cooperative effects in first-
order radiation processes, and the earlier treat-
ments of cooperative scattering„" "let us con-
sider scattering on pure cooperative states. This
treatment illustrates the nature of the effect and
allows one to go over to the case of mixed states
(Sec. VI).

We will calculate the probability of a single
scattering event on the indicated states (the process
of the type n~, n~-n~-1, n~+1, where n~, n~
are the occupation numbers of laser and scattered
photons). Without loss of generality we restrict
ourselves, for simplicity, to the case of three-
level molecules. The formulas derived below in
Sections VI and VII remain justified by taking into
account an arbitrary number of discrete levels
and a continuous spectrum. The Hamiltonian of the
system. can be written as follows:

H+H. .. (15)

where H and H;„, are defined by formulas (2) and

(4). In (15) the terms that describe relaxation
processes are omitted. It is assumed further that
the characteristic times of these processes T „,
are large compared to the characteristic time

v„, of perturbation of a medium (changing of its
density matrix) as a result of the RS processes.
In the reverse case the effect of cooperation dis-
appears. This is the case when low-power sources
are used for the exciting radiation, because the
medium has time to return to equilibrium after
each scattering event. When intense laser radia-
tion is applied and stimulated processes become
essential, the assumption r„s «7„, is apparently
justified experimentally. "'"

We shall use the basis ls, a, I, I„F)of the ir-
reducible representations of the group SU, as
eigenfunctions of the unperturbed Hamiltonian
II. Insofar as in the calculation of RS probabilities,
the level "3" is virtual, we get from (5) at once
a =0, s =2K-I. The probability amplitude for a

scattering process with the formation of a Stokes
photon [(Fig. 2(a)] can be written as

(2lH', J3) &3JH, ll}
S +&1

2 3

&2lH,„, l3}&3lH,'„, ll)
(16)

where (lH ,„, l). are matrix elements for absorption
of a photon with wave vector k and polarization e:

(3IH... I» = —I(»~n, )"'
x[e ~ (e, +ie,)](3lI ll},

&2lH;„, l3)=-I(2v~n, )"'
x[e ~ (e, -ie, )1(2lx,l3).

(lH;„, l) are matrix elements for emission of the
Stokes photon (k~, 5'~):

(2JH „, l 3) = I[2m~ (n + 1)]"'
x [e *.(e, —ie )] (2JII. I 3)

(3JH', l1) = I[2v~, (n, +1)]"'
x[e,* ~ (e, + te, )] &31I~ Il) .

(16)

Using formulas (6) we get for the probability of
Stokes scattering on the system of molecules (the
indices s, a in what follows are omitted)

w~ =a~ '(I I, )(I +I,-+ I),
where res ' is the usual expression for the scat-
tering probability of an isolated molecule, so~

=8~ 8~,

a, =2v[~~,n, (n, +1)]"'

e,* ~ e, -ie, e ~ e, +ie,
~, —~, +~

[e (e, -Ie,)][e,' ~ (e, + Ie, )J

For 23=0 and I =I, x~ is proportional to the
square of the total number of scattering moiecules
(superscattering). It is clear (see Sec. VI), that
for a system of molecules in equilibrium, the
scattering probability is always proportional to
X„ that is, the scattering process takes places,
as is to be expected, incoherently. The coopera-
tive effect is manifested only in nonstationary
systems.

Analogously, for the probability of anti-Stokes
photon scattering [the mechanism of the proce=-s
is depicted in Fig. 2(b)] we have

w, , =~&",(I +i,)(I -I, +I).
It should be noted that the ratio of the probabilities
of Stokes and anti-Stokes processes from the state
lI, I,) is expressed by the quantity
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(I -I,)(I +I, +1)
(I +I )(I I-+1) '

which, when I =sN, yields N, (N, +1)[N (N +1)]
The latter result is derived in Ref. 11. In the
general case, when a state of the system is rep-
resented by a superposition of states with different
I and I„we have

(21)

~, -ws"& P I, , (I +X,)(I -I, +1)
S,I3

=a&"(L„Z If,f, ),
where P, , is the probability for a system to be
in the state ~X,I )sat the moment of scattering.

In the case when the linear dimensions of the
system exceed the wavelengths of th 't, '

1 and
final photons (X«a), which usually takes place
under real conditions, the system may be cor-
related in such a way that the scattering process
with a given wave vector of the scattered photon
goes on coherently for some direction or a thn or ano er.

en for the scattering amplitude we have formula
(16}, where instead of the matrix elements 'n the
right-hand sides of formulas (17) and (18) now
should appear, respectively,

(3il, (k)ill, (2iK (R)i3),

If'(~s }I3& ' &3II (ks (22)

the w

k is the wave vector of the incident ph to ko n~ 8 1s
e wave vector of the scattered photon). Accord-

ing to (22} the scattering amplitude contains opera-
tors from two sets (12), corresponding to the
following values of the parameters in (12):

(i): k'=k-ks i"=k k"=R

(ii): k'=k-ks, k" =-k k"'=-% .$'

The Casimir operators, constructed from the

two indicated sets of operators, comm t if th
'

domain of definition includes only the functions
s. . . „),with s =&N, a=0, F'=3M. The wave

function of our system may be chosen simulta-
neously to be an eigenfunction of the unperturbed
Hamiltonian 0 and the Casimir operators, con-
structed by means of the first and the second sets
of operators.

The states thus introduced are the states of a
system for which the scattering in the direction
k~ is coherent. The degree of coherence is given
by a, single quantum number J, which is related
to the chosen wave vectors (% and k ). 8 '

tu
of '16

y var e
o ( ) and (22), the calculation of scattering
amplitudes reduces to the calculation of matrix
elements of the operators

K, (k )sI. (k)=X, (k-ks)

+ g(j) L (j') ei(k'r -,Q ~ r .«)S j'
j ~i'

K, (-k)1. (-ks) =I, (k -ks)

g(j) L (j') f(k'r . -]t ~ r )e 'j' s
j v'j

0Since the second terms in these formulas when
acting on the functions

~ ,'N I, O-, I, I„s-N) do not
contribute to the matrix elements, the scattering
probabilities for such states are calculated by
formulas &19& where&, where u~, m~ are to be interpreted
as the scattering rates per unit solid angle in the

s direction, when a photon with wave vector %

is incident on the system

ws(k, ks) =us '(%, its)(I -I,)(I+X3+1). (23)

li ht beam
In Sections VI and VII the scattering of ' t0 an ln ense

xg earn passing through a system of molecules
in equilibrium mill be considered. Such considera-
ion, in distinction with the case of pure states,

requires the use of the density-matrix formalism.
In this connection we present a formula f 110 Owing
rom ( ) and generalizing (21) for the case of a

system of large extent.

~, (k, k, ) =~&0&(k, k, )(O'O&,

0 =-,'[Z, (k, )X, (k)+Z, (-i')I, (-k, )].

(J e
a-5

VI. LASER PULSE SCATTERING IN THE
ABSENCE OF RELAXATION PROCESSES

FIG. 2. Diagrams of (a) Stokes and (b) anti-Stokes
scattering processes.

Under real conditions cooperative effects can
be induced by perturbations of a medium as a re-
sult of a light beam passing through it. It will
be seen, further, that for a medium in equilib-
rium, the scattering occurs in the ordinary way
(the probability of scattering is equal to a sum of
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t()H (k, kH) =t()H(o)(k, kH ) TrOpO t, (25)

where p is the density matrix of the molecules
at the time of scattering. Let us find the explicit
form which the density matrix assumes at some
time t after a pulse of duration r has passed (in
part or completely) through a given length of the
medium. As a result of preceding scattering
events some of the molecules jump from the first
to the second level and the medium departs from
equilibrium.

The density matrix can be calculated in the
following way. Let qt(0) be the wave function of
the system before the passage of the pulse. At
time t we have

scattering probabilities of each molecule); but
if a medium is described by a nonstationary den-
sity matrix (having off-diagonal elements in the
energy representation) the scattering is at least
partially coherent. It is essential that in the
experimentally realized case ~«a, to be investi-
gated further, coherent scattering is nonisotropic
and is responsible for the asymmetry of the scat-
tering indicatrix of the first Stokes component as
well as other peculiarities of the angular distribu-
tions. The presence of cooperative terms in scat-
tering probabilities brings about a number of
energy and spectral peculiarities of scattered
emission as well.

In calculating scattering probabilities, we shall
consider, that a single-model laser pulse (plane
wave with a frequency (d and wave vector tt) is
incident on the medium in equilibrium at tempera-
ture T. The intense field, acting on the molecules
as the pulse passes, can be described classically,
whereas RS probabilities will be calculated quan-
tum mechanically. For simplicity we shall neglect
the changing of the molecules' positions during the
passage of the pulse.

By virtue of formula (24) the probability of
formation of a Stokes photon with a wave vector
%, for a mixed state can be written as follows:

tions in I-spin space: first about an axis, normal
to the axis of quantization (3-axis), and second
about the 3-axis. Hence the operator T assumes
the form of a product

T =exP i H,'j) tj
j

x g exp[i-,'(p, (a,f',"+ a,*f"')+i (p,'I("]

xexp i H,"'tj .

+ a4 t
+ f (i ) H-((o))&l(d)k r .] ((o

Going over from (26) to the density-matrix de-
scription, one finds

p(t) H-(H(t Tp 'p-)H(H(t (28)

where p, is the equilibrium density matrix:

Hl ttht

po — -H iot —~(o)P( +ooPo

Here y, and y,
' are parameters of the first and the

second rotation, respectively, in the energy space
of the sth molecule. The position of the axis,
around which the first takes place, is determined
by a phase of a, (~a,~=l). The parameters rp,

'

vanish in further calculations, which is why in the
following they will be assumed equal to zero from
the outset. The quantity sin'-,'y, is the transition
probability of a molecule from the first level to
the second one, as a result of preceding scattering
events. In the present problem we are taking into
account stimulated scattering, so y, are not equal
for different molecules (at a given time sin'-,'(p,
attains a larger value at the end of the section of
the medium in question, where the role of stimu-
lated RS is maximal). After substitution of t,
=k rt/(t) in (27) we get

)l(I( t) H-(H(t T)ft(0) (26) o', — —
2

1+ -1 ' 'tanh i =1,2,
Here T is the unitary transformation, describing
the perturbation of the medium after passage of
a part of the pulse. We can establish the most
general form of the operator T by considering
the action of the pulse on an individual molecule.
The field, acting on the jth molecule differs from
zero in the time interval t,. ~t ~I, +v, where tj is
the arrival time of the pulse at the jth molecule.
The unitary transformation, describing the scat-
tering on a given molecule, can be represented
as two successive rotations in the I and K sub-
spaces, which, as is easy to see, reduce to rota-

P(i) 2L, (t) + (t y)(i ) P(i ) 2'(i ) + () y)(i)

In what follows, it is convenient to represent
Tp, T ' in the form IIj Aj, where

A, = (ot cos'-,'()ot + (), sin'-,'(p,.)P,"'
+ (ot sin'-,'(p, +(r, cos' ,'(pi) P,")-
+-,'i sing, .((), —(t, )(a,I("e" »~ )"''i.
—~*. I~j) e '("l2/')" ~ r )

For illustration, let us calculate one out of the
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four terms included in (25); for example, the

quantity

TrpI, (k}K (k, )K, (fc,)I, (%)

Tr+A, I„"r'K"~rKerr'i, cr~'

1

Xerk'(Ir r~ r ~rk '(rJ rr } (30)

With the help of (29) it is easy to see that in (30)
the only terms differing from zero are those with

j, = j, = l, = E, and j, = j,~ E, = /, . Taking into con-
sideration that y is a slowly changing function of
the coordinate, one gets an equation equal to Eq.
(30):

N(vr (cos pep) + cr~( sill g (p) ) +N(crr —
crm}

x [N(sinqr)' 5„, g,„-(sin'cp) ] .

Here, because of the condition ~«a is taken,

(exp[i[k, —(&d~/~)k] ~ r})=6k

The quantity

1
(sinrp) = —~ sincpr

is an integral characteristic of the medium, deter-
mining the degree of perturbation at a given time.
The function cp(r, t) varies from zero (at the time
t =0) to its maximum value rp „, which is deter-
mined by the intensity of the incident beam and
in real cases depends on the rate of relaxation
processes. Other terms in (25) are calculated
analogously. Finally, for the probability of Stokes
scattering we obtain

rcr~(tc, tc~) =rrr~cor(k, k~ }

x [N(cr, cos'2cp+«, sin'-,'cp)

+ %sin rp(crr —cr2} [N5k (~ y~)k —1]}.
(31)

Here the condition (sinrp)'« I confirmed by ex-
periment is used (see Sec. VII}. When cp =0 (the
medium in equilibrium), (31) leads to the usual
result rrr~ (k, tcs) =rcr~co'(%, K, )Ncr, . In a similar way,
an expression for the probability of anti-Stokes
scattering is obtained:

rrr. , (k, %, ,) =¹',(k, %, , )

&& [N(cr, sin'-,'-cp + cr, cos'-,'cp}

+ csin'cp(cr, —cr, )'

&[tv&-k, c„g )-k —I]). (32)

We shall discuss the obtained formulas (31) and
(32) in connection with available experimental
information.

VII. APPENDIX TO STIMULATED RAMAN

SCATTERING PHENOMENON

Collective processes in Baman scattering are
intimately connected with the question of so called
"anomalies" in stimulated Raman scattering (SRS),
which have been observed after using intense light
beams from laser sources as exiting radiation
(see, for example, Refs. 16 and 18). Here the
most relevant are anomalous angular distributions
of the scattered light, extremely sharp dependence
of the scattered-light intensity on the power of the
exiting radiation, and appearance in the SBS spec-
tra of only a small number of frequencies of the
ordinary BS of the given substance.

These anomalies are poorly accounted for by
existing quantum theories of SHS, but are ex-
plained naturally by consideration of cooperative
effects. These effects play a crucial role in pro-
cesses with intense incident beams where it is
necessary, when calculating transition probabili-
ties, to take into account the change in properties
of the medium due to the preceding BS. The
necessity of studying problems of this sort on the
basis of the coherent interaction of light with
matter was first put forth by Sushtchinsky. "

Conditions under which cooperative scattering
plays a crucial role, apparently are actually found
in experiments on SBS.""The use of powerful
laser sources makes stimulated processes essen-
tial. As a result, characteristic scattering times
vRs are two to three orders of magnitude less than
characteristic relaxation times 7„, . After the
forward front of a laser pulse passes through a
given section of the medium, further scattering
occurs in the already perturbed medium, which
does not have time to relax. It is essential that
with the use of the usual low-power sources (the
case of ordinary Raman scattering) ~„r is less
than 7„S, and in this case cooperative effects do
not play any role (output intensities and scattering
probabilities have the usual concentration and
angular dependences).

Scattering on a nonequilibrium medium means
qualitatively that in every scattering event partici-
pate all molecules of the sample located in a
volume of height equal to that of the cuvette and of
cross-sectional area equal to that of the incident
beam. Qn considering relaxation processes, one
can make the estimate N, «

——N(I „r /l) for the num-
ber of molecules participating in the scattering,
where E is the sample length, E „& is the character-
istic relaxation length, and N is the number of
molecules in the active layer of the sample. An
estimation of sin y is provided by the relative
fraction of molecules excited by scattering, multi-
plied by the ratio of the characteristic relaxation
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where the scattering probability is written in the
form so~ =k,nn~+0, n. Expressions for &, and &,
in the case of the medium in equilibrium (y =0)
are proportional to the number of particles NQ

in a unit volume and are given in Ref. 16. Taking
into consideration cooperative effects, k, and k,
have a quadratic dependence on NQ:

k) -—e]N +P]N (34)

The solution of system (33) under the simplifying
assumption that P, is independent of coordinates
[ P,.(r) is a slowly varying function] has the form

~out ~ (cllgl(llo+k2lk~) l )S

2 ~k~l (n +02/0~)

nQ
(35)

where nQ is the number of photons with a frequency
~ entering the cell. Formula (35) defines (outside
the saturation region, where np' = n, ) a sharper
dependence of output intensity upon NQ compared
with the case when no cooperative effects are
present and transition probabilities are propor-
tional to N~ (P, =0). This fact implies a sharp
increase of scattering intensity if cooperative
effects are present. Thus, from expressions for

time to the duration of the pulse. This quantity is
usually small. Thus, under the conditions of the
experiment described in Ref. 17, the relative
fraction of excited molecules was -10 '. For y'
from here one obtains the estimate q,„-10 ' to
10 ' . However from (31) and (32) it follows that
cooperative effects play an important role at
values of cp' exceeding the magnitude N, f'f -10 ".
From here it is evident that it is the off-diagonal
structure of the density matrix which is essential,
not the variation of level populations.

From the scattering probabilities obtained in
Sec. VI follow the peculiarities of the complete
integral response, which ean be compared with
experimental data. The transition from local
probabilities to the output intensity of scattered
light is achieved in the usual manner (see, for
example, Ref. 16). The intensity of scattering
on outlet of a cell is equal to 'f =h&uzcng' S/n
(S is the cross section of a channel, along which
the radiation propagates, n~"' is the number of
scattered photons at the end of cuvette, n is the
index of refraction for the scattered light). Con-
sidering the increments of the number of photons
n and n~ of exciting and scattered radiation with
the passage of a pulse through a layer of thickness
dx, one obta. ins

dn dns= -k, nn~ —k,n, = A,',nn~ + k,n,

scattered probabilities follow the peculiarities
of the complete integral response of the medium.

Let us consider, for example, the angular dis-
tribution of Stokes emission. Formula (31) for
w~(%, k~) contains the 6 symbol, describing for-
ward emission. When the cooperative term in (31)
dominates, which happens with transition to inte-
gral responses of the medium, the intensity of
forward scattering also dominates, because it
has a sharper dependence upon N„ than that of in-
tensities in other directions. (The reason for
this is that quadratic terms in the expressions
for scattering probabilities are absent. Below,
when considering other features of SRS, the tran-
sition described here from scattering probabilities
to output intensities is implied. ) In accordance
with the estimate for y', „given above, formula
(31) confirms the dominance of forward Stokes
scatte ring. "

From (31) it can also be seen that with increase
in the thickness of the active layer (length of the
cuvette) the asymmetry of the scattering indicatrix
must grow, since increasing the role of stimulated
processes brings about larger values of y'
This is in agreement also with experimental data. "

Let us consider the angular distribution of the
first anti-Stokes component. The mechanism of
Fig. 2(b) by virtue of (32) gives rise to dominance
of forward emission. Anti-Stokes axial scattering
has been observed, in Refs. 20-24. Axial emis-
sion is realized either with sufficiently low input
beam power„or with a thin active layer, when
perturbation of the medium is connected mainly
with the passage of the exciting pulse. Axial
anti-Stokes emission (without Townes rings) is
actually observed in experiments with cuvettes
of short length and small input power. "'" %'ith

increase of incident radiation intensity (or of
cuvette length), when considering anti-Stokes
scattering, one should take into account also per-
turbation of the medium by Stokes radiation from
the reverse process of that shown in Fig. 2(a).
When calculating the density matrix, one should
realize that the operator T in (28) is a product
of two rotation operators in energy space. The
first operator corresponds to the passage of the
exciting pulse and the second one to the passage
of a plane wave with frequency ~z (wave vector
k~). A calculation shows that the probability of
the process of Fig. 2(b) for a medium, described
by such a density matrix, contains a coherent
term of order N' with an angular dependence
leading (with small angles between vectors k and

k~) to phase synchronism k+k~=2%. Thus with
increase of the intensity of the incident radiation
(or cuvette length), anti-Stokes emission appears
on a conical surface, in accordance with the
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Townes condition, the intensity of which increases
and becomes greater than that of forward emis-
sion. The transition from axial to conical emis-
sion also was observed, in Hef. 23.

Let us consider the energy deyendences of SRS.
Formula (35), with P, =0, describes exponential
growth of intensity when n, is small. Then, the
intensity approaches the saturation level. How-
ever, experimental curves reveal a dependence
on I, significantly stronger than exponential. "'"
This sharp increase is most probably a conse-
quence of the cooperation terms in the expressions
for k, and k, in formula (34). Under sufficiently
large no, cooperative scattering plays a dominant
role; and hence, formula (35) leads to the correct
qualitative description of the dependence in ques-
tion.

It was shovrn in numerous experiments that only
few frequencies out of the complete spectrum of
ordinary RS of a given substance are exhibited in
SRS spectrum. This is connected with the fact
that higher Stokes and anti-Stokes components
of scattering occur by means of step mecha-
nisms. " These mechanisms lead to the appear-
ance of the following frequencies in the SRS spec-
trum

At the same time, components are not formed
with frequencies

ln )

(d(n 1) (d(1) ~ (d(n-1) ~(1)
S S ln f a-S a-S 1n &

n=3, 4, . . . , (36)

corresponding to transition from the ground level
to the second, third, and other excited levels.
This behavior of higher SHS components has been
confirmed in experiments vrith unharmonic mole-
cules. Although, as a rule, individual molecule
transition probabilities to the first vibrational
level (transitions A) are larger than those to higher
levels (transitions 8), this can not serve as a
reason for the absence (at least, within the sensi-
tivity of the detector) of component (36) from the
SRS spectra. Hovrever, because the probabilities
of transitions A are usually larger than those
transition 8, the excitation of the medium is ex-
pressed mathematically by the comparatively large
magnitude of the off-diagonal density matrix ele-
ments connecting the ground and first excited
states. As a result of this density-matrix struc-
ture, cooperative effects between the ground and
first excited levels are enhanced. During the
passage of the pulse these effects become stronger.
From here it follows that the probabilities of pro-

cesses connecting the pair of levels mentioned
above are much greater than probabilities of other
processes. Just because of this, the step mecha-
nism for the appearance of the new SRS compo-
nents is significantly intensified.

We shall note in, conclusion that an experiment
with a simultaneous exciting SHS pulse and reso-
nance pulse of frequency vrould be of interest.
The density matrix of the medium, after a reso-
nance pulse has passed, has the form, analogous
to (29),

p(t) e-lit l tIIg sill~ t

A = (cr, cos'-,'8+a, sin'28)P,"'
j

+ (o, sin'-,' 8+ o, cos'-,' 8)P,"'
+-,'i sins(o, —o, ) [a,f'„"8'"»'l

lr'lI(l) &-ik&2' r .j

where sin'-,' 6) is the probability of excitati(, ~ of a
molecule by the resonance pulse vrith wave vector

12'
Substituting (3'f) in (25), one will get for Stokes

scattering a formula, analogous to (31), where

~ )-„ is substituted for 6& &
-„. From

here it follows that the resonance pulse can sig-
nificantly lower the threshold and increase the
energy of all SRS spectral components. If vectors
R and k» are not collinear, the angular distribu-
tions of scattered light change; for instance, the
first Stokes component vrill have a maximum in
the direction ks =k -k„. We note that a reso-
nance pulse with a frequency corresponding to
some other molecular transition is used, these
off-diagonal elements of the density matrix re-
lated to the resonating levels will be enhanced.
As a result, one might observe a change in SRS
spectrum, stemming from the intensification of
step mechanism between the new resonance level.
The influence of a resonance pulse on scattering
intensity has apparently been mentioned also in
Ref. 25.

We wish to call attention to the qualitative char-
acter of the treatment of coherent SHS effects
presented here. We feel that more quantitative
treatments will have to consider the dynamics
of a pulse passing through a medium.
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